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Foreword

IN JUNE OF 1963 a symposium on Mathematics and the Social
Sciences was sponsored by the American Academy of Political
and Social Sciences. One of the contributions was by Oscar
Morgenstern, who, together with John Von Neumann, had
written the book "The Theory of Games and Economic Behav­
ior." This book stimulated the application of mathematics to
the solution of problems in economics, and led to the develop­
ment of the mathematical "Theory of Games." Dr. Morgen­
stern's contribution to the Symposium was called the "Limits
of the Uses of Mathematics in Economics." I shall quote the
first paragraph of this article.

Although some of the profoundest insights the human
mind has achieved are best stated in negative form, it is
exceedingly dangerous to discuss limits in a categorical
manner. Such insights are that there can be no perpetuum
mobile, that the speed of light cannot be exceeded, that the
circle cannot be squared using ruler and compasses only,
that similarly an angle cannot be trisected, and so on.

ix



x FOREWORD

Each one of these statements is the culmination of great
intellectual effort. All are based on centuries of work and
either on massive empirical evidence or on the develop­
ment of new mathematics or both. Though stated nega­
tively, these and other discoveries are positive achievements
and great contributions to human knowledge. All involve
mathematical reasoning; some are, indeed, in the field of
pure mathematics, which abounds in statements of pro­
hibitions and impossibilities."

The above quotation states clearly and forcefully the pur­
pose of this book. Why does mathematics abound in "state­
ments of prohibitions and impossibilities?" Why are the solu­
tions of such problems as "squaring the circle" and "trisecting
an angle" considered to be "profound insights" and "great
contributions to human knowledge?" Why were centuries of
"great intellectual effort" required to solve such seemingly
simple problems? And, finally, what new mathematics had to
be developed to resolve these problems? I hope you will find
the answers to these questions as you read this book.

The outstanding achievement of the Greek mathematicians
was the development of a postulational system. Despite the
flaws and defects of euclidean geometry as conceived by the
ancient Greeks, their work serves as a model that is followed
even up to the present day.

In a postulational system one starts with a set of unproved
statements (postulates) and deduces (by means of logic) other
statements (theorems). Two of the postulates of euclidean
plane geometry are:

1) given any two distinct points, there exists a unique
line through the two points.

2) given a point and a length, a circle can be constructed
with the given point as center and the given length
as radius.
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These two postulates form the basis for euclidean construc­
tions (constructions using only an unmarked straight edge and
compasses). With these two instruments the Greek mathe­
maticians were able to perform many constructions; but they
also were unsuccessful in many instances. Thus, they were
able to bisect any given angle, but were unable to trisect a
general angle. They were able to construct a square equal in
area to twice a given square, but were unable to "duplicate
a cube." They were able to construct a square equal in area
to a given polygon, but were unable to "square a circle."
They were able to construct regular polygons of 3, 4, 5, 6, 8
and 10 sides, but were unable to construct regular polygons of
7 or 9 sides. Before the end of the 19th century, mathematicians
had supplied answers to all of these problems of antiquity.
The purpose of this book is to show how these problems were
eventually solved.

Why were the Greek mathematicians unable to solve these
problems? Why was there a lapse of about two thousand years
before solutions to these problems were found?

The mathematical efforts of the Greeks were along geo­
metric lines. The concentration on geometry, and the resulting
neglect of algebra, was due to the following situation:

The Pythagorean theorem tells us that, if the length of a side
of a square is one unit, the length of the diagonal is ..J2
units. What kind of number is ..J2? The Greek mathemati­
cians, up to this point, were able to express all their results
in terms of integers. Fractions, or rational numbers, are ordered
pairs of integers-Le., numbers of the form alb, where a and b
are integers, b =1= O. No matter how they tried, the Greeks
were unable to express..J2 in terms of integers. As you already
know, it can be proven that ..J2 is irrational, and it was not
until the 19th century that a satisfactory theory of irrationals
was developed.

Because of the lack of such a theory, the course of Greek
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mathematics took a geometric turn. Thus, when the Greeks
wished to expand (a + b)2, they proceeded geometrically as
follows:

(a + b)2 = a2 + 2ab + b2

a

b

a2

ab

a

ab

b

As we shall show later the solution of the'construction prob­
lems involves well developed algebraic techniques, and in fact,
it was not until algebra and analytic geometry were developed
in the 17th century by Vieta, Descartes, Fermat, and others,
that procedures were obtained that could be used in a successful
attack on the construction problems.
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CHAPTER I

Achievement of the Ancient Greeks

USING GEOMETRIC THEOREMS, the Greek mathematicians were
able to construct any desired geometric element that could
be derived by a finite number of rational operations and extrac­
tions of real square roots from the given elements. To illustrate:
Suppose we are given the elements a, b, and the unit element. The

Greeks could construct a + b, a - b, a-b, alb, a2
, and ~.

PROBLEM SET I-A

Construct a + b and a - b, using the given line segments.
The following diagram shows how to construct abo If EG is
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constructed parallel to DF, then x = abo

a b

c

PROBLEM SET I-B

G

M

I. Prove that x = abo
2. Using a similar procedure construct a2

; alb; a21b
The diagram below shows how to construct ..j(i.

p

A semicircle is constructed on LM as a diameter. NP is per­
pendicular to LM (P is the intersection of the perpendicular
and the semicircle). Then x = ..j(i.
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PROBLEM SET I-C

3

1. Using the diagram above, prove x = ,.JQ.
2. Using a similar procedure construct

~; ;ra; va
3. Using the Pythagorean theorem construct line segments

equal to

~ ; -V3; 'V"5; .vn
Using these constructions, the Greeks were able to con­

struct the roots of a linear or quadratic equation if the numbers
representing the coefficients were the lengths of given line
segments.

PROBLEM SET I-D

Construct the root of ax + b = c, where a, b, C are given line
segments.

To construct the roots of the quadratic equation x 2
- ax

+ b = 0 (a 2 > 4b), one can proceed as follows: Construct
a circle whose diameter BD joins the points B(O, 1) and D(a, b).
Then the abscissas of G and F (the points where the circle
intersects the X-axis) will be the roots of the quadratic equa­
tion.
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y

A

-...,O:+-----'G,.,....---------::;jFF---- x

PROBLEM SET I-E

1. Why do we use the restriction a 2 > 4b?

2. Prove that the abscissas of G and F are the roots of
x 2

- ax + b = o. Hint: Show that the equation of the
circle is

( _a)2 ( b + 1)2 _ a2 (b - 1)2
x "2 + Y--2- -4+ 4

As pointed out in the Introduction, the Greeks (using the
basic constructions outlined in this section) achieved con­
siderable success in construction problems. Yet they left a
number of unsolved problems for future generations of
mathematicians to struggle with. The remainder of this book
will be devoted to a brief history of attempts to solve these
problems and their final solution in the nineteenth century.
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PROBLEM SET I-F

5

Construct the positive root of x 2 + x-I = 0, given a unit
length.





CHAPTER II

An Analytic Criterion for

Constructibility

To ANSWER THE QUESTION "Which constructions are possible
with unmarked straight edge and compasses?" it is necessary
to establish an analytic criterion for constructibility. Every
construction problem presents certain given elements a, b, C

... and requires us to find certain other elements x, y, z .. '.
The conditions of the problem enable us to set up one or more
equations whose coefficients will be numbers representing the
given elements a, b, C •• '. The solutions of the equations will
permit us to express the unknown elements in terms of the
given elements. To take a simple example, suppose we wish to
construct a square equal in area to twice a given square whose
side is a. We express the problem analytically by the equation

x 2 = 20 2

Other problems, of course, will lead to equations of higher
degree.

7
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We have already seen how the roots of a linear or quadratic
equation can be constructed. We shall now investigate the
possibility of constructing the roots of an equation of degree
greater than 2, and we shall be especially interested in the roots
of cubic equations.

First, we know that it is possible to construct any geo­
metric element if that element can be derived from the given
elements by a finite number of rational operations (addition,
subtraction, multiplication and division), and the extraction
of real square roots. Now let us consider the converse situa­
tion. If a construction is possible, what is the relation between
the required elements and the given elements? It is easy to
see that only those constructions are possible for which the
numbers which define the desired elements can be obtained
from the given elements by a finite number of rational opera­
tions and the extractions of real square roots.

Any construction consists of a sequence of steps, and each
step is one of the following:

1 drawing a straight line between two points.
2 constructing a circle with a given center and given

radius.
3 finding the points of intersection of two straight lines,

two circles, or a straight line and a circle.

Let us assume that we are given a set of coordinate axes
and a unit length and that all the given elements can be
represented by rational numbers. We know that the sum,
difference, product, and quotient (division by 0 is always ex­
cluded) of two rational numbers is a rational number. The
rational numbers are said to form a closed set with respect
to the four fundamental operations. Any set of numbers
closed with respect to these four operations is called a field.
Let us represent the field of rational numbers by Fa.
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If we are given the coordinates of two points

PI(XI,YI) and P2(X2'Y2)

then the equation of the line thru PIP 2 is

(Y2 - YI)X + (XI - x2)Y + (X2YI - XIY2) = 0

or

ax + by + c = 0

where

a = Y2 - YI; b = XI - x2; and c = X2YI - XIY2

Note that XI' X2, Y 10 and Y2 are rational numbers by definition.
Then a, b, and c are also rational numbers.

The equation of a circle, whose center is (h, k) and whose
radius is r, is

x 2+ y2 - 2hx - 2ky + h2+ k 2 - r 2 = 0

or

X
2 + y 2 + dx + ey +! = 0

where d = -2h, e = -2k and! = h2 + k2 - r2• Again, d, e,
and! are rational numbers. Finding the coordinates of the
point of intersection of two straight lines involves only rational
operations performed on the coefficients of the variables,
whereas finding the coordinates of the intersection of a
straight line and a circle, or of two circles, would involve, in
addition to the rational operations, only the extraction of
square roots. To summarize, we can state that a proposed
construction with unmarked straight edge and compasses is
possible if and only if the numbers which define the desired
elements can be derived from the given elements by a finite
number of rational operations and the extractions of square
roots.
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PROBLEM SET n-A

Find the coordinates of the points of intersection of

(a) ax + by + e = 0 and a'x + b'y + e' = 0
(b) ax + by + e = 0 and X Z+ yZ + dx + ey +I = 0
(c) X Z+ yZ + dx + ey +I = 0 and

X Z+ yZ + d'x + e'y + I' = 0

All rational numbers, i.e., all numbers in Fa, can be con­
structed if we are given a unit length. Furthermore, if k is
a fixed number in Fo we can construct~ and a + b~,
where a and b are any numbers in Fa. If ,..,!k is not in Fa, then
we can prove that all numbers of the form a + b,..,!k(a,b,k
in Fo) form a new field F I , which has Fa as a subfield. For ex­
ample, let k = 3, then a + bAo/'T form a field F I which con­
tains all rational numbers as a subfield, namely all those
numbers for which b = O.

To prove that all numbers a + b,..,!k(a, b, k in Fa,~
not in Fo) form a field we observe that

1. (a + b,..,!k) + (e + d,..,!k) = (a + c) + (b + d),..,!k

=e+l,..,!k
2. (a + b,..,!k) - (e + d,..,!k) = (a - c) + (b - d)~

= m + n,..,!k

3. (a + b,..,!k) X (e + d,..,!k) = (ae + bdk) + (ad + be)~
= r + s,..,!k

4 a + b,..,!k • e - d,..,!k _ (ae - bdk) + (be - ad)~
. e + d,..,!k e - d/./"k - eZ - dZk

_ ae - bdk + (be - ad),..,!k
- eZ - d 2k e2 - d 2k
= u + v,..,!k

Since a, b, e, d, k are numbers in the field Fa, the sum,
product, difference, and quotient of any two of these rational
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numbers is a rational number. Therefore e,/, m, n, r, s, u, and v
are rational numbers, which proves that all numbers of the
form a + bJk form a field F I , which contains Fo as a subfield.
There is one detail which requires clarification. When
(a + bJk) was divided by (c + dJk) we obtained u + vJk

u - ac - bdk
- c2 - dZk

and
bc- ad

v = cZ _ dZk

Thus u and v are rational numbers if and only if

cZ - dZk *- 0

We have assumed that Jk is not in Fa. Therefore, k *- O.
Also when we divide we assume the divisor is not o. Therefore
c and d are not both 0, although either c or d may be o. We
now have to show that cZ - dZk *- O. If cZ - dZk = 0, then
cZ= dZk, k = cZjdZ and Jk = ±cjd. Thus Jk would
be in Fa contrary to the hypothesis. This completes the proof
that all numbers of the form a + bJk form a field, Fl.

Next we can construct all numbers of the form a l + bl~
where a I and b I are any numbers in FI , k I is a fixed number in
FI , and the ~ is not in Fl. Such a number would be
-v"S + ..J2,yT, where a l = -v"S, b l =..J2, k l = ..j'3
are in FI and ~ = ,yT is not in Fl. Another example
would be 5 + 2,yT. Again we can prove by a process com­
pletely analogous to that used above that all numbers of the
form a l + bl~ form a field Fz, which has F I as a subfield
(which contains numbers of the form a l + bl~' where
b l = 0).

The process can be continued indefinitely until we reach
a field Fn, n, a positive integer. We now have a sequence of
fields Fa, F» Fz, ... Fn with the following properties:

1. Fa is the field of rational numbers.
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F. is the field obtained by adjoining ,.,fk to Fo, where k is
a fixed number in Fo such that ,..,!k is not in Fo; F. contains
all numbers of the form a + b,..,!k, a, b, k in Fo, ,..,!k not in

Fo·
F2 is the field obtained by adjoining~ to F.. where k.

is a fixed number in F. such that~ is not in F•. The field F2

contains all numbers of the forma. + b.~;a.,b .. k. in F..
...Ik; not in F•.

F" is the field obtained by adjoining~ to F,,_ .. where
k,,_. is a fixed number in F,,_. such that~ is not in F,,_ •.
F" contains all numbers of the form

a,,_. + b,,_.~; a,,_., b,,_., k,,_. in F"_I

but~ is not in F,,_ •. A number in F" may be exceedingly
complicated, consisting as it does of n square roots, one over
the other. An example of a number in F. would be

-./2 - .../.../3 + .../7 + J'f
To obtain the number

.../.../3 + .../7 + J'f
we cap start with ko = 5,thenk. = 7 + ~,k2 = 3+~,
k 3 = ...Jk;" and k. =...;'k;. This number is, therefore, in F•.

2. Fo is a subfield of F.; F. is a subfield of F2 ; F"_I is a
subfield of F".

3. Every number in Fo• F., F2 , •• " F" is constructible, since
a number in anyone of these fields can be obtained from the
unit element by a finite number of rational operations and
extractions of square roots.

4. Conversely any constructible number can be found in
one of the fields Fo, F., F2 , "', F", since we have already
shown that only those constructions are possible for which the
numbers which define the desired elements can be obtained
from the given elements (which we assumed to be represented
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by rational numbers) by a finite number of rational operations
and extractions of square roots.

As a summary we can state the following theorem-All the
numbers in the fields Fo, F\, "', F" are constructible, and
conversely, any constructible number must be in one of the

fields Fo, FI> "', F". Thus, .v3 + -V"2 is constructible, since
.v3 + .lf2 is in F4 ; whereas .v3 + n is not constructible,
since .v3 + n is not in anyone of the fields Fo, F1, •• " F".

PROBLEM SET n-B

1. Show that 7/(5 - ..v'2) is in F\ by expressing the
number in the form a + b,.,j/(, where a, b, k are in Fo'

2. Show that 5/(2 -~) is in F2 by expressing the
number in the form a\ + b\~, where ai' bl> k l are in
F\. Hint: To rationalize the denominator, use the identity

S4 - t 4 = (s - t)(s + t)(S2 + t 2), S = 2, t =~

We are now in a position to determine when the roots of a
cubic equation are constructible, by proving the following
theorem: If a cubic equation with rational coefficients has no
rational root, then none of its roots is constructible. Any
cubic equation with rational coefficients is said to be
reducible in the field of rational numbers if it has at least one
rational root. If the equation has no rational root, it is said
to be irreducible in the field of rational numbers. Thus, we
wish to show that no root of an irreducible cubic equation
can be constructed. We can represent the cubic equation by

x 3 + px2 + qx + r = 0

where p, q, r are in Fo' By hypothesis, the equation is ir-
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reducible, and consequently has no rational roots. Let us as­
sume that one of the roots, x 1> is constructible. Then x I is a
number in some field Fn, where n is an integer> O. x I cannot
belong to Fo, since the equation is irreducible. Let m be the
smallest integer for which x I belongs to Fm , i.e., x does not
belong to Fm - I (m > 1). If the equation has any other con­
structible root, we assume that that root belongs to F" where
r > m. Then x I is of the form

am-I + bm_l~
To simplify our notation, let

a = am-I' b = bm- I , k = km- I

In other words, a, b, k belong to Fm- l , and Xl = a + bJk
belongs to Fm but not to Fm - l •

We now show that if a + b../7C" is a root of the cubic
equation

x 3 + px2 + qx + r = b
then a - bJk must also be a root. If a -.!f b../7C" is a root of
the equation, then

(a + b../7C"P + p(a + b../7C")2 + q(a + bJk) + r = 0

Simplifying, we obtain

a3 + 3a2bJk+ 3ab2k + b3kJk+ pa2

+ 2pab../7C"+ pb2k + qa + qbJk+ r = 0

or s + t../7C"= 0, where

s = a3 + 3ab2k + pa2 + pb2k + qa
+ rand t = 3a2b + b3k + 2pab + qb

Thus, either ../7C" = -sit or s = 0 and t = O. However, t
and s are numbers in Fm_l. Therefore, if ../7C" = -sit, Jk
would also be a number in Fm _ l , contrary to the hypothesis
that m is the least integer for which x I belongs to Fm • Therefore,
s = 0 and t = O.
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If we now substitute a - b..Jk for x in the polynomial

x 3 + px2 + qx + r = 0

we obtain the expression s' + t'..Jk, where s' = a3 + 3ab2k
+ pa2 + pb2k + qa + rand t' = -(3a2b + b3k + 2pab
+ qb). Thus s' = s = 0, and t' =- -t = O. Therefore,
s' + t'..Jk"= 0 and a - b..Jk"is a root of the cubic equation.

We now know that x I = a + b..Jk" and X 2 = a - b..Jk.
To find the third root X 3, we observe that the cubic equation
can be written in the form

(x - x.)(x - x2)(x - x 3) = 0
x 3

- (XI + X 2 + X 3)X
2 + (X IX 2 + X IX 3 + X 2X 3)X

- X.X 2X 3 = O.

Therefore

XI + x 2 + X 3 = -p

or, since XI + x 2 = 2a, x 3 = -20 - p, which means that one
of the roots, X 3, is in the field Fm - I , contrary to the hypothesis
that m is the least integer such that Fm contains a root of the
cubic equation.

We can, therefore, conclude that if a cubic equation with
rational coefficients has a constructible root, it also has a
rational root. If we represent the rational root by x" we can
write the cubic equation as

(x - x,)(x2 + PIX + q.) = O.

Consequently, the other two roots are roots of a quadratic
equation and are also constructible. Conversely, if a cubic
equation with rational coefficients has a rational root, we can
write the equation in the form

(x - xr)(x2 + PIX + ql) = 0

where PI and q I are rational. Thus the roots of this equation
are constructible. To summarize, we can state the following
theorem:
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The roots of a cubic equation with rational coefficients are
constructible if and only if the equation has a rational root.
If the equation is irreducible, then none of its roots can be
constructed with straight edge and compasses.

This property of cubic equations is basic in solving most
of the construction problems the Greeks were unable to
dispose of. As later chapters will show, this theorem can be
used to solve the following problems-duplicating a cube,
trisecting an arbitrary angle, constructing a regular polygon
of 7 sides and 9 sides. The problem of squaring a circle requires
results of a different nature, as the development will show.
Before we undertake the assault on these problems, there will
be a brief interlude on Complex Numbers.

Finally, it is interesting to observe that the theorem on
cubic equations is a special case of a more general theorem
whose proof is beyond the scope of this book. We first define
the term irreducible in a more general context: Let p(x) =
aox" + alxn-1 + ... + an = 0 be a polynomial equation
of degree n, where n represents a positive integer and aj
represents a rational number. Then p(x) = 0 is reducible
in the field of rational numbers if p(x) can be factored into
polynomials of lower degree with coefficients in the field of
rational numbers. If p(x) cannot be factored in that man­
ner then p(x) is said to be irreducible. It can now be
proven that a geometric element is constructible if, and
only if, the number representing the element is the root of
an irreducible polynomial equation (with rational coeffi­
cients) of degree 2k , where k represents a non-negative
integer.
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PROBLEM SET n-c

1. Show that ..J3 + Y2 IS the root of an irreducible
equation of degree 23 •

2. Construct ..J3 + $2.
3. Which one of the cubic equations has a rational root

(a) x 3
- 1 = 0

(b) x 3
- 2 = 0

4. Find the three roots of the reducible cubic equation.
5. Given a cubic equation x 3 + ax7. + bx + c = 0, where

a, b, and c are rational numbers, and whose roots r I' r 7.,

and r 3 are positive real numbers; if r I is rational, show
that all the roots of the equation are constructible by
showing that the roots are numbers in Fo or Fl' As an
illustration, construct the roots of x 3

- 7x7. + 14x - 6
= 0 given a unit length.

6. If 2 + ..j'3 is a root of the cubic equation x 3 + ax7.
+ bx + c = 0, where a, b, and c are rational numbers,
show that one of the roots of the equation is rational.





CHAPTER III

Complex Numbers

You MAY WONDER what complex numbers have to do with
constructing geometric lines or figures. But as you progress
you will observe that complex numbers are most useful in both
algebraic and geometric problems involving real numbers.

You will recall that finding the diagonal of a square of unit
side led to the equation x2 = 2,and that the solution of this
equation proved to be a real obstacle to the progress of
Greek mathematics. The Greeks could obtain the rational
numbers by forming ordered pairs of integers (a/b, b"* 0).
However, there was no such simple procedure for proceeding
from the rationals to the reals (including irrational numbers).

Another roadblock in the history of mathematics resulted
from the equation x2 + 1 = O. You should be able to prove
that there is no real number x whose square is -1. (The
square of a positive or negative number is positive, and the
square of 0 is 0.) There are two alternatives: either we must
assume that the simple equation x2 + 1 = 0 has no solution,

19
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or we must extend the real number system in such a way that
the new number field will contain a solution of x2 + I = O.
The latter alternative is, of course, the more desirable one,
and the new number field can be obtained easily by following
a procedure similar to that used in forming rational numbers
from the integers, i.e., we form a complex number by using an
ordered pair of real numbers with suitable definitions for
equality, addition, and multiplication. We can represent a
complex number in the form a + bi (i = ..v=T). The defini­
tions for equality, addition, and multiplication will be as
follows:

1 0 + bi = e + di if and only if 0 = e and b = d
2 (0 + bi) + (e + di) = (0 + c) + (b + d) i
3 (0 + bi).(e + di) = (ae - bd) + (ad + be) i

These are the definitions you would expect if we consider i to
behave as any other variable such as x, with the restriction
that i 2 = -1.

PROBLEM SET m-A

For which values of a and b will 0 + bi be a solution of
x2 + 1 = O.

It is not necessary to use i in representing a complex number.
We can merely write (a, b), where 0 and b are real numbers.

PROBLEM SET III-B

1. Write the definitions for equality, addition, and multi-
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plication, using the form (a, b) to represent a complex
number.

2. If we write the additive identity for complex numbers as
(0,0), and the multiplicative identity as (1,0), find the
solution of x2 + (1, 0) = (0,0) and check your answers.

You are no doubt familiar with the fact that polar coor­
dinates (r, fJ) as well as rectangular coordinates (a, b) can be
used to represent a complex number. Then, in polar form, the
complex number a + bi, or (a, b) can be represented as
r(cos fJ + i sin fJ).

The polar form of complex numbers enables us to multiply
two complex numbers very easily.

r 1 (cos fJ 1 + i sin fJ 1)·r2 (cos fJ2 + i sin fJ2 )

= r Ir2 [cos (fJ 1 + fJ2 ) + i sin (fJ 1 + fJ2)]

i.e., when we multiply two complex numbers we multiply the
moduli and add the amplitudes.
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PROBLEM SET m-c

1. Prove the last statement using the trigonometric identities

sin (x + y) = sin x cos y + cos x sin y
cos (x + y) = cos x cos y - sin x sin y

2. Prove that

rl(cosfJ 1 + isinfJ ,) _ ~[ (fJ _ fJ) + .. (fJ - fJ)]
( 0+"0)- cos I 2 Ism I 2r 2 cos 2 Ism 2 r 2

If we let r I = r 2 = 1 and fJ 1 = fJ2we obtain

(cos fJ + i sin fJ)2 = cos 2fJ + i sin 2fJ

The last equation is an illustration of De Moivre's theorem:

(cos fJ + i sin fJ)m = cos mfJ + i sin mfJ

For m a positive integer, the theorem can be proven by
mathematical induction. The theorem certainly holds for
m = 1. If we assume it holds for m, then (cos fJ + i sin fJ)m
= cos mfJ + i sin mfJ. Therefore (cos fJ + i sin fJ)m+ I = (cos fJ
+ i sin fJ)(cos mfJ + i sin mfJ) = cos fJ cos mfJ - sin fJ sin mfJ
+ i (sin fJ cos mfJ + cos fJ sin mfJ) = cos (m + l)fJ +; sin
(m + 1)0

Thus, the theorem is shown to hold for all positive integers.
However, De Moivre's theorem can be established for all real
or complex values of m. Let us use De Moivre's theorem to
obtain a useful formula for real numbers.

If x is a real number, then (cos x + ;sin X)2 = cos 2x +
; sin 2x. But (cos x + ; sin X)2 = (cos 2 X - sin 2 x) + 2; sin x

cos x, and cos 2x + ;sin 2x = (cos 2 X - sin2 x) + 2;sin xcosx.
Therefore, cos 2x = cos2 X - sin2 x, and sin 2x = 2 sin x cos x.
Observe that we were able to obtain formulas involving only
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real numbers by equating the real and imaginary parts of two
equal complex numbers.

PROBLEM SET ill-D

Using the above procedure, prove
l. cos 3x = 4 cos3 X - 3 cos x
2. sin 3x = 3 sin x - 4 sin 3 x
Hint: After equating real and imaginary parts of the complex
numbers, use the relation sin2 x + cos2 X = I.

Note that we shall use the first formula of Problem Set
III-D when we discuss the problem of trisecting an angle.

De Moivre's theorem enables us to find the roots of unity
in a very simple manner. (We shall use the roots of unity when
we discuss the problem of constructing regular polygons).
To find the two square roots of unity we may proceed alge­
braically as follows:

x 2 = I and x = +I or x = - I

Using De Moivre's theorem we would proceed as follows:
Let R = cos 8 + i sin 8, where R is a square root of unity.
Then R2 = cos 28 + i sin 28 = I, since R is a square root of
unity. Therefore 28 = 2krr, where k is any integer. However,
only 2 values of k will give distinct values of R. Thus

R , = cos rr + i sin rr = -1 (k = 1)
R2 = cos 2rr + i sin 2rr = I (k = 2)

No advantage is evident in using De Moivre's theorem in
the above example. However, should we wish to find the 17
seventeenth roots of unity, then the power of De Moivre's
theorem would soon become clear.

Let us try finding the three cube roots of unity. Algebraically
we use the equation
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X 3 - 1 = 0
(x - 1)(x2 + X + 1) = 0

-1 + -vC3 -1 --vC3
XI = 1, x 2 = 2 ' x 3 = 2

Observe that two of the roots are imaginary numbers.
By De Moivre's theorem we have

R = cos (J + i sin (J
R3 = cos 3(J + i sin 3(J = 1
3(J = 2k1t, k = 1, 2, 3

(J 2k1t
= 3' k = 1,2,3

R
21t. . 21t

I = cos 3" + I sm 3"

R 41t. . 41t
2 = cos 3" + I sm 3"

R 61t. . 61t 1
3 = cos 3" + I sm 3" =

PROBLEM SET m-E

Show that R I = X 2, R2 = X 3, R 3 = XI'

Observe that (again using De Moivre's theorem)

Therefore, we can write the three cube roots of unity as R,
R2 and R3. Also observe that the cube roots of unity, when
plotted, divide the unit circle into three equal parts and that
an equilateral triangle can be formed by joining the points of
division.
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1. If we let X 2 = (-1 + ,..,;=3)/2 = OJ, prove that x,
= OJ2 and XI = OJ'. Does a similar relation hold for
the two square roots of unity?

Let us now generalize the procedure and find expressions
for the n roots of the equation x" = 1 or x" - 1 = O. By using
the formula for the sum of geometric series or simply by
multiplying, one can show that

x" - 1 = x"-1 + x"-2 + ... + x + 1 (x =F 1)
x-I

If we let R(:;t= 1) be an n nth root of unity, then all the roots
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can be expressed as R, R2, R3, .. " R,,-I, R" = I, since an nth
root of unity can be written in the form

2kn ., 2kn k I 2COS-+'Sln- = ... n
n n ' '"

Thus for k = I,

R COS 2n + . 'n 2n1=-- ISi-n n

for k = 2,

R cos 4n + . . 4n R22=-- ISln-= 1n n

for k = n,

R" = cos 2n + i sin 21t = R" = I

The n nth roots of unity, when plotted in the complex plane,
divide the unit circle into n equal arcs, and joining the arcs
will result in a regular n-gon. Since the roots of the equation
x"-I + n,,-2 + ... + x + I = 0 are the complex nth roots of
unity and together with the root x = I, divide the circle into
equal parts, the equation is called the "cyclotomic" (circle
dividing) equation. The numbers R, R2, "', R" = I form a
multiplicative group since they satisfy the following four
conditions:

I closure R"·Rb = RlJ+b = Re, where a, b, c are integers
=::;;,n

2 associativity R"(Rb. Re) = (R". Rb). Re = RlJ+b+c

3 identity element is R" since R"· R" = R"
4 inverse element for R" is R"-"

Also observe that the inverse of R (cos 2n/n + i sin 2n/n) is
R-I which can be written in the form cos (2n/n) - i sin (2n/n).
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1. Express the seven 7th roots of unity (R, R2, .. " R7 = 1)

in polar form.
2. The seven 7th roots of unity form a group. Show that

(a) R3. R6 is a member of the group.

(b) The inverse of R5 is a member of the group.
(c) R 2 + (l/R2) = 2 cos 4n/7

3. By using the formula S = (ar n - a)/(r - 1), show that

1 + R + R2 + ... + Rn-l = Rn - 1
R-l





CHAPTER IV

The Delian Problem

THE PROBLEM OF CQNSTRUCTING a cube whose volume shall
be twice that of a given cube is known as the Delian problem.
D. E. Smith in his History of Mathematics relates the following
story with reference to this problem: "... the Athenians
appealed to the oracle at Delos to know how to stay the plague
which visited their city in 430 B.C. It is said that the oracle
replied that they must double in size the altar of Apollo. This
altar being a cube, the problem was that of its duplication."

The problem of duplicating a cube whose edge is one unit
leads to the equation x 3 = 2, which is an irreducible cubic
equation. For if a solution of x 3 = 2 were rational, then we
could represent the solution by alb, a and b integers, b * O.
Let alb be in lowest terms, Le., a and b have no common
factor greater than 1. Then a3 = 2b3and a3would be an even
integer. Therefore, a would be an even integer, say 2n, since
the cube of an odd integer is odd. Thus (2n)3 = 2b3

b3 = 4n3

29
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b3 is even, and b is even, which contradicts the hypothesis that
a and b have no common factor greater than I. Since x 3 = 2
is an irreducible cubic equation, its roots cannot be constructed
with unmarked straight edge and compasses, and it is not
possible to duplicate the cube with those instruments.

Early attempts by Hippocrates and Menaechmus showed
that the problem could be solved by finding the intersections
of parabolas and hyperbolas. Thus the equations x 2 = ayand
y2 = bx result in the equation x 3 = 20 3

, if we let b = 2a.

PROBLEM SET IV-A

I. Derive the equation x 3 = 2a 3 from x 2 = ay and y2 = bx.

2. Why is this method not considered to be a "solution" of
the Delian problem?

3. Show that x 2 = ay and xy = ab, with b = 2a, also lead
to the equation x 3 = 2a3

•

Diodes (second century B.C.) used the cissoid to duplicate
the cube. Vieta, Descartes, Fermat, and Newton also devel­
oped methods for duplicating the cube. Newton used the
lima~on of Pascal for this purpose. Of course, none of the
methods were restricted to the use of unmarked straight edge
and compasses.

PROBLEM SET IV-B

1. Although it is not possible to duplicate a cube, the
two-dimensional analogue of the problem can be solved.
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Construct a square whose area is twice a given square.
2. Is it possible to construct the radius of a sphere whose

surface area is twice the surface area of a unit sphere, or
whose volume is twice the volume of a unit sphere?





CHAPTER V

The Problem of Trisecting

an Angle

CERTAIN ANGLES CAN be trisected without difficulty. For
example, a right angle can be trisected, since an angle of
30° can be constructed. However, there is no procedure, using
only an unmarked straight edge and compasses, to construct
one-third of an arbitrary angle.

We shall prove this statement by showing that an angle of
60° cannot be trisected. For this purpose we make use of a
formula developed in Chapter III,

cos 3(} = 4 cos3 (} - 3 cos (}.

Let 3(} = 60°, then cos 3(} = t. Also let x = 2 cos (} = 2 cos 20°
Then

33
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x 3 - 3x - 1 = 0

We can show that the cubic equation x 3
- 3x - 1 = 0 is

irreducible. For, suppose x = alb, where a and b are integers
with no common factor greater than 1, b =j:: o. Then (a 3/b3

)

- (3a/b) - 1 = 0 and a3
- 3ab2 = b3

, or b3 = a(a 2
- 3b2

)

and a divides b3
•

Since a and b have no common factor greater than I, a

must be +1 or -1. Similarly, a 3 = b3 + 3ab2 = b 2 (b + 3ab)
and b 2 divides a3

• Therefore b is also + 1 or -1.
Thus the only possible rational roots of x 3

- 3x - 1 = 0
are +1 or -1. Since neither +1 nor -I is a root of the
equation, x 3 - 3x - 1 = 0 is an irreducible cubic equation,
and its roots cannot be constructed with straight edge and
compasses.

Therefore cos 20° cannot be constructed with straight edge
and compasses. Since an angle can be constructed if and only
if its cosine can be constructed, we have shown that an angle of
20° is not constructible, and that the general angle cannot be
trisected.

An alternative method for showing that the cubic x 3
- 3x

- 1 = 0 is irreducible is to use the following theorem from
algebra. If the equation coX" + C\X"-l + ... + C" = o(with
all the coefficients integers) has a rational root alb, then a is
a factor of CII and b is a factor of Co. [A proof of this theorem
can be found in Numbers: Rational and Irrational by Ivan
Niven.] Again we reach the conclusion that ± 1 are the only
candidates for rational roots.
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PROBLEM SET V-A

I. Using a coordinate system
(a) construct the cos A given acute angle A.
(b) same as (a) but A is obtuse.
(c) construct A given a line whose length is cos A.

2. Using the identity cos 3e = 4 cos3 e- 3 cos e, determine
whether each of the following angles can be trisected:
(a) 90°, (b) 120°, (c) 180°.

An interesting method for trisecting an angle is attributed
to Archimedes.

D""""-----+-------.L..--------lA

Let AOB be the given angle. Construct a circle with 0 as
center and any convenient length as radius. Construct a line
thru B intersecting diameter AC extended so that ED is equal
to the radius of the circle. Then angle D is one-third of angle
AOB.
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PROBLEM SET V-B

1. Prove that angle D is one-third of angle AOB.
2. Why does this method not meet the requirements for

constructibility?

Another ingenious procedure for trisecting an angle is
as follows:

Let AOB be the given angle. Let OC be the bisector of angle
AOB, 00 the bisector of angle COB, etc., i.e., continue
bisecting the angle formed by OB and the last angle bisector

c

A

drawn. We now have the following fractional parts of angle
AOB-h t, t, -fi, .. '. Using a pair of compasses and a straight
edge, combine the parts of angle AOB, starting with i-

1 1 1
"4 + 16 + 64 + ...

We then have an infinite geometric progression whose ratio
is t and whose sum is j..
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PROBLEM SET V-C

1. Prove that t + ~ + -h + ... = t
2. Why does this method not meet the requirements for

constructibility?

Nicomedes (second century B.C.) used a conchoid for tri­
secting an angle. Another Greek mathematician, Hippias
(fifth century B.C.) invented a curve which he used in trisecting
an angle. Since this curve was also used in squaring a circle,
it is called a quadratrix. The quadratrix could be used to divide
an angle into any number of equal parts. Interested readers
may wish to refer to D.E. Smith's History of Mathematics for
descriptions of the conchoid and quadratrix and how they are
used in trisecting an angle.





CHAPTER VI

The Problem of Squaring

the Circle

THE GREEKS WERE able to construct a square equal in area to
any given polygon. Thus to construct a square equal to a
given parallelogram, we can use the equation x 2 = bh, where
band h are the base and altitude of the parallelogram, and x
is a side of the square. First construct the altitude of the
given parallelogram. Then a semicircle is constructed with a

G

£ F

x

D''------v-,-----A.-v-'
b h

39
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diameter equal to b + h. At E a perpendicular is erected to
OF, meeting the semicircle at G. EG = x.

To construct a square equal to a given quadrilateral, one
can proceed as follows: Draw diagonal DB of quadrilateral
ABCD. Thru C draw a line parallel to DB and intersecting AB
extended at F. Draw DF. Then triangle AFD is equal in area
to quadrilateral ABCD. A square can be constructed equal in
area to any given triangle by using the equation x 2 = tbh.

D

A

'<::
......

......
......

......
......

......
......

......
......~

......
......

......
......

......
......

......
......

PROBLEM SET VI-A

F

1. Prove that in the diagram for the construction of a
square equal to a given parallelogram EG2 = bh.

2. Prove that in the diagram for the construction of a
square equal to a given quadrilateral, triangle AFD is
equal to quadrilateral ABeD.

3. Construct a square equal in area to (a) a given quadri­
lateral. (b) a given pentagon.
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Since a square can be constructed equal in area to a recti­
linear figure, it would be natural to try the same problem for
the "simplest" curvilinear figure, a circle. Let us see if we can
construct a square equal in area to a given circle of unit radius.
The equation becomes x2 = n, and we can use the following
construction: ADC is a semicircle constructed on AC using
(n + 1) as a diameter. But how do we determine a length
AB = n?

'-- --L....L..-_--'C

•..

There are three well-defined epochs in the history ofattempts
to construct n geometrically, or to determine its exact value
algebraically. The first period extended from ancient times
to the middle of the seventeenth century. It is characterized
by ingenious attempts at finding approximate values of n by
purely geometric methods. As indicated in a previous chapter,
the quadratrix (invented by Hippias) could be used to con­
struct 21n. The quadratrix could thus be used to square the
circle, but the quadratrix itself could not be constructed with
straight edge and compasses. By inscribing and circumscribing
regular polygons in, and around, a circle, Archimedes (con­
sidered to be the greatest of ancient mathematicians) was
able to show that 3..} > n > 3 -» (a result which has a
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modem flavor). Archimedes used polygons of 96 sides. Before
the end of the first period, Ludolph van Ceulen (sixteenth
century) had computed 1C to 17 places. (In Germany, 1C is still
called the Ludolphian number). In 1621 Snell computed the
value of 1C to 35 places, but he had to use regular polygons of
230 sides.

Still no exact decimal value for 1C was found, and it was
not even known whether such a value could be found-it
was not known whether or not 1C was a rational number. (A
rational number can be expressed either as a terminating
decimal or a repeating infinite decimal, and conversely, a
terminating decimal or a repeating infinite decimal can be
expressed as a rational number.)

PROBLEM SET VI-B

1. Determine upper and lower limits for 1C by inscribing and
circumscribing regular polygons of n sides in and about
a unit circle, and finding approximations for the circum­
ference of the circle. Use n (number of sides) equal to (a)
4. (b) 8.

2. By carrying out the division to as many places as neces­
sary, show that 3+is a repeating decimal.

3. Express 3.14 as a rational number. The bar over the 14
means that those two digits repeat indefinitely.

The Greeks were spurred on in their search for a solution
to the problem of squaring the circle by a discovery of Hip­
pocrates (fifth century B.C.). Hippocrates showed that it was
possible to construct a square equal in area to a curvilinear
figure. Starting with an isosceles right triangle, construct an
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arc AFB of a circle, with C as center and CB as radius. Then
with D (midpoint of AB) as center and DB as radius, con­
struct a semicircle AEB. The area of the crescent AEBFA is
equal to the area of a square whose side is equal in length to

c

A~---------4B

£

BD. The fact that a square could be constructed equal in area
to a crescent led the Greek mathematicians to the belief that
the squaring of a circle should not be too difficult. However,
the first period ended without any hint as to how the problem
could be solved, or whether, in fact, there was a solution.

The second period begins in the second half of the seven­
teenth century. With the aid of the new analysis, calculus, men
like Newton, Fermat, Wallis, and Euler attacked the problem.
Numerous expressions for n-involving infinite series, prod­
ucts, and continued fractions-were discovered. For illustra­
tions of these methods of approximating n, the reader can
refer to the History of Mathematics by D. E. Smith, The Lore
ofLarge Numbers by Philip J. Davis, and Continued Fractions
by C. D. Olds. In 1873 the English mathematician, Shanks,
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computed n to 707 places, although only 527 were subse­
quently proved correct.

In 1685 a Jesuit mathematician, Adam Kochansky, gave the
following construction for squaring the circle: Construct a
circle of unit radius tangent to line RS at A. Let 0 be the
center of the circle. Keep the compasses fixed for the entire
construction. With A as center draw an arc cutting the circle
in C. With C as center draw an arc intersecting the first arc
at D. Draw OD intersecting RS at E. Construct EH to be 3
units. Then BH = n (approximate).

8

R--+-~-'=:::"--.L"""::::::"-I-------+------"'---S

H

PROBLEM SET VI-C

1. Prove that BH = .../430 - 2'V"3
2. Evaluate the above radical to 5 decimal places and

compare your result with the value of n to 5 decimal
places.

In 1849 Jakob de Gelder, using an approximation for 7r

obtained by continued fractions, was able to construct a line
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segment whose length was very close to 7T'. The approximation
used by de Gelder was

355 ( 42
)113= 3+ 72 + 82 =3.141592".

For details concerning the method of continued fractions,
and the geometric construction based upon it, the reader may
refer to C. D. Olds' Continued Fractions.

These efforts, although they materially increased the
accuracy with which 1l could be expressed, revealed nothing
new concerning the fundamental nature of 1l; e.g., whether
or not it was a rational number. But in 1761, the German
mathematician, Lambert, proved that 1l is irrational, that it
could not be expressed as a fraction or terminating decimal,
or an infinite repeating decimal. Even though Lambert's
proof put an end to attempts to find a rational value for 1l,

the question of squaring the circle was as yet unsolved, since
there are many irrational numbers (e.g., -V2) which can be
constructed with straight edge and compasses.

However, during this period, Euler made a fundamental
discovery which led, about a century and a half later, to a
final solution of the problem. Using the newly invented
calculus, mathematicians were able to obtain infinite series
expansions for various functions.

• X
3

X
S

SIn X = X - 3T + 5! - ... (x in radian measure)

Then ix _ • x 2 ix 3 x 4

e - I + IX - 2! - 3T + 4! +
Thus we can show that eix = cos x + i sin x. We can then
represent the complex number

r (cos 8 + i sin 8) as rei8
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If we let R , = cos (2n/n) + i sin (2n/n) (an nth root of unity)
then

R I = eI(2n/n)

R
2

= e l (4n/n) = [e l (2n/n)]2 = Rt
R

n
- I = e 2I(n-l/n)n = R~-'

Rn = e2nl = R~ = I

which shows once again that the n nth roots of unity can be
written in the form R, R2, R3, "', R' = 1, where R = cos
(2n/n) + i sin (2n/n).

Referring once more to the equation elx = cos x + i sin x,
let x = n, then enl = cos n + i sin n = -I. The equation
enl = -I is one of the most amazing formulas in all of mathe­
matics, relating as it does, the numbers e, n, i, and 1. This
relation was used by Lindemann to help in the final solution
of the problem of squaring the circle.

PROBLEM SET VI-D

1. Using two terms of the series for sin x and cos x, com­
pute sin 7r/6 and cos n/6 to two decimal places, and
compare your results with the values of sin n/6 and
cos n/6 as found in a table. (Use n = 3.14.)

2. Using five terms of the series for eX, compute the value of
e to two decimal places.

In the third period, the full power of modern analysis was
brought to bear on the problem. In 1873, Hermite proved
that e is a transcendental number. An algebraic number is a
root of a polynomial equation aox" + a Ix"-I + ... + a. = 0,
where all the coefficients ao, a I' •• " a. are integers. A trans­
cendental number is not algebraic; i.e., a transcendental
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number is not the root of a polynomial equation with integral
(or rational) coefficients. As an example, if ao, ai' a2 are any
integers, then aoe2 + ale + a2 cannot be equal to O.

At the beginning of the nineteenth century when the con­
cept of a transcendental number was introduced, mathe­
maticians had not yet proved that any known number was
transcendental.

The first transcendental number was found by the French
mathematician, Liouville, in 1851. It is expressed by the infinite
series 1/10 + 1/1021 + 1/103

! + .. '. Liouville found a whole
class of numbers which he proved to be transcendental, but 1l

was not included in that class. Liouville also proved that e

cannot be the root of a quadratic equation with rational coef­
ficients, i.e., aoe2 + ale + a2 (where all the a's are integers)
cannot be O.

Meanwhile the German mathematician, Georg Cantor,
proved in 1880 that almost all real numbers are transcendental.
The final step in the solution of the problem of squaring the
circle was taken by Lindemann in 1882, when he generalized
the result obtained by Hermite and proved that in an equation
of the form

ao + aie"l + a2e"2 + ... = 0

the exponents and the coefficients are not only not integers
but that they cannot all be algebraic numbers. The reader
can find a proof in Irrational Numbers by Ivan Niven. If we
apply this result to Euler's equation 1 + errl = 0, since 1 is
algebraic, 1li is transcendental. Since the algebraic numbers
form a field, the product of any two algebraic numbers is
algebraic. (For a proof, see Irrational Numbers). Inasmuch as
i is algebraic (it is a root of the equation x 2 + 1 = 0), 1l must
be transcendental, otherwise 1li would be algebraic.

Thus 1l is not the root of any polynomial equation, and
cannot be expressed in terms of rational operations and
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extractions of real square roots of integers. Therefore, it is
not possible to construct a square equal in area to a circle of
unit radius. Although it is now known that 1t is irrational,
mathematicians are still interested in the distribution of digits
in the decimal expansion of 1t. Consequently, with the aid of
high-speed computers, the value of 1t has been determined to
more than 10,000 decimal places. For further details the
reader may refer to The Lore of Large Numbers by P. J. Davis.

PROBLEM SET VI-E

In Problem Set VI-C, we found that ...j¥ - 2:J3 is an
approximate value of 1t. Show that ...j 43° - 2:J'T is the
root of a 4th degree equation with integral coefficients.



CHAPTER VII

The Problem of Constructing

Regular Polygons

ANOTHER INTRACTABLE PROBLEM concerning the circle which
occupied the efforts and attention of the greatest mathemati­
cians from antiquity to the nineteenth century is the problem
of dividing a circle into equal arcs. Joining the successive
points of division by chords produces a regular polygon (a
polygon which is both equilateral and equiangular).

The Greeks were able to construct a regular polygon of
2m sides, where m is an integer greater than I. They were also
able to construct regular polygons of 3 sides and 5 sides.
Since an arc of a circle can be bisected using straight edge and
compasses, regular polygons of 3·2m and 5· 2m sides can be
constructed, where m is any positive integer. Furthermore, the
Greeks had proved that, if a regular polygon of a sides and
one of b sides can be constructed and a and b are relatively

49
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prime (i.e., a and b have no common factor greater than 1),
then a regular polygon of a·b sides can be constructed. The
proof uses the euclidean algorithm for finding the greatest
common factor of two integers. In case the two integers are
relatively prime, the greatest common factor is 1 and the
algorithm enables us to solve the following problem.

Given two relatively prime integers a and b, there exist two
other integers k and 1so that ka + Ib = 1. As pointed out in
the chapter on Complex Numbers, to divide a circle into n
equal parts is equivalent to constructing an arc (or central
angle) whose measure is 21C/n. Thus if we construct regular
polygons of a sides and b sides, we can construct arcs whose
measures are 21C/a and 21C/b. Therefore, we can construct arcs
whose measures are 21CI/a and 21Ck/b, where k and 1are integers
such that ka + Ib = 1. Finally, we can construct an arc whose
measure is 2xl/a + 21Ck/b = 21C(ka + Ib)/ab = 21C/ab, which
proves that a regular polygon of a·b sides can be constructed.

Since 3 and 5 are relatively prime, a regular polygon of 15
sides can be constructed, as well as regular polygons of 15.2m

sides, where m is a positive integer. We can then summarize
the achievement of the Greeks, by stating a general formula
which indicates which regular polygons the ancient mathe­
maticians could construct. The Greeks could construct a
regular polygon of n sides if n is an integer of the form
2m.p,.rJo p;'J., where m is any non-negative integer and PI and
P2 are the distinct primes 3 and 5, and r = 0 or l.

PROBLEM SET VII-A

1. Construct regular polygons of 2m sides where m equals
(a) 2. (b) 3. (c) 4.
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2. Construct a regular polygon of 3·2m sides where m
equals (a) O. (b) 1. (c) 2.

3. Assuming that regular polygons of 3 sides and 5 sides
can be constructed, show how to construct a regular
polygon of 15 sides by finding two integers k and I such
that 3k + 51 = 1. How would you then construct a regu­
lar polygon of 30 sides?

4. According to what you have learned thus far, is it
possible
(a) to construct a regular polygon of 3·3 or 9 sides?
(b) to construct a regular polygon of a + b sides if

regular polygons of a and b sides can be constructed,
and a and b are relatively prime? Try to prove your
conjecture.

For more than 2,000 years the problem of dividing a circle
into equal parts remained as left by the ancient mathematicians.
Despite the fact that such eminent mathematicians as Fermat
and Euler worked on the problem, no further progress was
made until the end of the eighteenth century, when Gauss
solved the problem completely in 1796.

E. T. Bell in his Development of Mathematics states "The
occasion for Gauss' making mathematics his life work was his
spectacular discovery at the age of nineteen concerning the
construction of regular polygons by means of straight edge
and compasses alone." Prior to his discovery Gauss had been
considering a career in Philology. D. E. Smith in his History

of Mathematics quotes Gauss' own record of his discovery.
"The day was March 29, 1796, and chance had nothing to

do with it. Before this, indeed, during the winter of 1796
(my first semester at Gottingen), I had already discovered
everything relating to the separation of the roots of the
equation, (xP - l)/(x - 1) = 0 into two groups. After inten­
sive consideration of the relation of all the roots to one
another on arithmetical grounds, I succeeded during a holiday
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at Braunschweig, on the morning of the day alluded to (before
I got out of bed,), in viewing the relation in the clearest way,
so that I could immediately make application to the 17 sides
and to the numerical verifications."

Courant and Robbins in their book What Is Mathematics?
state "He [Gauss] always looked back on the first of his great
feats with particular pride. After his death a bronze statue of
him was erected in Gottingen; and no more fitting honor
could be devised than to shape the pedestal in the form of a
regular 17-gon." Why a regular polygon of 17 sides will
become clear later.

Let us now examine Gauss' remarkable achievement. At
the beginning of the chapter we indicated that the Greeks could
construct a regular polygon of n sides, if n is of the form
2m~rl ~r" when PI = 3 and P2 = 5 and r = 0 or 1. In Problem
Set VII-A, you were asked to construct a regular polygon of
3 sides, but not of 5. First, then, we shall review a method the
Greek mathematicians used to construct a regular polygon of
5 sides.

1
,- A.... _

A 1 - x P x B'

The Greek mathematicians constructed a regular pentagon
by dividing a unit line into a mean and extreme ratio. P divides
AB into a mean and extreme ratio if the larger segment, x,
is the mean proportion between the entire length and the
shorter segment; i.e., llx = xl(l - x) or x 2 + x-I = O. To
show how that proportion is related to the regular pentagon,
we can proceed as follows.



THE PROBLEM OF CONSTRUCTING REGULAR POLYGONS 53

Let 0 be a central angle of 36° in a unit circle (central
angle subtended by a side of a regular decagon). Then angle
A = angle ABO = 72°. Let BD bisect angle ABO.

AB = BD = OD = x; AD = 1 - x

Since the bisector of the angle of a triangle divides the
opposite side into two segments that are proportional to the
adjacent sides, l/x = x/(l - x), and OA has been divided
into a mean and extreme ratio. Thus, we have x 2 + x-I = 0,
and x = (-1 + ~)/2. [Why do we discard (-1 - ~)/2 7]

o

Therefore, the side of a regular decagon can be constructed,
and the regular pentagon can be formed by joining the alternate
vertices.
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PROBLEM SET VII-B

1. Using the above procedure, construct a regular pentagon.
2. Prove that if CD bisects angle ACB, then (AC/CB)

= (AD/DB)
[Hint: Thru A draw a line parallel to CD, and let the line
intersect BC (extended) at E. Then use the theorem: A line
parallel to one side of a triangle divides the other two sides
proportionally.]

E

The methods used by the Greek mathematicians to construct
regular polygons could not be generalized, whereas Gauss'
method will be shown to be sufficiently general to enable one
to state a necessary and sufficient condition for constructibility
of any regular polygon. First we shall review and extend some
of the principles we have used in answering the questions
regarding duplicating a cube, trisecting an angle, and squaring
a circle.
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We have stated that the roots of an irreducible cubic
equation (cubic equation with no rational root) cannot be
expressed in terms of rational operations and extractions of
real square roots performed on the coefficients of the equations.
We shall now generalize this theorem. A polynomial equation
with rational coefficients, f(x) = 0, is said to be irreducible
in the field of rational numbers if f(x) cannot be resolved into
two rational polynomial factors of degree equal to or greater
than I. It can then be proven that the roots of an irreducible
equation of degree n are expressible in terms of rational oper­
ations and extractions of real square roots performed on the
coefficients of an equation only if n is of degree 2\ h being a
non-negative integer. The reader may refer to Famous Prob­
lems by F. Klein et al. for a proof of that theorem. Therefore,
if the coefficients of an irreducible equation represent the
lengths of given line segments, and the degree of the equation
is not equal to 2\ then the roots of the equation cannot be
constructed with straight edge and compasses.

We have also learned that the n nth roots of unity can be
found by solving the equation x" - I = O. If we divide
(x" - I) by (x - I), we obtain xn- I + X"-2 + ... + x + l.
The equation X"-I + X"-2 + ... + x + I = 0 is called the
cyclotomic equation, and it has the same roots as x" - I = 0,
except for the root x = I. Furthermore, the n nth roots of
unity form a group, and can be arranged in the following
sequence: R, R2, R3, ... , R"=I, where R=cos(21C/n)
+ i sin (21C/n) and R-I or 1/R = cos (21C/n) - i sin (21C/n).
Finally, the roots of unity, when plotted in the complex plane
will divide the unit circle into n equal arcs. Thus, we can
conclude that a regular polygon of n sides is constructible only
if the cyclotomic equation is an irreducible equation of degree
2h

• Consequently n - 1 = 2h or n = 2h + I.
Another theorem we shall need is a generalization of the

relation between the roots and coefficients of a quadratic
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equation. If, I and, 2 are the roots of x 2 + bx + c = 0, then
, I+ '2 = -b and, 1-'2 = c. In general it can be proven that
if'l> '2' '3' "', 'n are the roots of the equationxn + alxn- I

+ a2x n- 2 + ... + an-IX + an = 0, then

t'I=-a.
1=.

t '1' J = a2 (i < j)
I.J=I

t 'I'J'k = -a3 (i < j, i < k,j < k)
I,J,k= I

1: '1' J means the sum of all terms formed by multiplying any
two roots together.

PROBLEM SET VII-C

1. If the roots of x 3 + a lx
2 + a2x + a 3 = 0 are 'I' '2' 'J'

then we can write the equation in the form (x - , I)

-(x - , 2)(X - , 3) = O. By multiplying the factors of the
left-hand side of the equation, show that

'I +'2 +'3 = -a l

'1'2 + '1'3 + '2'3 = a2

'.'2'3 = -aJ

2. Repeat the process for the equation x 4 + alxJ + a2x 2

+ a3x + a4 = O.
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Let us now use Gauss' method for several values of n. To
investigate the possibility of constructing a regular pentagon
we use n = 5, and let R = cos (21C/5) + i sin (21C/5).

Therefore RS - I = 0, and (since R =;t:. I)

RS - I = R4 + R3 + R2 + R + I = 0
R -I

The cyclotomic equation R4 + R3 + ... + I = 0 is irreduci­
ble and the degree is of the form 2". The roots of this equation
can be constructed, and we now proceed to accomplish the
construction.

We pair the roots of the cyclotomic equation in the following
manner:

YI = R + ~ = R + R4 = (cos ~1C + i sin ~)

(
21C .. 21C)+ cos S - lS10 S

= 2 cos ~1C

Y2 = R2 + ~2 = R2 + R3 = 2 cos ~1C

Therefore

and

Y I·Y2 = R3 + R + R4 + R2 = -I

YI and Y2 satisfy the equation y 2 + Y - I = 0 (Why?) and
Y I = (-I + -./5)/2 (which is a result previously obtained).
(Note that since Y I = 2 cos (21C/5) > 0, Y I = (-I + -./5)/2,
and since Y2 = 2 cos (41C/5) < 0, Y2 = (-I - -./5)/2. Thus
cos 21C/5 = (-I + -./5)/4, and a regular pentagon can be
constructed (since cos A can be constructed if, and only if, A
can be constructed). We can proceed as follows:
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In a circle whose radius is 1, draw two perpendicular
diameters. With C (midpoint of OA') as a center and CB as
a radius, draw an arc cutting OA at D. Then, if Sn represents
a side of a regular polygon of n sides, S 10 = 00 and S, = BD.
Notice that we start with an equation of degree 22 and obtain
an equation of degree 2.

B

A 1---fL.----+----I----~ A'

B'

PROBLEM SET Vll-D

1. Show that Y1 and Y2 satisfy the equation y 2 + Y - 1 = O.
2. Prove that S, = BD. Hints: First show that 00 =

(-1 + ,J5)/2 = SIO' Then prove that in a unit circle
S; = 1 + Sro or Si = S~ + Sro'
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We shall now investigate the case for n = 7. The Greeks
and succeeding mathematicians tried to construct a regular
heptagon (7-sided polygon) but with no success. It was
especially frustrating since regular polygons of 3,4, 5, 6, 8, 10
sides could be constructed. Why not 7 or 9? To answer that
question, let us start with a 7th root of unity, R = cos 2n/7

+ i sin 2n/7. Then the cyclotomic equation becomes

~7~ 11 = R6 + R' + R4 + R3 + R2 + R + 1 = O.

The above cyclotomic equation leads to an irreducible cubic
equation. Therefore, a reqular heptagon cannot be constructed.
To show this we pair the roots as follows:

Y I = R + ~ = R + R6 = 2 cos 2;

Y2 = R 2 + ~2 = R2 + R'

Y 3 = R 3 + ~3 = R 3 + R4

then YI + Y2 + Y3 = R + R2 + R3 + R4 + R' + R6 = -1
similarly YIY2 + YIY3 + Y2Y3 = (R3 + R + R6 + R4) + (R4
+ R2 + R' + R3) + (R' + R + R6 + R2) = -2 and YI" Y2"
Y3 = 1. Therefore YI' Y2'Y3 satisfy the equation y 3 + y 2 - 2y
-1 = O.

The only rational roots of this cubic are integers which are
divisor's of 1. However, neither + 1 nor -1 is a root of this
equation. Therefore, it is an irreducible cubic and its roots
cannot be constructed. Thus, YI = 2[cos (2n/7)] cannot be
constructed, and it is not possible to construct a regular
polygon of 7 sides.

Just as Archimedes described a method for trisecting an
angle using a pair of compasses and a straight edge with two
marks on it, so he gave a most ingenious method for construct­
ing a regular heptagon using the same instruments. A descrip­
tion of Archimedes' method for constructing the regular
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heptagon can be found in Episodes from the Early History
of Mathematics by Asger Aaboe.

For the case n = 9, the cyclotomic equation becomes
x' + x7 + ... + x + 1 = O. Since the degree of the equation
is 24 , it would seem that we should be able to construct its
roots and thus to construct a regular polygon of 9 sides.

However, x 9
- 1 is not only divisible by x-I, it is also

divisible by x 3
- I.

x9 - 1
3 1 = x6 + x3 + 1.x -

The equation x 6 + x 3 + 1 = 0 has the same roots as x 9
- 1

= 0, except for the cube roots of unity. Therefore, if R
= cos 21C/9 + i sin 21C/9, the roots of the equation x 6 + x 3

+ 1 = 0 are R, R2, R4, RS, R7, and RI. R3, R6, R9 = 1 are the
roots of x3 - I = 0, since (R3)3 = R9 = 1, and (R6)3 = RIB
= 1. We pair the roots of x 6 + x 3 + 1 = 0 as follows:

R + R I R I ( 21C + . . 21C)YI = = +]f= cosT ISlOT

(
21C ., 21C) 2 21C+ cosT - ISlOT = cosT

R2 + R7 R2 + I ( 41C + . . 41C)Y2 = = R2 = cosT ISlO T

(
41C ., 41C) 2 41C+ cosT - ISlO T = cosT

Y3 = R4 + RS = R4 + ~4 = (cos 8; + i sin 8;)

(
81C ., 81C) 2 81C+ cosT - ISlOT = cosT

Theny, + Y2 + Y3 = R + R2 + R4 + RS + R7 + RI, which
represents the sum of the roots of x6 + x 3 + I = O. Thus,
YI + Y2 + Y3 = -a, where a is the coefficient of xS; and YI
+ Y2 + Y3 = O. Similarly, YIY2 + YIY3 + Y2Y = -3 and
YIY2Y3 = -1.
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Therefore YI> Y2' Y3 are roots of theequationy3
- 3y + 1

=0
Since neither +1 nor -1 are roots of y 3 - 3y + 1 = 0 it is

an irreducible cubic equation, and its roots cannot be con­
structed. Therefore, a regular polygon of 9 sides cannot be
constructed with straight edge and compasses.

PROBLEM SET Vll-E

1. Show that R3 and R6 are roots of the equation x 2 + x
+ 1 = 0, and determine the value of R3 + R6.

2. Using the information in the problem above show that

(a) YIY2 + YIY3 + Y2Y3 = -3
(b) YIY2Y3 = -1

3. In example (2) of Problem Set V-A, you were asked to
determine whether an angle of 1200 can be trisected. The
problem leads to the same equation as does the problem
of constructing polygon of 9 sides. (y3

- 3y + 1 = 0).
Show, by geometric considerations, that the two problems
are equivalent.

Let us now return to the question raised previously. Even
though the degree of the cyclotomic equation Xl + x7 + ...
+ 1 = 0 is 23 , we cannot construct all the roots of this equation.
We can now see that this is due to the fact that the equation
is reducible. From the analysis of the problem of constructing
a regular polygon of 9 sides we see that Xl + x7 + ... + 1
= (x 2 + X + 1)(x6 + x 3 + 1). The important question then
becomes under what condition is the cyclotomic equation
irreducible, under what condition is it reducible. If we examine
the two cases we have considered thus far, where n is of the



62 FAMOUS PROBLEMS OF MATHEMATICS

form 2h + 1 (n = 5, n = 9), we notice that when n is prime,
the construction is possible, when n is composite the con­
struction is not possible. In fact it is possible to prove that when
n is of the form 2h + I and n is prime, then the cyclotomic
equation is of degree 2h and is irreducible and the unit circle
can be divided into n equal parts; but, on the contrary, if
n is of the form 2h + I, and n is not prime, the cyclotomic
equation is reducible and the division of the unit circle is not
possible with straight edge and compasses.

We can go one step further by proving that if 2h + I,
(h being a non-negative integer) is a prime number, then
h = 2m (where m is a non-negative integer). Since, if h has an
odd factor greater than I, h can be written in the form rs, r
and s being positive integers, s an odd integer> I. Then
2h + I = (2')' + I. Now a' + b' can be factored if s is odd.
a' + b' = (a + b)(a'-I- a,-2b + a,-3b2 - ... + b,-I). Thus

a3 + b3 = (a + b)(a2 - ab + b2) and (2')' + I = (2' t- I)
.(2,('-1) - 2,(,-2) + 2,(s-3) - ••• + I). Since rand s are

positive integers and s > 2, 2h + I will have two factors each
> I, which is contrary to the hypothesis that 2h + I is a prime;
consequently if 2h + I is a prime it is of the form 22- + I, m
a non-negative integer.

The number 22- + I has turned up on many occasions in
the history of mathematics. It is known as the "Fermat"
number, after Pierre Fermat (1601-1665), a French mathema­
tician of the first rank. Euclid gave an ingenious proof that
there are an infinite number of primes. Ever since mathemati­
cians have been striving to find a formula that would always
give a prime number, even though not all prime numbers.

Fermat conjectured that all numbers of the form 22
- + I

were prime. Even though he was convinced of the truth of this
statement, he indicated that he could not prove it. In fact for
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m = 0, 1,2,3, 4, 22~ + 1 is respectively 3; 5; 17; 257; 65, 537
(each of these numbers is prime). But Euler showed that 22' + 1
can be factored. It can be shown that 641 is a divisor of 232

+ 1, by the following procedure: 641 = 5.27 + 1. :. 641
divides (5.2 7 + 1)(5.27

- 1) = 52.2 14 - 1 and 641 divides
(52.214 - 1)(52.214 + 1) = 54.228

- 1. But 641 is also equal
to 54 + 24. :. 641 also divides 54.228 + 232 • Consequently 641
divides (54.228 + 232) - (54.228 - 1) = 232 + 1.

PROBLEM SET Vn-F

1. By actual division show that 641 is a factor of 22' + 1.

To summarize, we can now state that a regular polygon of
n sides can be constructed if n is a prime of the form 22~ + I.
We have already shown how to construct the regular polygons
for m = 0 and m = 1. For m = 2, 22' + 1 = 17. In the 2,000
years between Euclid and Gauss it was not even suspected
that a regular polygon of 17 sides could be constructed. Now
you can see why Gauss desired to have the base of the "pedestal
in the form of a regular I7-gon."

We shall now outline the procedure Gauss used in con­
structing the regular I7-gon. The cyclotomic equation is
R16 + R1S + ... + R + 1 = O. In order to pair the roots of
this equation we first find an integer g, such that all the roots
can be arranged in the order R, RK, RK', '" where R is a
primitive 17th root of unity. R is a primitive nth root of unity
if Rn = I and Re *- 1 for all positive integers e < n.
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PROBLEM SET Vll-G

1. Show that g = 2 will not give all the roots of RI6 + RI'
+ ... +R=O;R,Rz, ···,RI6.

2. Show that g = 3 will give all the roots in the following
order:

R, R3, R9, RIO, R13, R', RI', RII, RU, RI4, R8, R7, R4,
RU, RZ, R6.

We select alternate terms in the sequence in Problem
Set VII-G (2), and obtain

YI = R + R9 + RI3 + RI' + RI6 + R8 + R4 + RZ
Yz = R3 + RIO + R' + RII + RI4 + R7 + RU + R6

YI+Yz=-1

and

YIYZ =-4

YI and Yz satisfy the equation y Z+ Y - 4 = o. We take
alternate terms in Y I

Zt = R + Rt3 + RI6 + R4, Zz = R9 + RI5 + R8 + RZ

and alternate terms in Yz

Wt = R3 + R' + Rt4 + RU, Wz = RIO + RII + R7 + R6

then,

and,

ZI+ZZ=YI
ZlozZ=-1

WI + Wz =Yz
WloWZ = -I

ZZ - Yt Z - 1 = 0 WZ - YzW - 1 = 0

Finally we take alternate terms in Z I

V t = R + R16, Vz = RI3 + R4

then,
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VI + V70 = ZI
VloV 7o = WI

and,

VI' V70 satisfy V70 - ZIV + WI = 0
R, RI6 satisfy r70 - VI r+ 1 = 0

Thus we can find R by solving a series of quadratic equa­
tions.

But there are 16 possible values of R, since there are 16
primitive 17th roots of unity. We would like R to be (cos 2n/17)

+ i sin (2n/17). Then l/R becomes (cos 2n/17) - i sin (2n/17)

and VI = R + I/R = 2 cos (2n/17), V70 = R4 + I/R4 =

2 cos (8n/17). Since 2n/17 and 8n/17 are both less than n/2; and,
in the first quadrant, the cosine of an angle decreases as the
number of degrees in the angle increases, we can see that

VI > V70 > O. Thus ZI = VI + V70 > O.

Similarly

- (R3 + 1) (RS 1 ) _ 2 6n 2 IOnWI - R3 + + RS - cos 17 + cos 17
6n 7n

= 2 cos 17 - 2 cos 17

Since

also

Y70 = ( R3 + ~3) + (R
S + ~s) + (R

6 + ~6) + (R
7 + ~7)

6n IOn 12n 14n
= 2 cos 17 + 2 cos 17 + 2 cos 17 + 17

The only positive term in Y70 is the first term and

Icos ~~ I< Icos ~~ I= Icos 11~ I
Therefore Y70 < O.
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Since YIYZ = -4, YI > O.

As a result we have now determined the following values:

YI = ·H-vTI - 1)

Yz = t(--vTI - 1)

ZI = iYI + ..vI + fyf
WI = iYz + ..vI + fY~

By using the Pythagorean theorem these four lengths can be
constructed, and the roots of the equation v2 - Z 1V + WI = 0
can be constructed. Since the larger root VI = 2 cos (27C/17), it
is possible to construct a regular polygon of 17 sides.

8

HA H' FE

I---------'--*------~c

sF'

One method of constructing the regular polygon of 17 sides
is as follows: In a circle of unit radius, construct two perpen­
dicular diameters AB and CD. Let the tangents at A and D
intersect at S. Divide AS into four equal parts, and let AE
= :lAS. Let the circle with center at E and radius OE cut AS
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at F and F'. Let the circle with center at F and radius FO
cut AS at H (outside of F'F), and the circle with center at F' and
radius F'O cut AS at H' (between F' and F). We can then prove
that AH = ZI and AH' = WI"

Finally, by using the method for constructing the roots of
a quadratic equation (explained in Chapter I), we can con­
struct v I' the larger root of v2 - Z IV + WI = O. Construct a
circle whose diameter BD joins the points B (0, 1) and D (z 1>

WI)' Then the abscissas of G and F (the points where the
circle intersects the X-axis) will be the roots of v2 - ZIV + WI

= O. VI = 2 cos (2n/17) = OF.
[The same unit must be used for all coordinate systems em­

ployed in this construction.]

y

-----1~....------~*-----x

Finally we construct a side of a regular 17 sided polygon:
On the X-axis mark off OF = v I' Let M be the midpoint of
OF. Construct MP.lOF. Then AP is one side of a regular
polygon of 17 sides.
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PROBLEM SET VD-H

1. By solving the appropriate quadratic equations, show
that

YI = t(-v'f7 - 1)

Yz=t(-~-I)

ZI = tYI + ~I + tyr
WI =iYz + ~I + tyi

2. Prove, by using Fig. VII-I,

(a) OE = t-v'f7
(b) AF = t.v'I7 - t = tYI

(c) AF' = t-v'f7 + t = -tyz
(d) OF = ~I + tYr, OF' = ~I + tyi

F
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(e) AH = tYt + ~I + tYt = Zt

(f) AH' = tyz + ~I + tyi = W t

3. Prove, using Fig. VII-2 that OF = V t = 2 cos (2n/17).
4. Using Fig. VII-3, show that angle MOP = 21C/17.
5. Starting with a unit circle, construct

(a) Zt and Wt

(b) V t

(c) an angle whose measure is 2n/17
(d) a regular polygon of 17 sides

The procedure can be generalized as follows:
Ifn is a prime ofthe form 2z• + I or 210 + I, the (n - I) imagi­

nary nth roots of unity can be separated into two sets each of
21o

- t roots, each of these sets subdivided into two sets each of
21o

-
z roots, etc., until we reach the pairs R, I/R; RZ, I/Rz, etc.

We shall then have a series of quadratic equations, the coef­
ficients of anyone of which depend only on the roots of the
preceding equation in the series. Thus, the roots of X" = I
can be found in terms of a finite number of rational operations
and extractions of real square roots, and a regular polygon of
n sides can be constructed if n is a prime of the form 2z• + I.

We can now state a formula which will teU us exactly which
regular polygons are constructible. An n-gon is constructible
if and only if n is of the form 2'· pp.pz2 • • " where s is a non­
negative integer, PI> pz• ... are distinct primes of the form
2z• + I, and each r = 0 or 1.

PROBLEM SET VD-K

List the 24 regular polygons with number of sides n < 100,
which can be constructed.
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There is still one unresolved question-for which values of
m is 2z• + 1 a prime number? We know that Fermat's number
is prime for m = 0, 1,2,3,4, and in fact, we have constructed
regular polygons of 3, 5, and 17 sides. For m = 3, n = 257;
and for m = 4, n = 65,537, the analysis has also been accom­
plished. L. E. Dickson, in a discussion of "Constructions With
Ruler and Compasses" which appears in Monographs on
Topics of Modern Mathematics, states "The regular 257-gon
has been discussed at great length by Richelot in Crelle's
Journal fur Mathematik, 1832; and geometrically by Affolter
and Pascal in Rindicinti della R. Accademia di Napoli, 1887.

The regular polygon of 216 + I = 65,537 sides has been
discussed by Hermes; Gottingen Nachridten, 1894."

Also, in the April 1961 issue of Scientific American, Martin
Gardner describes some of the topics discussed by H. M. S.
Coxeter in a recently published book An Introduction to
Geometry. Martin Gardner quotes Professor Coxeter to the
effect that there is at the University of Gottingen a large box
containing a manuscript showing how ro construct a regular
polygon of 65,537 sides. Gardner also writes "a polygon with
a prime number of sides can be constructed in the classical
manner only if the number is a special type of prime called a
Fermat prime; a prime that can be expressed as 2z' + I.
Only five such primes are known-3, 5, 17, 257, 65,537. The
poor fellow who succeeded in constructing the 65,537-gon,
Coxeter tells us, spent ten years in the task."

As Euler showed, when m = 5, 2z• + 1 has a factor 641.
Dickson states that for n = 6, 7, 8, 9, the number is not prime.
For the next case n = 10, it has not been determined whether
or not this Fermat number is prime. It may very well be that
2z• + 1 is prime only for values of m < 5. In that case the
formula indicating which polygons are constructible would
read
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n = 2'pi'" p'z'" p;." P4'" P's'; r = 0 or I and PI = 3
P2 = 5, P3 = 17, P4 = 257, and Ps = 65,537

However, no proof has been obtained which shows that
22- + I is composite for m > 5; and until this question is
answered, we cannot state that the problem of constructing
regular polygons has been completely solved.

Dickson concludes his monograph on "Constructions with
Ruler and Compasses" by stating "The proof that a regular
polygon of P sides, where P is a prime of the form 2h + I is
geometrically inscriptible in a circle was first made by Gauss,
Desquisitiones Arithmeticae, translated in German by Mach
[note: Gauss, although German, wrote in Latin, as did his
illustrious predecessors, Newton and Euler.] On page 447 of
the laUer, Gauss states that a regular n-gon is not inscriptible
if n contains an odd prime factor not of the form 2h + 1, or the
square of a prime 2h + I, but no proof appears to have been
published by Gauss." Thus it appears Gauss established that
a sufficient condition for a regular polygon of n sides to be
constructed is that n = 2'"pi"P2" "', where PI,P2 ... are
distinct primes of the form 22- + I. However, there is no
evidence that he proved this condition necessary for the regular
polygon to be constructible.

PROBLEM SET VII-L

I. How many digits does the number 2210 + I have?
[Hint: Use the fact that loglo 2 = .301.]

2. If n is the number of degrees in an angle which can be
constructed with straight edge and compasses, and n
is an integer, show that n > 3.





CHAPTER VIII

Concluding Remarks

THE HISTORY OF CONSTRUCTIONS with straight edge and com­
passes shows quite clearly that all branches of elementary
mathematics (algebra, geometry, trigonometry, and analysis)
are closely related. The number system of mathematics runs
like a unifying thread throughout the entire story. A diagram
in Numbers; Rational and Irrational by Niven summarizes the
situation very aptly (see next page).

The constructible numbers being the roots of irreducible
equations of degree 2", h, a non-negative integer, consist of all
numbers expressible in terms of rational operations and the
extractions of real square roots. Yet the imaginary numbers
played a crucial role in solving the problem of constructibility
of regular polygons.

Any real number can be expressed as an infinite decimal.
If the constructible number is rational it can be expressed as
a repeating decimal. It is interesting to note that if the con-
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structible number is a quadratic irrational (a number of the
form (p ± ..Jl5)/Q, P, Q, D integers, Q =;c 0, D> 0 and not
a perfect square), then the number also has a periodic expan­
sion, not as a decimal, of course, but as a continued fraction.
In 1770 Lagrange proved the following theorem: "Any quad­
ratic irrational number has a continued fraction expansion
which is periodic from some point onward." (See Continued
Fractions by Olds). Conversely, any infinite repeating decimal
can be expressed as a rational number, and any infinite
repeating continued fraction can be expressed as a quadratic
irrational. Thus there is a close connection between construc­
tibility and periodicity.

Many people have the mistaken notion that when a mathe­
matician states that a certain construction (e.g., trisecting an
angle of 60°) is impossible, that no solution to the problem
has yet been found. "Angle trisectors" and "circle squarers"
still exist. But we know their efforts are futile, since proving
the impossibility of a certain construction is just as much a
solution as proving that a construction is possible and then
exhibiting that construction.

There have been other occasions in the history of mathe­
matics when it turned out that a certain result being sought
was found to be impossible. Gauss proved that every poly­
nomial equation has a complex root. Ancient mathematicians
were able to solve all linear and quadratic equations. As a
matter of fact the formulae giving the roots of these equations
were expressed in terms of rational operations and extractions
of roots performed upon the coefficients. Thus the formula
for solving the linear equation ax + b = c(a =;c 0) is x =

(c - b)/a, and the formula for solving the quadratic equation
axz + bx + c = O(a =;c 0) is

-b ± ,.jhI - 4 acx = --=:.-..:.,.-----2a
That was how matters stood until the sixteenth century when
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a number of Italian mathematicians (Cardan, Tartaglia, and
Ferrari) obtained formulas for the solutions of the cubic
(3rd degree) and quartic (4th degree) equations. Again the
formulas involved only rational operations and the extractions
of roots (cube root for the cubic equation; and fourth root
for the quartic equation). Consequently, we say that equations
of degree one to four inclusive can be "solved by radicals."

Mathematicians were thus encouraged to seek a formula
which would give the roots of any quintic (5th degree) equa­
tion. It was only natural to expect that the formula should
involve rational operations and the extractions of a 5th root.
But all attempts to find such a solution failed. Finally, the
Norwegian mathematician, Abel (1802-1829), proved that an
equation of degree five cannot be solved in terms of radicals.
Shortly thereafter, the French mathematician, Galois, proved
the general theorem that an algebraic equation of degree
n > 5 cannot be "solved" by radicals. In the process of proving
this theorem, Galois developed the theory of groups of
substitutions, which forms an important part of modem al­
gebra.

Even the Greek mathematicians had already established
the impossibility of certain "constructions" involving the
number system. Euclid proved that it is impossible to have a
largest prime number; i.e., given any prime number p, there
exists a larger prime number. The Greeks also proved that
the ratio of the diagonal of a square to a side (~) cannot
be written in the form alb, a and b integers. It took a couple
of thousand years to prove the same theorem for the ratio
of the circumference of a circle to its diameter (n).

To illustrate the difference between an "unsolved" problem
and a problem which has a solution of the type discussed, we
shall consider several examples of unsolved problems. We
have already encountered an unsolved problem, namely: are
there any prime numbers of the form 2z- + I where h > 4?
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Another unsolved problem is Goldbach's conjecture---every
even number greater than two is the sum of two primes (l is
not considered a prime number; therefore the restriction
"greater than two"). Goldbach had proposed this problem in
a letter to Euler in 1742. Euler was unable to give a solution,
and even to this day there is no complete solution for this
problem.

One of the most famous of unsolved problems, which can
be stated in terms of elementary concepts, is known as Fermat's
Last Theorem. The problem states "Are there any positive
integers x, y, z, such that x" + yn = zn, where n is an integer
greater than 2. Of course if n = 2 then X Z + yZ = ZZ has many
integral solutions, e.g., x = 3, y = 4, z = 5 or x = 5, y = 12,
z = 13. However, for n = 3, it is impossible to find integral
solutions of x" + yn = zn. Hungarian Problem Book II, (p.31),
in discussing the solution to a problem, makes the following
comments on Fermat's Last Theorem: "The statement is
known to be true for n < 2003, and as of 1961 for all prime
exponents less than 4002. In spite of the efforts of many
distinguished mathematicians, no proof has been found for
Fermat's conjecture to this day."

Fermat maintained that he had a most wonderful proof for
this conjecture, but that the margin of the book he was reading
(a book on number theory by the Greek mathematician,
Diophantus) was too small to contain the proof. Fermat's
"proof" has never been found, and as yet, mathematicians
have been unable to supply any, despite the use of more
modern and powerful techniques than those at the disposal of
Fermat. It is possible that Fermat had a proof which mathe­
maticians would accept as valid, or perhaps there may have
been a flaw in Fermat's proof. There have been instances
where eminent mathematicians gave proofs that were later
found to be defective. The question as to whether Fermat had
a proof for his Last Theorem is still an unsolved problem.
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The difference between an unsolved problem and a problem
which has a solution that indicates a certain "construction"
to be impossible should thus be clear. There is still one other
factor to consider. In 1931 Kurt GOdel proved that in any
mathematical system, there may be statements whose truth
cannot be decided. Perhaps, Fermat's Last Theorem is one such
statement.

There are several possibilities one must consider, in at­
tempting a solution to a problem. One can prove a solution
exists, and actually exhibit the solution; one may prove that
no solution is possible, or one may prove that the statement
is undecidable in terms of the axioms of the mathematical
system which provides the frame of reference.

Recently (December 1963) an article appeared in The
New York Times which illustrated the last possibility. The
number of natural numbers is infinite. The number of rational
numbers is also infinite. Since the set of rational numbers can
be placed into a 1-1 correspondence with the set of natural
numbers, we say that the two sets hav€> the same cardinal
number. Any infinite set of numbers that can be placed into
a 1-1 correspondence with the set of natural numbers is said
to be countable or denumerable. Let us represent the car dinal
number of such a set by a. Cantor showed that the cardinal
number of the set of real numbers (rational and irrational) is
greater than a. Let us call this number p. One unsolved
problem in set theory has been "Is there any transfinite number
greater than a and less than p1" The article in The New York
Times describes the investigations of a mathematician from
Stanford Univ., Paul J. Cohen, who proved that the question
of the existence of a number greater than a and less than p
is undecidable on the basis of the axioms of set theory. Pro­
fessor Cohen's achievement has also been described in the
January 1964 issue of Scientific American (Science and the
Citizen).
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An Italian mathematician, Mascheroni, in the eighteenth
century was able to demonstrate the surprising fact that any
construction possible with unmarked straight edge and com­
passes is also possible by compasses alone. Of course one
cannot construct a straight line with compasses alone, but
one can say that a straight line is determined when two points
that lie on that line have been constructed. Thus a circle has
been divided into 17 equal parts using only a single pair of
compasses. Such constructions are known as Mascheroni
constructions.

Of course, not all possible constructions can be performed
with straight edge alone, since the use of the straight edge
only enables one to perform those constructions based upon
rational operations. The extraction of square roots requires
the intersection of two circles or a circle and a straight line,
inasmuch as the extraction of a square root implies a quadratic
equation; and we have already seen that constructing the roots
of a quadratic equation involves the use of a circle. It is
therefore most surprising that all constructions that are
possible with straight edge and compasses can be performed
by straight edge alone, provided we are permitted to use a
single circle with a fixed center and radius.

To appreciate how unexpected was this result proved by
Jacob Steiner in the nineteenth century, recall the procedure
for finding i b where b is a given line segment. Even this simple
construction when performed in the usual manner involves
the use of two separate circles. Constructions using straight
edge only require the use of theorems from projective geometry.
The interested reader can find a discussion of "ruler construc­
tions" in Squaring the Circle and other Monographs-"Ruler
and Compasses" by Hilda P. Hudson.
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PROBLEM SET Vm-A

Students very often show their geometry teachers the following
method for "trisecting" an angle: Mark off equal lengths AB
and AC on the sides of the given angle A. Divide line segment
BC into three equal parts. Then draw AD and AE, which
trisects angle A.

Prove that AD and AE do not trisect angle A.

A

I hope this brief discussion has shown the reader why the
solutions to the problems of "squaring the circle and trisecting
an angle" are considered to be "profound insights" and "great
contributions to human knowledge"; why centuries of "great
intellectual effort" were required to solve such seemingly
simple problems, and what new mathematics had to be
developed to resolve these problems.



CONCLUDING REMARKS

SUGGESTIONS FOR FURTHER READING

81

Men of Mathematics-E. T. Bell
Development of Mathematics-E.T. Bell
What is Mathematics ?-Courant and Robbins
New First Course in Theory of Equations-L. E. Dickson
History of Mathematics (2 Vol.}-D.E. Smith
New Mathematical Library

Volume I-Numbers, Rational and Irrational,-I.Niven
Volume VI-Lore of Large Numbers,-P. J. Davis
Volume VII-Uses of Infinity,-L. Zippen
Volume IX-Continued Fractions,-C. D. Olds
Volume X-Graphs and Their Uses,-o. Ore
Volume XII-Hungarian Problem Book II
Volume XIII-Episodes from the Early History of Mathe­

matics,-A. Aaboe
Scientific American

April 196I-Mathematical Games, - M. Gardner
January 1964--Science and the Citizen- Answers in

Set Theory
Mathematics Teacher-December 1960

The Evolution of Extended Decimal Approximations to
n-J. W. Wrench



82 FAMOUS PROBLEMS OF MATHEMATICS

MORE ADVANCED BOOKS

A Survey of Modem Algebra,-Birkhoff and MacLane
Modem Algebraic Theories,-L.E. Dickson
The Carus Mathematical Monographs,

Number II-Irrational Numbers,-I. Niven
Famous Problems and Other Monographs

1) Famous Problems of Elementary Geometry,-F.
Klein

2) Three Lectures on Fermat's Last Theorem,-L. J.
Mordell

Squaring the Circle and Other Monographs
1) Squaring the Circle,-E. W. Hobson
2) Ruler and Compass,-H. P. Hudson



Solutions to the Problems





(I)

Solutions to the Problems

SET I-A
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PROBLEM SET I-B

(1) Since a line parallel to one side of a triangle divides
the other two sides into proportional segments, we have
l/a = b/x. Therefore x = abo

X=~
b

b a

(2) Since b/a = l/x, bx = a and x = a/b. To construct
x = a2/b, first construct a segment equal to a2 , then a
segment equal to a2/b.
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SET I-C
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(I) Draw LP and MP. Then triangle LPM is a right triangle
and PM is the altitude on the hypotenuse. Therefore
a/x = x/I and x 2 = a or x = -..ra.

(2) Instead of using the segments a and I for the diameter
use the segments a and b. Then x = ,.;a5.

To construct ,y(i use -..ra and I as segments for the
diameter. Use,y(i and I to construct va.

(3) Construct a right triangle whose legs are I and I to
construct v"l. For J3 use -J2and I as the lengths of
the legs. Use 2 and I for,.J5. Use 4 and I for"jT7.

SET I-D

x = (c - b)/a. First construct c - b then (c - b)/a.

SET I-E

(I) The discriminant of the quadratic equation is a2 - 4b.
In order for the roots be real and distinct a2 - 4b > 0
or a2 > 4b.

(2) The equation of a circle is (x - b)2 + (y - k)2 = r 2

where the center is (b, k) and the radius = r. The coor­
dinates of A are (a/2, (b + 1)/2)), AB2 = r 2 = a2/4
+ [(b + 1)/2 - 1]2 = a2/4 + (b - 1)2/4. Therefore
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(x - aI2)" + (y - (b + 1)/2)" = a"14 + (b - 1)"14. To
find the abscissas of G and F, let y = 0 in the
equation of the circle and solve for x. The results are
x = (a + .../a2 - 4b)/2 and x = (a - .../a" - 4b)/2,
which are the roots of x" - ax + b = O.

SET I-F

(1) Construct a circle with diameter BD where the coordi­
nates of Bare (0, 1) and the coordinates of Dare
(-1, -1).

SET ll-A

a) Solve the equations by elimination of one variable or
by determinants.

be' - b'e
X= ab' - a'b

a'e - ae'
y = abi - a'b

b) Since y = -(ax + e)lb.

x" + (-aJ,- ey + dx + e(-a~ - C) +f = O.

By using the quadratic formula for the equation,
AX" + BX + C = 0 where A = a" + b"

B = lac + b"d - abe
C = e" - 2bee + b2.j.
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We find x = -(B ± ,.,;B1. - 4AC)/2A, A, B, C being
given above. A similar procedure enables us to find y.

c) By subtracting the two equations we find the equation
of the line passing through the two points (real or
imaginary) of intersection of the two circles (d - d')x
+ (e - e')y + (f - /') = O. We can then use the
method of (b) to find the coordinates of the points of
intersection of the two circles.

PROBLEM SET ll-B

7 5 + n 35 + 7.../2 35 7
1) 5 _ 1\/2 " 5 + IJ2 = 23 = 23 + 23.../2

35 7
o = 23' b = 23' k = 2

5 2 + j"T 10 + 5j"T 4 +~
2) 2-$3"2+$3= 4-~ "4+$9

40 + 20j"T + 1O~ + 5..yTf
13

= (40 + l~,.J3) + eO +1~,.J3)j"T

_ 40 + 1O,.J3 b _ 20 + 5,.J3 k - !J
0 1 - 13 '1 - 13 '1 - "V .:J

PROBLEM SET ll-C

1) Let x = "';3 +$T
x1. - 3 =...y2
(x1. - 3)4 = 2
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Xl - 12x6 + 54x· - 108x2 + 79 = 0
The equation is irreducible since,

a) x 2 = 3 + ..yT has the roots ± ~r::-3-+----.$2.,.2-
b) If we let y = x 2 - 3, then the roots of y. = 2 are the 4

fourth roots of 2. Two roots are real and irrational, the
other two roots are imaginary.

c) Therefore the eight roots of the equation can be repre­
sented by x = ±~ where p is a fourth root of 2.
None of these roots is rational

2) First construct ,.J2 by obtaining the mean proportion
between 2 and 1. Then construct -Y2 by obtaining the
mean propotion between ,.J2 and 1. Third construct
VT by obtaining the mean propotion between -Y2
and 1. Fourth obtain ),lfl. Finally obtain ""'3 + Vi"
as the bypotencese of a right triangle where legs are
-v'3 and Vl,

3) a) If the coefficients of X" + a.X"-1 + ... + all = 0 are
integers, a rational root of that equation must be an
integer which divides all' The equation x 3 - 1 = 0 has
a rational root x = 1.
b) The divisors of 2 are ±1 and ±2. None of these
numbers is a root of x 3

- 2 = O. Therefore x 3
- 2 = 0

has no rational root.
4) x 3

- 1 = (x - 1)(x2 + X + 1) = O.
Therefore the roots of x 3

- 1 = 0 are x = 1,
x = (-1 ± ,.;=:'3)/2.

5) Ifr1is a root of x 3 + ax2 + bx + c = 0, then (x - r l )

is a factor of the left hand side of the equation. Let the
other factor be x 2 + mx + n, then (x - r 1)(X2 + mx
+ n) = O. The solution of the quadratic equation
involves only rational operations and the extractions of
real square roots (all the roots of the original equation
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are real). Therefore the roots satisfy the analytic criterion
for constructibility. The rational root of x 3

- 7x2 + 14x

- 6 = 0 is x = 3. (x - 3)(x 2
- 4x + 2) = O. The roots

of the cubic equations are 3, 2 ± ,.J2.

6) Since 2 +~ is a root of the equation

(2 + ~)3 + a(2 + ~)2 + b(2 +~) + c = O.

Simplifying we obtain

(26 + 7a + 2b + c) + (15 + 4a +b)~= O.

Inasmuch as~ is irrational,

15 + 4a + b = 0
and. 26 + 7a + 2b + c = O.

If 2 - ~ is substituted for x in the equation we
obtain

(26 + 7a + 2b + c) - (15 + 4a +b)~ = 0

But 26 + 7a + 2b + c = 0
and 15 + 4a + b = 0

.'. 2 - ~ is also a root of the equation. If the
third root is represented by r,

(2 +~) + (2 - ~) + r = -a
r = -a - 4

and r is rational.

SET m-A

1) a = 0, b = 1; a = 0, b = -1
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SET m-B

1) (a, b) = (c, d) if and only if a = c, b = d

(a, b) + (c, d) = (a + c, b + d)
(a, b) x (c, d) = (ac - bd, ad + be)

2) One solution is (0, 1)
(0,1) x (0,1) = ([0 - 1], [0 + 0]) = (-1, 0)
(-1,0) + (1,0) = (0,0).
Another solution is (0, -1)

SET ill-C

1) , I(COS 81+ i sin 81) . '2(COS 82+ i sin 82)
= '1'2(cos81cos 82 - sin 81sin 82+ i([sin81cos 82

+ cos 81, sin 82])
= '1'2 (cos [81+ 82] + i sin [81+ 82].

, ,(cos 81+ i sin 81) (cos 82 - i sin 82)
2) '2(COS 82+ i sin 82) • (cos 82 - i sin 82)

!:.J.. _ cos 81cos 82 + sin 8 1 sin 82 + i(sin 8 1 cos 82 - cos 81sin 82)
'2 - cos28 + sin28

= !:.J.. (cos [8, - 82] + isin [8, - 82])'2
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SET ill-D
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1) & 2) (cos x + i sin X)3 = cos3X + 3; cos2 x sin x
- 3 cos x sin2 x - i sin3x = cos 3x + ; sin 3x

cos 3x = cos3X - 3 cos x sin2 x = cos3X

- 3 cos x(1 - cos2 x) = 4 cos3X - 3 cos x

sin 3x = 3cos2 x sin x - sin3x =
3(1 - sin2 x) sin x - sin3x = 3 sin x - 4 sin3x

SET ill-E

1) R 2n. . 2n 1;",/3
I = cos T + I SiD T = -2 + -2-

-1 +-VC3= 2 = x 2

4n .. 4n 1;",/3
R 2 = cos T + I SiD T = -2 - -2-

-1 -",/3
= 2 =X3

R 6n. . 6n 1
3=cosT+ISiDT= =X 1
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SET m-F

1) (
-1 + .v'=3)2 -1 -.v'=3 2

X3 = 2 = 2 = (J)

XI = (J)'(J)2 = (J)3 = 1

If we represent the negative square root of 1 by R I ,

then R 2 = 1 = Ri

SET m-G

1) R 2n + . . 2n= cosT lSlOT

R2 4n + .. 4n
= cosT lSlOT

R' = cos lin + i sin lin = 1

2) a) R3.R6 = R9 = R2
b) the inverse of R' is R2 since R' •R2 = R' = 1

) R2 4n + . . 4nc = cosT lSlOT

1 4n. . 4n
R2 = cos T - l SlO T

R2 + ~2 = 2 cos ~n .

3) r = R, a = 1

s= R"-l.
R-1
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SET IV-A
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1) If b = 2a, then y2 = bx = 2ax also Since x2 = ay,
y = x 2/a, x 4/a2 = 2ax or x 3 = 203

2) The graphs of x2 = ay and y2 = bx are parabolas.
Although individual points of a parabola can be- con­
structed with straight edge and compasses, the entire
graph, and in particular the points of intersection of
the two parabolas, cannot be constructed with straight
edge and compasses.

3) Since x2 = ay, y = x 2/a

x 3

xy = - = abo
a

But b = 2a therefore x 3 = a2b = 2a3
•

SET IV-B

1) The problem is:given a lirie whose length is a, construct
a line whose length is x, so that x2 = 2a2. 2a/x = x/a,
construct the mean proportion between 20 and a.

2) a) The equation is 4nx2 = 2(4n). Therefore x 2 = 2 and
the construction is possible.

4nx3 8n 3 - 2b) -3- = T' x - ,and the construction is impos-

sible.
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SET V-A

8

1) OD is the cos A.

p

c

b p

2) a) If 36 = 90°, 6 = 30° and the equation becomes
x 3

- 3x = 0, (x = 2 cos 6). Since this equation has a
rational root (x = 0), it is a reducible cubic and its root
can be constructed Le. an angle of 90° can be trisected.
b) For 36 = 120° the equation is the irreducible cubic
x 3

- 3x + 1 = O. An angle of 120° cannot be trisected.
c) For 36 = 180°, the equation is the reducible cubic,
x 3

- 3x + 2 = 0 (One root is x = 1. An angle of 180°
can be trisected).
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SET V-B

97

1) Let angle D contain yO. Draw OE then LDOE = yO and
LBEO = 2vo. Also LB = 2yo then LAOB = 3yo or
LD = 1/3 of LAOB.

2) To construct line DEB so that DE is equal to the
radius of the circle would require placing two marks on
the straight edge (which should be unmarked).

D .L::....~__-+ ....f..-~oL-!-- -I A



98 FAMOUS PROBLEMS OF MATHEMATICS

SET V-C

1) Use the formula for the sum of an infinite geometric
progression with a = t and s = t, S = t!(1 - t)

= tIl = t
2) Only a finite number of operations with straight edge

and compasses are permitted. This method requires
that the given angle be bisected an infinite number of
times.

SET VI-A

1) Draw DG and GF. Since GE is the altitude on the
hypotenuse of right triangle DGF

.!!..- = ~ or x 2 = abo
x a

2) Triangles DCB and DFB have the same base (DB) and
equal altitudes, therefore, 6 DCB = 6DFB. Also
quardrilateral ABCD = 6ABD +6DCB. Thus quadri­
lateral ABCD = 6ABD + 6DFB = 6AFD.

3) a) First construct a triangle equal in area to the given
quadrilateral, then construct x to be the mean proportion
between t band h, when band h are any base and the
corresponding altitude of the triangle which is equal
to the quadrilateral.
b) Let ABCDE be the given pentagon. Draw dia­
gonals DB and DA. Construct CG II DB and EF II DA.
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(F and G lie on AB extended.) Draw DF and DG.
Now prove that 6.DFG is equal to pentagon ABCDE.
Construct a square equal to 6.DFG. This method can
be extended to construct a square equal in area to any
given polygon.

F A

SET VI-B

B G

1) a) Let Sn = length of side of inscribed regular polygon
of n sides; Sn = length of side of regular circumscribed
polygon; Pn = perimeter of inscribed polygon and
Pn = perimeter circumscribed regular polygon

S4 = ,..,1'2, S4 = 2.

P4 = 4,..,1'2 = 4(1.414) = 5.66
P4 = 8
5.66 < 2n::;;: 8
2.83::;;: n::;;: 4
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b) By the Law of cosines

sl = I + I - 2 cos 45° = 2 - ~

Sa = ""2 - :<.T'f
Pa = 8""2 - ;j"'2 = 8 X .72 = 5.76

45°
Sa = tan 2

Since tan 1.0 = ± /1 - cos 8 = I -: cos 0
2 'V 1 + cos 8 SID 8

tan 1..45° = 2 - "J'l ="J'l - I
2 :..rr

P a = 16("J'l - I) = 16(.414) = 6.62
2.88 ~ n < 3.31

o
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2) 3+ = 3.142857

3) Let x = 3.14

l00x = 314.14
99x = 311

311
x=W

SET VI-C

1) Draw OC, CD, DA, CA

B

101

R--t-+---,f---=-7L.........:="'-+---+---+------::>t---s
H

OCDA is a rhombus
LCOA = 60°, LCAE = 30°
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ODJ..CA

. EA=.J3.. 3

.J3AH=3-- AB=2
3 '

By the Pythagorian theorem

BH = ";43° - 2:J3
2) BH = 3.14153, n = 3.14159 the error is approximately

.00006.

SET VI-D

1) sin ~ = ~ - (~ y( ~ )
= .523 - .024 = .499

by computation, sin n/6 is approx..50,

sin 30° = ; = .5000

cos ~ = 1 - (~ y(; )= 1 - .137 = .863

by computation cos n/6 approx..86

cos 30° =~ = .8660.

111
2) e = 1 + 1 + 2! + 3! + 4!

e = 2 + .5 + .167 + .042 = 2.709
e is approx. 2.71
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SET VI-E

x = -./430 - 2,J3
x 2 = 4

3
0 - 2,J3

3x2 - 40 = - 6,J3
9x4 - 24Ox2 + 1492 = 0

SET VB-A

103

1) a) Construct a square by joining the ends of two
perpendecular diameters. Bisecting the sides of a
regular polygon of n sides will give the vertices of a
regular polygon of 2n sides.
b) Construct a regular hexagon, using the radius of a
circle to divide the circle into 6 equal parts. Join the
alternate vertices of the hexagon.
c) See part a).

2) a) see (1) b.
b) see (1) b.
c) see (1) a.

3) For k = 2 and / = -1, 3k + 5/ = 1. We can then
construct central angles of 2n/3 and 2n/5, also we can
construct angles of 2n(t) and 2n(~.), we can then con­
struct an angle of 2n(i - t) = 2n/15, which is a central
angle of a regular polygon of 15 sides.

4) a) Since 3 is not relatively prime to itself, the theorem
gives us no information about a regular polygon of 3 x 3
or 9 sides. However, the central angle of a regular
polygon of 9 sides is 40°, and we have already shown
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that such an angle cannot be trisected.
b) The statement is false. A regular polygon of 5 sides
can be constructed and a regular polygon of 4 sides
can be constructed. The integers 4 and 5 are relatively
prime, but a regular polygon of 9 sides cannot be
constructed.

SET Vll-B

I) Construct a circle of unit radius (any convenient
radius). Divide the radius into a mean and extreme
ratio;i.e., construct x so that x = (,J5 - 1)/2. Use x
as a side of a regular decagon, finally join the alternate
vertices.

2) LI=L2
L 1 = L 3, L 2 = L 4

L3= L4

E

A o B
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and AC = EC.
EC AD

But CB = DB

AC AD
CB = DB'

SET Vll-e

105

1) Expand (x - rl)(x - r 2)(x - r 3)

then

x 3 - (r l + r2+ r3)x2 + (rl r2+ r l r 3+ r2r3)x

- rlr2r3 =x 3 + 0IX2 + 02X + 03'

When two polynomials are identically equal, the
coefficient of corresponding terms are equal (an equa­
tion of degree n cannot have more than n roots; whereas
in an identity any permissible value of x will make the
equations true). Equating the coefficients of like terms
gives the desired relation between the roots and the
coefficients.

2) Use the same procedure. This procedure can be used for
an equation of degree n.

SET Vll-D

1) Since Y I + Y2 = -1 and Y I • Y2 = -1, Y I and Y2

satisfy the equation y 2 + Y - 1 = O.
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2-x

2) Since OC = 1/2, OB = 1, BC = ,.,(5/2, CD = ,.,(5/2
and OD = (,.,(5- 1)/2 = S10'

To prove S5 = BD, we have s;j4 + x 2 = sto also 2x - x 2

= s;j4 :. x = sto/2

and sf + sto = 4sto
s: = sfo (4- sfo)

-1 +,.,(5 S2 _ 3 - ,.,(5
S10 = 2 ' 10 - 2

then

sf - 1 = 3 - ,.,(5(5 + ,.,(5) _ 1 = 3 -,.,(5 = sfo
2 2 2

.. sf = 1 + sfo
or S5 = BD.
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SET Vll-E

107

1) R3 2n + .. 2n= cosT 15mT = OJ

R6 = cos 4n + isin 4n = OJ2
3 3

where OJ is a cube root of unity

. R3 = -1 +.v'=3 R6 = -1 - .v'=3
.. 2' 2

2) YtY2 + YtY3 + Y2Y3 = 3(R3 + R6) + (R + R2 + R4
+ R5 + R7 + R8)

=3(-1)+0

since R3, R6 are the roots of x2 + x + 1 = 0

YtY2Y3 = (R3 + R6) + (R + R2 + R4 + R5 + R7
+ R8)

= -1 -+- 0 = -1

3) Trisecting an angle of 120° is equivalent to constructing
an angle of 40°. A regular polygon of 9 sides subtends
an angle of 40° at the center of the circumscribed circle.

SET Vll-F

1) Perform the actual division.

SET Vll-G

1) If g = 2, we obtain the following sequence R, R2, R4,
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R', R16, R32 (= RIS), R30(= RI3), R26(= R9), RI8 = R,
and the sequence will continue R2, R4

, etc. Not all the
roots of the cyclotonic equation are in the sequences.

2) Each term is the cube of the preceeding term. When the
exponent of R becomes greater than 16, subtract 17
from the exponent. This is equivalent to dividing the
term by 1 since RI7 = 1.

SET Vll-H

1) Since y 2 + Y - 4 = 0 and YI > 0

-1+-v'I7 ad -1--V17
YI = 2 n Y2 = 2

also

Z2 - YI Z - 1 = 0 and ZI > 0

Therefore

Z I = YI + ~Yi + 4 = ~ YI + ,J1 + ~ yr
Finally,

w2 - Y2W- 1 = 0 and WI> 0

Therefore

W1 = ~Y2+,Jl + ~Y~

2) a) OE2 = AE2 + OA2 =.l + 1
16

- 1
OE=4-v'I7

- - - - - 1 Ii"i 1 1
b) AF = F.F - EA = OE - EA = 4'" 17-4 =TYI
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c) Similarly

-, -, - I I I
AF + EF + AE = 4"v'I7 + 4" = -TY2

d) OP = 0A2 + AP = I + (~ YIr
OF = ,vI + tyt

OF'2 = OA2 + AF'2 = I + (~Y2r

OF' = ,vI + tyi
- - - I -

e) AH = AF + FH = TYI + OF

I
= TY I + ,v I + t yt = Z I

f) AH' = F"H' - F'A = F'O - (- ~Y2)

I= ,vI + tyi + TY2 == WI

3) The equation of the circle is

therefore the abscissas of the points G and F can be
obtained from the equation

or x2 - Z IX + WI = 0

But VI and V 2 satisfy the equation

v2 - ZIV + WI = 0 and VI> V 2 > O.

therefore

Also
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I 2n
vt=R+][=cos17

Consequently OF = 2 cos ~~.

- I 2n
4) OM = 2" OE = cos 17

since the radius of the cirlce is unity,

2n
LMOP= 17·

5) Follow the procedure in the text.

SET Vll-K

n= 2m 3.2m 5.2m 17.2m 15.2m 51.2m 85.2m

-- -- -- --
4 3 5 17 IS 51 85
8 6 10 34 30

16 12 20 68 60
32 24 40
64 48 80

96
Totals 5 6 5 3 3

There are 24 regular polygons with number of sides
~ 100 which can be constructed.
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SET Vll-L

III

I) 210 = 1024
log 2210 = 1024 log 2 = 1024 (.301) = 308.224.
Therefore 2210 + I has 309 digits.

2) We can construct regular polygons of 12 sides and 15
sides. Therefore we can construct angles of 30° and 24°.
The difference of these two angles can he constructed.
Finally the angle of 6° can be bisected to give an angle
of 3°. We cannot construct an angle of 2°. For, if this
were possible we could then construct an angle of 1°
and any integral multiple of 1°; in particular an angle
of 40°. But a regular polygon of 9 sides cannot be
constructed. Therefore the smallest integral number of
degrees an angle can have and still be constructible is 3.

SET vm-A

I) If AB = AC, L B = L C.
Then L::,ABD ~ L::,ACE
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A

F

and LI = L3.
Suppose L2 = L3.
Extend AE its own length to F and draw CF.

l:>ADE -- l:>FCE, and L2 = L4

L3 = L4 and AC = CF.

Also, since AD = CF, AD = AC

L5 = LC = LB
but L5 > LB

... The assumption that L 2 = L 3 is false.


