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Introduction

Linear algebra is the branch of mathematics concerned with the study of vec-
tors, vector spaces (also called linear spaces), linear transformations, and systems
of linear equations. Vector spaces are a central theme in modern mathematics;
thus, linear algebra is widely used in both abstract algebra and functional analysis.
Linear algebra also has a concrete representation in analytic geometry and it is
generalized in operator theory. It has extensive applications in the natural sciences
and the social sciences, since nonlinear models can often be approximated by a
linear model.

We will begin our studies by studying systems of linear equations. Without
becomming to formal in the notation and language we will study the basic properties
of the solutions for homogeneous and nonhomogeneous systems of linear equations.
We will get known to the Gaussian algorithm for solving systems of linear equations.
This algorithm will re-occur repeatedly in this lecture note. Towards the end of
this �rst chapter two problems will in a natural way catch our attention. In order
to solve them we need to begin to formalize the observations we made sofar.

The formalisation will begin by extracting the esential properties of the num-
bers we have used in the �rst chapter. This will lead to the concept of a �eld
(De�nition 2.1). Next we will formalize the properties which the solutions of a ho-
mogeneous system of equations posesses: the sum of two solutions of a homogeneous
system of equations is again a solution this system of equations, and the same is
true if we multiply a solution of such a system of equations by a number (that is an
element of a �eld). This will lead to the concept of a vector space (De�nition 2.4).
Roughly spoken a vector space over a �eld is a set V where we can form sums of
arbitrary elements and where we can multiply any element by scalars of the �eld
and such that this addition and scalar multiplication satis�es certain rules which
seem natural to us.

After we have made these essential de�nitions we will begin to study vector
spaces more in detail. We will encounter basic but very important concepts of
linear algebra, amongst others:

• linear combinations of vectors,
• basis of a vector spaces,
• linear dependence of vectors,
• the rank of a system of vectors (and related concepts),
• the dimension of a vector space.

Maybe one of the most essential results will be the theorem about the existence
of a basis. It takes just 6 words to formulate this theorem which turns out to reach
till the foundations of the mathematics: �Every vector space has a basis.� We will
proof it only in the special case of �nite dimensional vector spaces as the more
general result will need some heavy machinery of axiomatic set theory. Though
for completeness we have included this proof in the appendix of this lecture notes
(together with an more detailed explanation about its importance; see Appendix C).
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2 INTRODUCTION

Towards the the end of this second chapter we will �nally be able to answer
the problems answer the problems which did arise in the end of the �rst chapter.

In the third chapter we will then start to study the relation ship between. We
will introduce the concept of a linear map between vector spaces (De�nition 3.1).
The whole chapter is devoted to the study of these kind of maps. One of the main
theme of this chapter will be the matrix description of linear maps between �nite
dimensional vector spaces. We will explore the relation ship between matrices and
linear maps and what we can all conclude from that. Two theorems will provide us
with the necessary information:

• �The vector space HomF (V,W ) of all linear maps between a n dimen-
sional vector space V and a m-dimensional vector space W is isomorphic
as vector spaces to the the vector space of all m×n-matrices Fm,n.� (The-
orem 3.27)
• �The endomorphism ring EndF (V ) of an n-dimensional vector space is
isomorphic as F -algebras to the F -algebra of all n× n-matrices Mn(F ).�
(Theorem 3.35)

The proper understanding of these two theorems might take time but they are
essential in order to really understand linear algebra. Other important topics of
the third chapter will be:

• isomorphism and isomorphism of vector spaces,
• rank of a linear map,
• dimension formla for linear maps,
• the general and the special linear group,
• equivalence and similarity of matrices,
• normal form of matrices upto equivalence.

During the third chapter we will encounter that every invertible n× n-matrix
A can be written as a product

A = SD

where S is a matrix of the special linear group and D is a very simple diagonal
matrix (Theorem 3.55). As a natural problem will arise the question about the
uniqueness of this decomposition. It will turn out that the theory developed upto
the third chapter is not enough to give a proper answer to this problem. We will
need a new concept and this will lead to the the de�nition of a determinant function.

The fourth chapter will then be devoted to the �rst studies of determinant
functions. First we introduce the new concept and show what hypotetical properties
a determinant function would have. It will turn out that the detreminant function
� in case it exists � must be unique. This will be the reason why we will later be
able to give an a�rmative answer about the uniqueness of the above decomposition.
But we will �rst have to show that a determinant function exists and this is done
in the second section of the chapter about determinants. When we are �nally
convinced about the existence of determinants we will study in the remaining part
of the chapter some basic properties of the determinant function. The chapter will
�nish with the presentation of the Leibniz formula which shows the beauty and
symmetries of the determinat function (Theorem 4.28).



CHAPTER 1

Systems of Linear Equations

Following closely [Lor92] we shall give an introducton to systems of linear
equations where we will encounter the �rst time linear structures. In the next
chapter we will then study linear structures in a more general setting.

1. Two Linear Equations with Two Variables

We consider the following system of two linar equations:

ax+ by = e

cx+ dy = f.
(1)

Here a, b, c, d, e and f are numbers and x and y are variables. Our concern is
which values of x and y satisfy the two equations above simultanously.

In order to avoid triviality we may assume that some of the numbers of the on
the left hand side of (1) are not equal to zero. Let us assume that a 6= 0. Then we
can substract c/a times the �rst equation of (1) from the second equation and we
get

ax+ by = e

d′y = f ′,
(2)

with d′ = d − bc/a and f ′ = f − ec/a. Note that we can recover from this system
of linear equations again the �rst one by adding c/a the �rst equation of (2) to the
second equation of (2). We say that (1) and (2) are equivalent systems of linear
equations.

If some values for x and y satisfy simultaneously the linear equations of (1)
then they also satisfy the linear equations of (2) simultaneously. And the converse
is also true. In general, equivalent systems of linear equations have exact the same
solutions.

Note that the system of linear equations (2) is more easy to solve than the the
�rst system. This is because in the second equation only appeares one variable
instead of two, namely y. Since a 6= 0 we get that the second equation of (2) is
equivalent with

(ad− bc)y = af − ec. (3)

Thus the solveability of (1) depends very much on the fact whether the number

δ(a, b, c, d) := ad− bc (4)

is equal to 0 or not.

Case 1: Assume that δ(a, b, c, d) 6= 0. Then (3) is equivalent with

y =
af − ec
ad− bc

=
af − ec
δ(a, b, c, d)

which we can also write as

y =
δ(a, e, c, f)
δ(a, b, c, d)

.

3



4 1. SYSTEMS OF LINEAR EQUATIONS

Thus the original system of linear equations (1) is equivalent with

ax+ by = e

y = δ(a, e, c, f)/δ(a, b, c, d).
(5)

It follows after a short calculation that since we have made the assumption
that a 6= 0 that

x =
ed− bf
ad− bc

=
δ(e, b, f, d)
δ(a, b, c, d)

is the unique solltion for x to the linear system (5).
Case 2: Assume that δ(a, b, c, d) = 0. Straight from (3) follows that the

system of linear equations is not always solveable. This is beacause the
constants e and f of the righthand side of (3) can be choosen such that
af − ec 6= 0 and in this case there exist no y satisfying the equation (3).
This happens for example if f = 1 and e = 0, because then af−ec = a 6= 0
since we assumed that a 6= 0.

But in the case that af − ec = 0 we can choose the value for y freely
and y together with

x =
e− by
a

is a solution for the system of linear equations (1). Thus the system of
linear equations (1) has a solution but this solution is not unique.

Collecting the above observations it is not di�cult to prove the following result:

Proposition 1.1. Consider the system of linear equations (1) in the two unknown
variables x and y. Then we have the following three cases:

Case 1: a = b = c = d = 0.
Then (1) is solvable if and only if e = f = 0 and in this case any pair

of numbers x and y is a sollution.
Case 2: Not all of the coe�cients a, b, c, d are equal 0, but δ(a, b, c, d) = 0.

Then (1) is not solvable if δ(a, e, c, f) = af − ec 6= 0 or δ(e, b, f, d) =
ed− bf 6= 0. But if δ(a, e, c, f) = δ(e, b, f, d) = 0, then (1) is solveable and
we have (if a 6= 0 what we can always achive by exchanging the equations
or renaming the unknown variables) that all the solutions of (1) are given
by

x =
1
a
(e− bt), x = t

where t denotes an arbitrary number.
Case 3: δ(a, b, c, d) 6= 0.

Then (1) posseses a unique sollution and this sollution is given by

x =
δ(e, b, f, d)
δ(a, b, c, d)

and y =
δ(a, e, c, f)
δ(a, b, c, d)

. �

The above considerations give already an exhaustive description of what can
happen when solving a system of linear equations, even if it consists of more equa-
tions and more variables: either the system will have exactly one sollution, or many
solutions or no solutions. It will turn out that whether there exist a unique solution
or not will always solely depend on the left hand side of the equations, that is on the
coe�cients of the variables (in the above case of the system of linear equations (1)
these are the numbers a, b, c and d). Note that we will encounter the number
δ(a, b, c, d) later in this lecture under the name �determinant�.
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2. Basic Notations for Systems of Linear Equations

We consider now an arbitrary system of linear equations

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

...
...

...
...

am1x1 + am2x2 + · · ·+ amnxn = bm

(6)

of m equations in the n �unknown� variables x1, . . . , xn.
The numbers aij (i = 1, . . . ,m; j = 1, . . . , n) are called the coe�cients of

the system of equations.1 It is usefull to arrange the coe�cents of the system of
equations (6) in the following form:

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

am1 am2 · · · amn

 (7)

Such a scheme of numbers is called amatrix. If one wants to emphasis the dimension
of the above matrix, then one can also say that the scheme of numbers (7) is a
m× n-matrix. We consider the columns of this matrix:

v1 :=


a11

a21

...
am1

 , v2 :=


a12

a22

...
am2

 , . . . vn :=


a1n

a2n

...
amn


One can consider these columns as m × 1-matrices. Each of those matrices is a
ordered system of m numbers and is also called an m-tuple. We can form also
an m-tuple from the numbers b1, . . . , bm on the right side of the system of linear
equations (6), namely

b :=


b1
b2
...
bm


Note the use of the symbol � :=� in the previous two equations. It does not denote an
equality but rather denotes the de�nition of what is on the left side of the symbol.
For example x := 2 means that x is set by de�nition equal to 2.

We can de�ne in a natural way an addition of two m-tuples of numbers by
c1
c2
...
cm

+


d1

d2

...
dm

 :=


c1 + d1

c2 + d2

...
cm + dm


and likewise the multiplication of an m-tuple by a number a by

a


c1
c2
...
cm

 :=


ac1
ac2
...

acm


1When we talk in the following of number one may think of real numbers, that is elements of

the �eld R. But all our considerations will be true in the case where R is replaced by an arbitrary
�eld F . (What a �eld F is precisely we will introduce in the next chapter.)



6 1. SYSTEMS OF LINEAR EQUATIONS

Using this notation we can write the system of linear equations (6) in the following
compact form:

x1v1 + x2v2 + · · ·+ xnvn = b (8)

We call the n-tuple

x :=


x1

x2

...
xn


consisting of the numbers x1, . . . , xn which satisfy (6) or equivalently (8) a solution
of the system of linear equations.

We will give the class of system of linear equations where the numbers b1, . . . , bm
are all equal to 0 a special name by calling them homogeneous systems of linear
equations.2 If a system of linear equations (6) is given, then we call the system
of linear equations which is derived from (6) by replacing the b1, . . . , bm by 0 the
homogeneous system of linear equations associated with (6). We denote

0 :=


0
0
...
0


the m-tuple which consists of the numbers 0 only. (Note that we use the same
symbol �0� for both, the number zero and the m-tuple consisting of only zeros.)
Then the homogeneous system of linear equations which is assoziated with the
system of linear equations (6) or equivalently (8) can be written as

x1v1 + x2v2 + · · ·+ xnvn = 0. (9)

Proposition 1.2. One obtains all solutions of the nonhomogeneous system of lin-
ear equations (6) or equivalently (8) if one adds to a speci�c solution x of the system
all the solutions of the homogeneous system (9) associated with it.

Proof. In order to avoid triviality we may assume that the system (6) has a
solution x. Then if x′ is a solution of the homogeneous system (9) we get

(x1 + x′1)v1 + (x2 + x′1)v2 + · · ·+ (xn + x′n)vn =

(x1v1 + x2v2 + · · ·+ xnvn) + (x′1v1 + x′2v2 + · · ·+ x′nvn) = b+ 0 = b.

Thus x+ x′ is also a solution of the system (6).
On the other hand, if both x and x′ are solutions of the system (6), then x′−x

is a solution of the homogeneous system (9) since

(x′1 − x1)v1 + (x′2 − x1)v2 + · · ·+ (x′n − xn)vn =

(x′1v1 + x′2v2 + · · ·+ x′nvn)− (x1v1 + x2v2 + · · ·+ xnvn) = b− b = 0.

Thus the solution x′ = x + (x′ − x) is the sum of the speci�c solution x of the
system (6) and the solution x′ − x of the homogeneous system (9). �

Let us denote by M the set of all solutions of (6). In the case that (6) is
solveable we have that M 6= ∅ (where ∅ denotes the empty set). If M0 denotes the
set of all solutions of the homogeneous system of linear equations (8) assoziated
with (6), then we can write the content of Proposition 1.2 in the compact form

M = x+M0 (10)

2A system of linear equations which is not necessarily homogeneous is called nonhomogeneous.
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where x is some speci�c solution of (6) and x+M0 := {x+ x′ : x′ ∈M}.
Now using (9) one can make the following observations about the solutions M0

of an given homogeneous system of linear equations:

If x ∈M0 and x′ ∈M0 then also x+ x′ ∈M0, (11)

and:

If x ∈M0 and c is any number then also cx ∈M0. (12)

Thus the set of solutionsM0 of some homogeneous system of linear equations cannot
be just any set but must obey the requirements (11) and (12). If we denote by Fn

the set of all n-tuples then we call a subset U ⊂ Fn a subspace of Fn if we have

x, x′ ∈ U ⇒ x+ x′ ∈ U (13)

and

x ∈ U ⇒ cx ∈ U (for every number c). (14)

Thus, if we use the above notation we write the observations (11) and (12) in
the following compact form.

Proposition 1.3. The set of M0 all solutions of a homogeneous system of linear
equations in n unknown variables is a subspace of Fn. �

Note that the requirementM0 6= ∅ is automatically satsi�ed since the n-tuple 0
is always a solution of a homogeneuos system of linear equations in n-variables.
Therefore we call the n-tuple 0 the trivial solution of a homogeneous system of
liear equations. Now one gets as a consequence of Proposition 1.2 or equation (10)
the following result.

Proposition 1.4. A solvable nonhomogeneous system of linear equations has only
a unique solution if and only if the associated homogeneous system of linear equa-
tions has only the trivial solution. �

3. Elementary Transformations of Systems of Linear Equations and
Elementary Row Transformations of Matrices

In this section we shall introduce a simple way to solve systems of linear equa-
tions: the Gaussian elimination algorithm.3

We begin with an arbitrary nonhomogeneous system of linear equations (6)
in n variables. Our aim is � similar as in Section 1 � to convert this system of linear
equations step by step into a system of linear equations which where the question
about it solveability is easier to answer. Of course one step should transform a
given system of linear equations S into a system of linear equations S′ which is
equivalent with the system S. That is, we demand that

x is a solution of S ⇐⇒ x is a solution of S′

for every possible n-tuple x. Beside this natural requirement one is of course in-
terested in keeping the transformations in each step as simple as possible. We will
allow the following three elementary transformations:

(I) Adding a multiple of one equation to another equation.
(II) Exchanging two equations with each other.
(III) Multiplying one equation with a non-zero number.

3Named after the German mathematician and scientist Carl Friedrich Gauss, 1777�1855.
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One veri�es immediately that each of those transformations transform a system of
linear equations into an equivalent one. Now the system of linear equations (6) is
completely determined by the extended coe�cient matrix

a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
...

...
...

am1 am2 · · · amn bm

 (15)

which is a m × (n + 1)-matrix. (If we will leave away the right most coloumn of
the above matrix, then we will call it the simple coe�cient matrix of the system
of linear equations (6).) The transformations of type I, II and III will result in
a natural way in row transformations of the extendet coe�cient matrix (15). To
simplify notation we will consider in the following elementary row transformations
for arbitrary matrices. Therefore let

C :=


c11 c12 · · · c1q
c21 c22 · · · c2q
...

...
cp1 cp2 · · · cpq

 (16)

be an arbitrary p×q-matrix. We call the entries cij the coe�cients of the matrix C.
We shall denote by u1, u2, . . . , up the rows of the matrix C. That is for i = 1, 2, . . . p
we let ui be the (horizontaly written) q-tuple

ui := (ci1, ci2, . . . , ciq).

An elementary row transformation of a matrix C shall now � in analogy to the
above de�ned elementary transformations of a system of linear equations � mean
one of the following three transformations.

(I) Adding a multiple of one row of C to another row of C.
(II) Exchanging two rows of C with each other.
(III) Multiplying one row of C with a non-zero number.

In order to simplify notation we will subsequently also allow switching columns as
an elementary operation on matrices. Note that switching columns of the extended
coe�cient matrix (15) which do not involve the bi represents renaming the unknown
variables x1, . . . , xn in the system of linear equations (6).

Let us now begin with a p × q-matrix C as in (16). If all coe�cients of C
are zero then there is nothing to do. Thus we may assume that some coe�cient
is di�erent from zero. In case this coe�cient is in the i-th row, i 6= 1, we use a
elementary row transformation of type II to switch the i-th with the �rst row. Thus
in the �rst row of the so optained matrix � which we call again C � there is now at
least one coe�cient c1k di�erent from zero. If needed we can switch the k-th with
the �rst column and thus we may assume from the beginning that

c11 6= 0.

Now we add for every i ≥ 2 the (−ci1/c11)-times of the �rst row u1 to the i-th row
ui. For the matrix C ′ with the rows u′i holds then

u′1 := u1

u′i := ui − (ci1/c11)u1.
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Then the matrix C ′ has the form

C ′ =


c11 c12 · · · c1q
0 c′22 · · · c′2q
...

...
0 c′p2 · · · c′pq


Below the coe�cient c11 of the matrix C ′ there are only zeros. If all the coe�cients
below the �rst row are zero, then there is nothing to do. Thus we may assume �
for similar reasons as above � that

c′22 6= 0.

Now we apply the same procedure as we had applied to the matrix C in the be-
ginning to the columns u′2, . . . , u

′
p, that is the matrix we optain from C ′ by leaving

away the �rst row u1 = u′1. For every i ≥ 3 we add the (−c′i2/c′22)-times of u′2 to
u′i. The matrix C ′′ which we optain, has now the rows:

u′′1 := u1

u′′2 := u′2

u′′i := u′i − (c′i2/c
′
22)u

′
2.

Thus the matrix C ′′ is of the form

C ′′ =


c11 c12 c13 · · · c1q
0 c′22 c′23 · · · c′2q
0 0 c′′33 · · · c′′3q
...

...
0 0 c′′p3 · · · c′′pq


If we continue this procedure we will �nally optain a p×q-matrix D of the following
form:

D =



d11

0 d22 ∗
0 0 d33

0 0 0 d44 ∗
...

...
. . .

. . .
. . .

0 0 . . . 0 0 drr

0 0


(17)

where r is a certain natural number such that

0 ≤ r ≤ p and 0 ≤ r ≤ q (18)

and
dii 6= 0 (1 ≤ i ≤ r). (19)

Note that the two zeros below the horizontal line of the matrix (17) denote zero-
matrices, that is matrices where every coe�cient is equal to zero. Likewise the ∗
symbolizes arbitrary entries in the matrix D which we do not further care about.
In the case that r = 0 it means that D is the p× q-zero-matrix. On the other hand,
it is clear how the cases r = p or r = q have to be understood.

Proposition 1.5. Let C be an arbitrary p × q-matrix. Then we can � using ele-
mentary row transformations of type I and type II and suitable column exchanges
� transform C into a matrix D of the from given in (17) where the conditions (18)
and (19) are satis�ed. �
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Note that since dii 6= 0 (1 ≤ i ≤ r) it is actually possible bring the matrix D
into the following form.

d11 0 0 . . . . . . 0

0 d22 0 0

0 0 d33
. . .

...

0 0 0 d44
. . .

... ∗
...

...
. . .

. . .
. . . 0

0 0 . . . 0 0 drr

0 0


(20)

The r×r-matrix in left upper part of the matrix (20) has beside the coe�cients
on the diagonal only zeros. We call such a matrix a diagonal matrix.

And if we use row transformations of type III and multiply for every 1 ≤ i ≤ r
the i-th row of the above matrix with the factor 1/dii we see that �nally we can
transform the matrix (17) into a matrix of the form

1 0 0 . . . . . . 0

0 1 0 0

0 0 1
. . .

...

0 0 0 1
. . .

... ∗
...

...
. . .

. . .
. . . 0

0 0 . . . 0 0 1

0 0


(21)

where the left upper part of the matrix (21) is a diagonal r × r-matrix with only
ones on the diagonal. We call this matrix the r × r-identity matrix Ir. (In case
there is no danger of confusion we may also denote the identity matrix just by the
symbol I.)

Example. Consider for example the following 4× 5-matrix, which we shall trans-
form into the form (21):

C :=


1 3 5 2 0
3 9 10 1 2
0 2 7 3 −1
2 8 12 2 1


Here the upper left coe�cien c11 = 1 of the matrix C is already di�erent from 0.
Thus we can begin to add suitable multiples of the �rst row to the rows below. In
our case this means we substract 3-times the �rst row from the second row and we
substract 2-times the �st frow from the forth row.

1 3 5 2 0
3 9 10 1 2
0 2 7 3 −1
2 8 12 2 1

 →


1 3 5 2 0
0 0 −5 −5 2
0 2 7 3 −1
0 2 2 −2 1
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Then exchanging the second with the forth row yields:

→


1 3 5 2 0
0 2 2 −2 1
0 2 7 3 −1
0 0 −5 −5 2


Now we can substract the second row once from the third and then in the next step
we add the third row to the last and we optain:

→


1 3 5 2 0
0 2 2 −2 1
0 0 5 5 −2
0 0 −5 −5 2

 →


1 3 5 2 0
0 2 2 −2 1
0 0 5 5 −2
0 0 0 0 0


Now subtracting the 3/2-time of the second row to the �rst row and subtracting
the 2/5-th of the third row to the second row yields

→


1 0 2 5 −3/2
0 2 0 −4 9/5
0 0 5 5 −2
0 0 0 0 0


Next we substract the 2/5-th of the third row to the �rst and then in the last step
we multiply the second row by 1/2 and the third row by 1/5. We get

→


1 0 0 3 −7/10
0 2 0 −4 9/5
0 0 5 5 −2
0 0 0 0 0

 →


1 0 0 3 −7/10
0 1 0 −2 9/10
0 0 1 1 −2/5
0 0 0 0 0


Thus we have optained �nally the form (21), and this by the way without the need
of column transformations. This concludes the example.

Note that if one does not exchange columns than it is still possible to transform
any p× q-matrix into a matrix of the following form.

0 . . . 0 d1,j1

0 . . . . . . 0 . . . 0 d2,j2 ∗ ∗
0 . . . . . . . . . . . . . . . 0 . . . d3,j3
...
0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 dr,jr

0 0


(22)

where 1 ≤ j1 < j2 < . . . < jr ≤ q and the di,ji 6= 0 for 1 ≤ i ≤ r. In particular it is
possible to have all di,ji = 1 by using elementary row transformations of type III.

Now if one applies Proposition 1.5 and the forth following considertations to
the simple coe�cient matrix C of a general system of linear equations (6), then we
see that we can transform this matrix into a matrix of the form (17) or (20) or (21)
or (22) (with 0 ≤ r ≤ m,n) and this only by row transformations of type I, II
or III and column exchanges (in the �rst three cases). If one applies the same row
transformations to the extended coe�cient matrix (15) and translates the result to
the language of systems of linear equations, then one gets the following result.
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Proposition 1.6. Using elementary transformations of type I, II or III and af-
ter renaming the variables one can always transform an arbitrary system of linear
equations (6) into an equivalent one of the form

x1 + d1,r+1xr+1 + . . .+ d1,nxn = b′1

x2 + d2,r+1xr+1 + . . .+ d2,nxn = b′2

. . .
...

...
...

xr + d1,r+1xr+1 + . . .+ d1,nxn = b′r

0 = b′r+1

...
...

0 = b′m

(23)

with 0 ≤ r ≤ m,n. In case the initial system of linear equations (6) is homogeneous
then also the transformed system of linear equations (23) is homogeneous, that is
the b′i = 0 for all 1 ≤ i ≤ m and in this case one can leave away the m − r last
equations of system (23). �

As an immediate consequence of this proposition we get the following two
results.

Proposition 1.7. A homogenous system of linear equations with n > m unknown
variables (that is more unknown variables then equations) has always non-trivial
solutions.

Proof. We may assume without any loss of generality that the system of linear
equations is already given in the form (23). Then r ≤ m < n. Let xr+1, . . . , xn be
arbitrary numbers with at least one number di�erent from zero. Then set

xi := −di,r+1xr+1 − . . .− di,nxn
for 1 ≤ i ≤ r. Then the n-tuple x is by construction a non-trivial solution of the
system (23). �

Proposition 1.8. Assume that we have a nonhomogeneous system of linear equa-
tions (6) with as many unknown variables as equations (that is m = n). If the
homogeneous part of the system of linear equations has only the trivial solution
then the system (6) has a unique solution.

Proof. Since the homogeneous part of the system of linear equations is as-
sumed to have only the trivial solution it means that we can transform the system
of linear equations (6) with elementary row transformations of type I, II and III
into a system of linear equations of the following form (after possible renaming of
the unknown variables):

x1 = b′1

x2 = b′2

. . .
...

xn = b′n

Now this system of linear equations has clearly only a unique solution and since it
is equivalent with the given system of linear equations (6) it follows that also the
system of linear equations (6) has only a unique solution. �
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4. Methodes for Solving Homogeneous and Nonhomogeneous Systems
of Linear Equations

In the last section we have introduced in connection with systems of linear
equations the methode of elementary transformations of matrices. We used this
methodes to develope the so called Gauss algorithm to solve systems of linear
equations. In addition to this we could gain some theoretical insight into systems of
linear equations, see Proposition 1.7 and 1.8. We shall summarize the calculation
methodes for systems of linear equations. Proposition 1.2 and Proposition 1.3
suggest that is usefull to �rst study homogeneous systems of linear equations.

4.1. Methodes for Solving Homogeneous Systems of Linear Equa-
tions. Consider the homogeneous system of linear equations

a11x1 + a12x2 + · · ·+ a1nxn = 0
a21x1 + a22x2 + · · ·+ a2nxn = 0

...
...

...
...

am1x1 + am2x2 + · · ·+ amnxn = 0

(24)

Let us denote by A the (simple) coe�cient matrix of (24)

A := (aij). (25)

Using elementary row transformations of type I, II and III together with exchanging
columns we can transform the matrix A into the m× n-matrix D of the form (21).
That is we have then

D =
(
Ir B
0 0

)
(26)

where Ir is the r×r-identity matrix, B is a certain r× (n−r)-matrix and the zeros
stand for zero matrices of the appropriate format. Therefore is the system (24) is
equivalent (after possible renaming of the unknown variables) to the system

x1 + b1,1xr+1 + . . .+ b1,n−rxn = 0
x2 + b2,1xr+1 + . . .+ b2,n−rxn = 0

. . .
...

...
...

xr + b1,1xr+1 + . . .+ b1,n−rxn = 0

(27)

If n = r, then it is evident that this system has only the trivial solution 0. Thus
we may assume that n > r. From (27) we see that if we choose arbitrary numbers
xr+1, . . . , xn and if we then set the numbers x1, . . . , xr according to (27) to

xi := −bi,1xr+1 − bi,2xr+2 − . . .− bi,n−rxn (28)

for i = 1, 2, . . . , r, then

x :=



x1

...
xr
xr+1

...
xn


(29)

is a solution of (27). Thus we see from this the following result.
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Proposition 1.9. In the case n > r let l1, l2, . . . , ln−r be the colums of the matrix(
−B
In−r

)
(30)

where B is the matrix from (26), that is

l1 :=



−b1,1
−b2,1
...
−br,1

1
0
...
...
0


, l2 :=



−b1,2
−b2,2
...
−br,2

0
1
0
...
0


, . . . , ln−r :=



−b1,n−r
−b2,n−r

...
−br,n−r

0
...
...
0
1


(31)

Then the following is true: every solution of (27) can be written in an unique way
as

x = t1l1 + t2l2 + . . .+ tn−rln−r (32)

whith certain numbers t1, t2, . . . , tn−r. On the other hand the expression (32) is for
any numbers t1, t2, . . . , tn−r a solution of (27).

Proof. Assume that x as in (29) is a solution of (27). Set

t1 := xr+1, t2 := xr+2, . . . , tn−r := xn. (33)

Since x is a solution of (27) we have the relations (28). But these state together
with (33) nothing else but the relation between n-tuples as in (32).

Assume now on the other hand, that the n-tuple x in (29) can be written in the
form (32). Then necessarily the relation (33) and (28) are satis�ed. From the later
it follows that x is a sollution of (27), the other relations states the uniqueness of
the expression (32). �

Now Proposition 1.9 gives a very satisfying description of the subspace M0 of
all solutions of a homogeneous system of linear equations. If M0 6= {0} then there
exists elements l1, . . . , ln−r ∈ M0 such that every element of M0 can be written in
a unique way as a linear combination of the form (32). Such a system of elements
l1, . . . , ln−r of M0 is occasionally named a system of fundamental solutions. A set
{l1, . . . , ln−r} which is made up of the elements of a system of fundamental solutions
is also called a basis of M0.

Example. Consider the following homogeneous system of linear equations

x1 + 2x2 + x3 + x4 + x5 = 0
−x1 − 2x2 − 2x3 + 2x4 + x5 = 0
2x1 − 4x2 + 3x3 − x4 = 0
x1 + 2x2 + 2x3 − 2x4 − x5 = 0

(34)

with 4 equations in 5 unknown variables. Using elementary transformations its
coe�cient matrix transforms into the form (26) as follows.

1 2 1 1 1
−1 −2 −2 2 1

2 −4 3 −1 0
1 2 2 −2 −1

 →


1 2 1 1 1
0 0 −1 3 2
0 0 1 −3 −2
0 0 1 −3 −2

 →
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1 1 2 1 1
0 −1 0 3 2
0 1 0 −3 −2
0 1 0 −3 −2

 →


1 1 2 1 1
0 −1 0 3 2
0 0 0 0 0
0 0 0 0 0

 →


1 0 2 4 3
0 −1 0 3 2
0 0 0 0 0
0 0 0 0 0

 →


1 0 2 4 3
0 1 0 −3 −2
0 0 0 0 0
0 0 0 0 0


Note that the third matrix is derived from the second one by exchanging the second
and third column. If one takes this column exchange into account when applying
Proposition 1.9 then one optains the following system

l1 :=


−2
1
0
0
0

 , l2 :=


−4
0
3
1
0

 , l3 :=


−3
0
2
0
1


of fundamental solutions for the homogeneous system of linear equations (34). This
concludes the example.

4.2. Methodes for Solving Nonhomogeneous Systems of Linear Equa-
tions. We begin with a nonhomogeneous system of linear equations as in (6). Using
elementary row transformation of type I, II and III and possible column exchanges
we can bring the simple coe�cient matrix of (6) into the form (26). Then one
performs the same row transformations on the extended coe�cient matrix of (6).
As the last column one obtains  b′1

...
b′m

 .

Thus the system of linear equations (6) � after possible renaming of the unknown
variables � is equivalent to the following system of linear equations:

x1 + b1,1xr+1 + . . .+ b1,n−rxn = b′1

x2 + b2,1xr+1 + . . .+ b2,n−rxn = b′2

. . .
...

...
...

xr + b1,1xr+1 + . . .+ b1,n−rxn = b′r

0 = b′r+1

...
...

0 = b′m

(35)

Now this system of linear equations is exactly then solveable (and therefore
also the system (6)) if

b′r+1 = b′r+2 = . . . = b′m = 0
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holds.4 In this case one can set xr+1 = . . . = xn = 0 and one sees that the specaial
n-tuple

x′ :=



b′1
...
b′r
0
...
0


is a sollution to (35). We have then for the set of all sollutions M of (6) that

M = x′ +M0

where M0 is the solution space of the homogeneous system of linear equations
associated with (6). Thus we have due to Proposition 1.9 the following result.

Proposition 1.10. Assume that the nonhomogeneous system of linear equations (6)
is solveable and that x′ is some solution of (6). If {l1, . . . , ln−r} is a basis of the
subspace M0 of all solutions of the hogogeneous system of linear equations associ-
ated with (6), then any solution x of (6) can be written in a unique way in the
form

x = x′ + t1l1 + . . .+ tn−rln−r

whith numbers t1, . . . , tn−r. And vice versa, any such expression is a solution of (6).
�

Example. We consider the following system of linear equations:

x1 + 3x2 + 5x3 + 2x4 = 1
3x1 + 9x2 + 10x3 + x4 + 2x5 = 0

2x2 + 7x3 + 3x4 − x5 = 3
2x1 + 8x2 + 12x3 + 2x4 + x5 = 1

(36)

In the example on page 10 we have already considered the simple coe�cient matrix
of this system of linear equations. We perform now the same row transformations
on the extended coe�cient matrix and obtain:

1 3 5 2 0 1
3 9 10 1 2 0
0 2 7 3 −1 3
2 8 12 2 1 1

 →


1 3 5 2 0 1
0 2 2 −2 1 −1
0 0 5 5 −2 4
0 0 0 0 0 1


Thus we see already at this stage that the system of linear equations (36) is not
solveable: the last row of this extended coe�cient matrix transforms into the equa-
tion 0 = 1. This concludes our example.

Note that the above example shows that a nonhomogeneous system of linear
equations with more equations than unknown variables is not always solveable (even
though one might not see this on the �rst sight).

5. Two Problems

In the discussion so far we optained knowledge about the theory of solving
systems of linear equations which one can describe as satisfying. After we gained
insight in the general form of the solutions (Proposition 1.2 and Proposition 1.3)
we have seen that using the Gauss algorithim we have a simple way to determine
whether a given system of linear equations (6) is solveable or not. Further we have

4Note that in the case r = m the system (6) is always solveable!
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seen in the previous section that the Gauss algorithm is a useable tool to obtain all
sollutions of a solveable system of linear equations.

But on the other hand our studies give inevitable raise to some theoretical ques-
tions which we want to point out at this place: As we have seen we can transform
any matrix C using elementary row transformations and possible column exchanges
into a matrix of the form (21). Now we might ask about the nature of the num-
ber r which appeares in this setting, namely does this number r only depend on
the initial matrix C. That is, do we get every time the same number r even if we
use di�erent sequences of elementary row transformations and column exchanges
to achive the general form (21). Let us write down this problem explicitely.

Problem 1. Is it possible to assign every matrix C in a natural way a number r ≥ 0
such that this number does not change under an elementary row transformation
and under a column exchange and such that a matrix of the form (21) is assigned
exactly the number r?

The other question concerns the set of sollutions of a homogeneous system of
linear equations. We have seen that the set M0 of all solutions to a homogeneous
system of linear equations (9) is always a subspace of the set of all possible n-
tuples Fn. This suggest the following opposing question:

Problem 2. Exist for every subspace U of Fn a homogeneous system of linear
equations (9) such that the set of solutions of (9) is exactly U?

It will now come with no surprise that if we want to �nd an answer to the above
problems then we need to extend our theoretical horizont. In the next chapter we
will introduce in a systematically way the basic concepts of Linear Algebra, which
we have already prepared in this chapter. Towards the end of next the next chapter
we will be able to answer these problems.5

5Problem 1 will be answered on page 45 and Problem 2 will be answered on page 49.





CHAPTER 2

Vector Spaces

1. Fields

In the previous chapter we have constantly spoken of �numbers� without saying
anything in particular what kind of numbers we actually deal with. We did not
use any particular properties of the numbers but rather only assumed some �well
known properties� of the addition and multiplication of numbers as we know them
for example from the real numbers R (which are known from calculus). Indeed,
most of Linear Algebra � as for example the the treatment of systems of linear
equations � does not depend on any particular properties of the numbers used.

In this section we shall introduce the concept of �elds. In a nutshell a �eld F
is a set together with two operations � one is called the addition and denoted by
�+� and the other is called the multiplication and denoted by � · � � satisfying a
minimum of axioms which will be important for us.1

De�nition 2.1. A �eld F = (F,+, · ) is a triple consisting of a set F and two
maps

+ : F × F → F, (x, y) 7→ x+ y

and

· : F × F → F, (x, y) 7→ xy

(the �rst one called addition, the latter is called multiplication) satisfying the fol-
lowing axioms:

(A1) The addition is associative, that is x + (y + z) = (x + y) + z for every
x, y, z ∈ F .

(A2) The addition is commutative, that is x+ y = y + x for every x, y ∈ F .
(A3) There exist exactly one element � which we denote by �0� � for which

x+ 0 = x and 0 + x = x

holds for every x ∈ F . This element is also called the zero of F .
(A4) For every x ∈ F there exists exactly one element in F � which we will

denote by −x � such that

x+ (−x) = 0 and (−x) + x = 0.

(M1) The multiplication is associative, that is x(yz) = (xy)z for every x, y, z ∈
F .

(M2) The multiplication is commutative, that is xy = yx for every x, y ∈ F .
(M3) There exist exactly one element di�erent from 0 � which we shall denote

by �1� � for which

x1 = x and 1x = x

holds for every x ∈ F . This element is called the one of F .

1See Appendix A for the notation used for sets and maps.

19
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(M4) For every x 6= 0 of F there exists exactly one element in F � which we
shall denote by �1/x� (or alternatively denoted by �x−1�) � such that

x(1/x) = 1 and (1/x)x = 1.

(D) The addition and multiplication are bound by the distributive law, that is

(x+ y)z = xz + yz and x(y + z) = xy + xz

for every x, y, z ∈ F .

Note that we could do with a smaller list of requirements. For example since
the addition is required to be commutative (A2) it follows from x + 0 = x that
necessarily 0 + x = x, too. Also the uniqueness requirements in (A3), (A4), (M3)
and (M4) could have been left away.

Note further that in the language of Algebra the axioms (A1) to (A4) mean,
that F is an abelian group under the addition, and the axioms (M1) to (M4) mean
that F • := F \ {0} is an abelian group under the multiplication. This terminology
is not of further importance here, but it will reappear Section 11 of Chapter 3.
There we will give a more detailed de�nition.

From the �eld axioms one can easily other known calculation rules, for example

x0 = 0 (37)

(−x)y = −(xy) (38)

xy = 0 ⇒ x = 0 or y = 0 (39)

x/y + u/v = (xv + yu)/yv for y 6= 0 and v 6= 0 (40)

where x/y := x(1/y) = xy−1. The proof of these calculation rules are left as an
exercise.

Examples. Well known examples of �elds are:

(1) The �eld of rational numbers

Q :=
{r
s

: r ∈ Z and s ∈ N+
}
.

(2) The �eld of real numbers R.
(3) The �eld of complex numbers

C := {a+ ib : a, b ∈ R}

where i denotes the imaginary unit.

If F is a �eld and F ′ ⊂ F is a subset such that F ′ is a �eld under the same
addition and multiplication as F , then F ′ is said to be a sub�eld of F . For example

Q(
√

3) := {x+ y
√

3 : x, y ∈ Q}

is a sub�eld of R.
Let F be an arbitrary �eld. If x ∈ F and k > 0 a positive integer, then we

shall de�ne

kx := x+ . . .+ x︸ ︷︷ ︸
k times

.

If k = 0 we de�ne kx := 0 and in the case that k < 0 is a negative integer we de�ne
kx := −(−k)x.
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Now observe that the �eld axioms do not exclude the possibility that for the
�eld F holds

k · 1 6= 0 (41)

for every integer k 6= 0.2 If F is a �eld where k · 1 = 0 is true for some integer
k > 0 then we say that F has positive characteristic. More precisely we de�ne the
chararteristic of a �eld as follows.

De�nition 2.2 (Characteristic of a Field). Let F be a �eld. If there exists a
smallest positive integer k > 0 such that

k · 1 = 0

then we say that F has the characteristic k, in symbols char(F ) := k. Otherwise
we say that F has the characteristic 0, that is char(F ) := 0.

Most of the time the characteristic of a �eld does not a�ect the results in what
follows. It is still important to remember that as long as a �eld does not have
characteristic 0 we cannot be sure that k · x 6= 0 is always true for non-zero x ∈ F
and non-zero k ∈ Z. In Appendix B examples for �leds with positive characteristic
are presented.

We shall conclude this section about �elds with a related de�nition. In Lin-
ear Algebra (and other �elds of mathematics) one encounters mathematical ob-
jects which satisfy nearly all requirements of a �eld. For example the set of in-
tegers Z with the well known addition and multiplication satis�es all �eld axioms
except (M4). In Chapter 3 we will encounter mathematical objects which satisfy
even less of the �led axioms, namely all �eld axioms except (M2) and (M4).3 This
observation motivates the following de�nition.

De�nition 2.3 (Ring). A ring (with unit) is a triple R = (R,+, · ) satisfying all
�eld axioms except (M2) and (M4). If R is a ring which satis�es (M2) then R is
said to be commutativ . A ring which satis�es (39) is called regular.

Example. The set of integers

Z := {0,±1,±2,±3, . . .}
is a commutative and regular ring under the usual addition and multiplication. It
is called the ring of integers.

2. Vector Spaces

We are now ready to de�ne the central algebraic object of Linear Algebra:
vector spaces over a �eld F . Roughly spoken a vector space over a �eld F is a set
V where we can compute the sum of any two elements and where we can multiply
any element by elements of the F such that certain �natural rules� are satis�ed.
The precise de�nition of a vector space is the following.

De�nition 2.4 (Vector Space). Let F be a �eld. A vector space over the �eld F
(or in short F -vector space) is a triple V = (V,+, · ) consisting of a set V and two
maps

+: V × V → V, (x, y) 7→ x+ y

2Note that this does not contradict with (39) since there we assumed that x, y ∈ F whereas
in (41) we have k ∈ Z and 1 ∈ F . We are used to that we can consider the integers Z as a subset
of the �eld of rational, real or complex numbers. But in general we cannot assume that we can
consider the integers as a subset of an arbitrary �eld.

3Amongst other these are the endomorphism ring EndF (V ) and the full matrix ring Mn(F )
of degree n over F .
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and

· : F × V → V, (a, x) 7→ ax

(the �rst one is called addition, the latter is called scalar multiplication) satisfying
the following vector space axioms:

(A1) The addition is associative, that is x + (y + z) = (x + y) + z for all
x, y, z ∈ V .

(A2) The addition is commutative, that is x+ y = y + x for every x, y ∈ V .
(A3) There exists exactly one element in V � denoted by �0� � such that

x+ 0 = x

for every x ∈ V .
(A4) For every x ∈ V there exists exactly one element � denoted by �−x� �

such that

x+ (−x) = 0.
(SM1) (ab)x = a(bx) for every a, b ∈ F and x ∈ V .
(SM2) 1x = x for every x ∈ V .
(SM3) a(x+ y) = ax+ ay for every a ∈ F and x, y ∈ V .
(SM4) (a+ b)x = ax+ bx for every a, b ∈ F and x ∈ V .

Note that the above axioms (A1) to (A4) are structural exactly the same as the
axioms (A1) to (A4) in De�nition 2.1 of a �eld in the previous section. Again this
means in the language of Algebra that V together with the addition is an abelian
group.

Elements of the vector space V are called vectors. Note that we use the same
symbol �0� to denote the zero of the �eld F and to denote the identity element of
the addition in V . The identity elemnt of the addition in V is also called the zero
vector. A vector space is sometimes also called a linear space.

From the vector space axioms follow esaily further calculation rules, for example

0x = 0 and a0 = 0 (42)

(−a)x = −ax = a(−x) and in particular (−1)x = −x (43)

ax = 0 ⇒ a = 0 or x = 0 (44)

a(x− y) = ax− ay (45)

where a ∈ F , x, y ∈ V and x − y := x + (−y). The veri�cation of these rules is
left as an exercise. Note that the calculation rule (42) ensures that the use of the
symbol �0� for both the zero element of the �eld F and the zero vector of the vector
space V will not cause confusion.

Examples. (1) In the previous chapter we have already introduced the set
Fn all n-tuples

x =


x1

x2

...
xn

 , xi ∈ F

of a given �eld F . Together with the component wise addition and the
scalar multiplication as de�ned in Section 2 of the previous chapter this
set becomes a F -vector space.

(2) Consider the set C0(I) of all continuous maps f : I → R from the interval
I ⊂ R with values in R. This set becomes in a natural way a R vector
space.
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(3) Let V be a vector space over the the �eld F . Then V is also a vector
space over any sub�eld F ′ ⊂ F .

(4) Let E be a �eld and F a sub�eld of E. Then E is in a natural way a vector
space over F . For example the �eld of real numbers R is in a natural way
a Q-vector space.

(5) As a generalisation of the �rst example consider an arbitrary set I. Then
F I is de�ned to be the set of all maps from the set I into the �eld F , that
is

F I := {f : f is a map from I to F}.
The set F I becomes in a natural way an F -vector space: If x and y are
elements of F I , that is x: I → F and y: I → F are maps, then the sum
of x and y is the map x+ y: I → K de�ned by

(x+ y)(i) := x(i) + y(i), i ∈ I, (46)

and the scalar product of x with an element a ∈ F is the map ax: I → F
de�ned by

(ax)(i) := ax(i). (47)

In particular, if we set I := {1, 2, . . . , n} then F I is essentialy the same
vector space as Fn in the �rst example.4

De�nition 2.5. (Subspace of a Vector Space) Let V be a vector space over the
�eld F and let V ′ ⊂ V be a subset. If V ′ is a vector space under the addition and
scalar multiplication of V , then V ′ is called a (linear) subspace of V .

Proposition 2.6. (Subspace Criterion) A non-empty subset U ⊂ V of a F -vector
space V is a linear subspace of V if and only if the following two conditions are
satis�ed:

x, y ∈ U ⇒ x+ y ∈ U (48)

a ∈ F, x ∈ U ⇒ ax ∈ U (49)

Proof. If U is a subspace of V , then of course (48) and (49) are satis�ed. Thus
assume that U is a non-empty subset of V satisfying the conditons (48) and (49).
We need only to verify the vector space axioms (A3) and (A4). Let x ∈ U . Then
−x = (−1)x ∈ U by (43) and (49). Thus (A4) is satis�ed. Now since U is assumed
to be not empty it follows that there exists an x ∈ U . Thus also −x ∈ U due
to (A4) and therefore 0 = x+ (−x) ∈ U due to (48). �

Note the essential (!) di�erence between the de�nition of a linear subspace
(De�nition 2.5) and the Subspace Criterion (Proposition 2.6). The �rst one de-
�nes what a linear subspace is, the latter gives a criterion to decide more easily
whether a subset U ⊂ V of a vector space V is a linear subspace (according to the
De�nition 2.5) or not.

Examples. (1) Every vector space V has the trivial subspace {0} ⊂ V . A
vector space which consists only of the zero vector 0 is also called the zero
space. By abuse of notation we denote the zero space with the symbol �0�,
that is 0 := {0}. Again there is no danger of confusion of the zero space
with the zero element of the �eld F or with the zero vector of the vector
space V if the reader is awake.

4We will later de�ne precisely what we mean exactly by the term �essentialy the same� when
we introduce in Section 2 in the next chapter the concept of isomorphisms and isomorphic vector
spaces.
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(2) The set of solutions M0 of a homogeneous system of linear equations (9)
is a subspace of Fn (see Proposition 1.3 in the previous chapter).

(3) The R-vector space C0(I) is a subspace of RI .
(4) Let I be an arbitrary set and consider the F -vector space F I from the

previous example set. Denote by F (I) the subset of F I consisting of all
functions f : I → F such that

f(x) = 0 for all x ∈ I but �nite many exceptions.

Then F (I) is a linear subspace of F I and F (I) 6= F I if and only if I is not
a �nite set.

Note that the vector spaces of the form F (I) are of principal impor-
tance. Every F -vector space is of the type F (I) for a suitable set I.5 This
is the fundamental theorem of the theory of vector spaces and we will later
return to this subject.

If U and W are two subsets of a vector space V , then we denote by U +W the
sum of U and W the set

U +W := {u+ w : u ∈ U and w ∈W}.

Proposition 2.7. Let V be a vector space over F and let U and W be two linear
subspaces of V . Then both the intersection U ∩W and the sum U +W are linear
subspaces of V .

Proof. This is veri�ed directly using the Subspace Criterion from Proposi-
tion 2.6. �

3. Linear Combinations and Basis of a Vector Space

De�nition 2.8 (Linear Combination). Let V be a F -vector space and u1, . . . , um
some vectors of V . Then we say that v ∈ V is a linear combination of the vectors
u1, . . . , um if there exists elements a1, . . . , am ∈ F such that

v = a1u1 + . . .+ amum. (50)

If M 6= ∅ is an arbitrary subset of V , then we say that v ∈ V is a linear
combination of vectors in M if there exists some vectors u1, . . . , um ∈M such that
v is a linear combination of u1, . . . , um.

Note that a linear combination is always a �nite sum! In Linear Algebra we
do not consider in�nite sums. Note also that the zero vector 0 is always in a trival
way a linear combination of any collection u1, . . . , um, namely

0 = 0u1 + . . .+ 0um.

De�nition 2.9. Let M be an arbitrary subset of the F -vector space V . Then the
linear hull or span of M in V is the set

spanM := {v ∈ V : v is a linear combination of vectors in M}. (51)

If M = ∅ we de�ne
span ∅ := {0} (52)

to be the trivial zero vector space 0.

5If one considers F (I) for I = ∅ to be the null vector space 0.
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In the case that M 6= ∅ then v ∈ spanM means that there exists some
u1, . . . , um such that v can be expressed as a sum as in (50). If the ui are not
pairwise di�erent vectors, then we can always transform the linear combination
into one with pairwise di�erent vectors ui ∈M .

Using the vector space F (M) we can characterize the elements v ∈ spanM in
the following way.

Proposition 2.10. Let M be a non-empty subset of the F -vector space V . Then
v ∈ V is an element of spanM if and only if there exists a x ∈ F (M) such that

v =
∑′

u∈M
x(u)u. (53)

Here the symbol
∑′

is used to denote that the sum in (53) is actual a �nite
sum (even though the set M might be in�nite).

Proof of Proposition 2.10. �⇒�: Assume that v is a vector of spanM .
Then there exists vectors u1, . . . um ∈ M and elements a1, . . . , am ∈ F such that
v = a1u1 + . . .+ amum. Then de�ne a map x: M → F by

x(u) :=

{
ai if u = ui for some 1 ≤ i ≤ m,

0 otherwise.

Then we have by construction x ∈ F (M) and∑′

u∈M
x(u)u = x(u1)u1 + . . .+ x(un)un = a1u1 + . . .+ anun = v.

�⇐�: On the other hand, if there exists a x ∈ F (M) such that (53), then v is
clearly a linear combination of some vectors of M , that is v ∈ spanM . �

Note that the notation in (53) is a very practical notation. If now x, x′ ∈ F (M)

and a ∈ F , then we have the following equations∑′

u∈M
x(u)u+

∑′

u∈M
x′(u)u =

∑′

u∈M
(x+ x′)(u)u (54)

and

a
∑′

u∈M
x(u)u =

∑′

u∈M
(ax)(u)u (55)

due to the de�nition of the addition and scalar multiplication in (46) and (47)
for vectors of the vector space FM and thus also for vectors of the vector space
F (M). Now using Proposition 2.10 the above two equations translate into the two
observations:

v, v′ ∈ spanM ⇒ v + v′ ∈ spanM

and

v ∈ spanM,a ∈ F ⇒ av ∈ spanM.

Since spanM is always non-empty (it contains the zero vector) we conclude using
the Subspace Criterion 2.6 the following result.

Proposition 2.11. Let M be an arbitrary subset of the F -vector space V . Then
spanM is linear subspace of V . �
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If M is an arbitrary subset of V . We claim that M ⊂ spanM . In the case
that M = ∅ this is clear. Thus let M 6= ∅. If v ∈ M then v = 1v ∈ spanM
and thus M ⊂ spanM also in this case. On the other hand, if W is an arbitrary
linear subspace of V with M ⊂ W , then clearly spanM ⊂ W . Let U be another
linear subspace which has the above property of spanM , that is M ⊂ U and U is
containied in any linear subspace W which contains M . Then U ⊂ spanM and on
the other hand also spanM ⊂ U . That is, U = spanM . Thus we have shown the
following usefull characterisation of the linear hull spanM of M .

Proposition 2.12. Let M be a subset of the vector space V . Then there exists a
unique linear subspace U of V such that M ⊂ U and having the property that

if W is a linear subspace of V with M ⊂W also then U ⊂W . (56)

And we have precisely U = spanM . �

In short the above result means that the linear hull ofM is precisely the smalles
linear subspace of V containing M .

We shall collect a few easy to verify properties of the linear hull:

M ⊂ spanM (57)

M ⊂M ′ ⇒ spanM ⊂ spanM ′ (58)

M = spanM ⇐⇒ M is a linear subspace of V (59)

span(spanM) = spanM (60)

span(M ∪M ′) = spanM + spanM ′ (61)

The �rst property we have already veri�ed above, the proof of the remaining prop-
erties is left as an exercise.

Examples. (1) Let V := C0(R) be the R-vector space of all continuous func-
tions f : R → R. Then the functions exp, sin and cos are vectors of the
vector space V . We shall show that exp is not contained in the linear
hull of M := {sin, cos}. We show this by assuming towards a contradic-
tion that exp ∈ span{sin, cos}. By de�nition this means that there exists
numbers a1, a2 ∈ R such that exp = a1 sin +a2 cos. In other words this
means

exp(x) = a1 sin(x) + a2 cos(x) for all x ∈ R.

But this would imply that 0 < exp(0) = a1 sin(0)+a2 cos(0) = 0+a2 = a2

and on the other hand 0 < exp(π) = a1 sin(π)+a2 cos(π) = 0−a2 = −a2,
that is a2 > 0 and at the same time a2 < 0 which is a contradiction. Thus
the assumption that exp is a linear combination of the functions sin and
cos is shown to be wrong and it follows that

exp /∈ span{sin, cos}.

(2) Recall the setting and notation of the frist chapter. Consider a system of
m linear equations with n unknown variables over a �eld F . Denote by
v1, . . . , vn ∈ Fm the columns of the simple coe�cient matrix associated
with the system of linear equations. Then the system of linear equations
is apparently solveable if and only if

b ∈ span{v1, . . . , vn}

where b denotes the right most column of the extended coe�cient associ-
ated with the system of linear equations.
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Moreover the associated homogeneous system of linear equations has
a non-trivial solution if and only if the zero vector 0 ∈ Fm is a non-trivial
linear combination of the vectors v1, . . . , vn.

The meaning of 0 being a non-trivial linear combination of the vectors v1, . . . , vn
in the above example is given by the following de�nition.

De�nition 2.13. Let v1, . . . , vn be some (not necessarily pairwise distinct) vectors
of the F -vector space V . Then 0 is a non-trivial linear combination of the vectors
v1, . . . , vn if there exist elements a1, . . . , an ∈ F such that

a1v1 + . . .+ anvn = 0

and ai 6= 0 for at least one 1 ≤ i ≤ n.

Note that the above de�nition is of essential importance! This is already sug-
gested by the close relation with homogeneous systems of linear equations which
did lead to the de�nition.

Example. Consider the R-vector space V = R4. Then 0 is a non-trivial linear
combination of the three vectors

v1 :=


−1
−1
3
4

 , v2 :=


4
10
3
5

 and v3 :=


3
7
1
2

 .

For example v1 − 2v2 + 3v3 = 0.

We shall introduce one more essential concept:

De�nition 2.14 (Basis of a Vector Space). A subset M ⊂ V of a vector space V
is said to be a basis of V , if every vector v ∈ V can be written in a unique way as
a linear combination of vectors of M .

We say that a basisM is �nite if the setM contains only �nitely many elements.

The above de�nition is equivalent with: M is a basis of V if and only if for
every v ∈ V there exists exactly one x ∈ F (M) such that

v =
∑′

u∈M
x(u)u (62)

Note that the above de�nition of a basis contains two properties:

(1) We have that V = spanM . That is every vector v ∈ V can be written as
a linear combination of vectors of M .

(2) For every vector there exists only one way to write v as in (62) as a linear
combination of the vectors in M . That is if x, y ∈ F (M) are two elements
such that

v =
∑′

u∈M
x(u)u =

∑′

u∈M
y(u)u

then necessarily x = y, that is x(u) = y(u) for every u ∈M .

Examples. (1) A �nite subset M ⊂ V which consist of n elements, say

M = {u1, . . . , un},
is precisely then a basis of the F -vector space V if for ever vector v ∈ V
there exists a unique solution to the system of linear equations

x1u1 + . . .+ xnun = v. (63)
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In the previous chapter we have seen that the uniqueness requirement is
equivalent with the homogeneous part of (63),

x1u1 + . . .+ xnun = 0

having only the trivial solution (Proposition 1.8). And this is again equiv-
alent with that there exists no non-trivial linear combination of the zero
vector 0.

Thus a �nite subset M is a basis of V if and only if V = spanM
and there exists no non-trivial linear combination of the zero vector 0 by
vectors of M .

(2) Consider the vector space V = F 2. Then every subset{(
a
b

)
,

(
c
d

)}
⊂ V (64)

where ad− bc 6= 0 is a basis of V .
(3) Consider the vector space Fn. Then the set consisting of the canonical

unit vectors

e1 :=



1
0
...
...
0

 , e2 :=


0
1
0
...
0

 , . . . , en :=



0
...
...
0
1

 (65)

forms a basis of Fn, the standard basis of Fn. The proof is left as an
exercise.

(4) More general, if I is an arbitrary non-empty set, then the elements ei ∈
F (I) de�ned by

ei(j) :=

{
0 for j 6= i,

1 for j = i.
(66)

for every i ∈ I is a basis of the vector space F (I). This basis is called the
standard basis of F (I). It follows that

x =
∑′

i∈I
x(i)ei (67)

for every x ∈ F (I).
(5) Let V be a vector space which has a basis M 6= ∅, then V cannot be the

zero vector space {0}. Because otherwise 0 = 1u = 0u for some u ∈ M
and this would contradict to the uniqueness requirement in the de�nition
of a basis. This motivates the agreement that the empty set ∅ is the (only)
basis of the zero vector space.

4. Linear Dependence and Existence of a Basis

In this section we will study the question whether a given vector space will
have a basis or not. The outcome will be that every vector space has a basis.
Throughout this section V will be a vector space over a �xed �eld F .

De�nition 2.15. We say that V is generated (or spanned) by the subset M ⊂ V
if

V = spanM.

In this case M is called a (linear) generating system of V . We say that V is �nitely
generated if there exists a generating system M of V which consists of only �nite
many elements.
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Examples. (1) Every vector space V has a generating system since trivialy
V = spanV .

(2) The vector space Fn is �nitely generated. A �nite generating system is
for example given by the canonical standard basis

{e1, . . . , en}.

(3) The empty set is a generating system of the zero vector space.
(4) The vectors (

1
2

)
,

(
3
4

)
,

(
5
6

)
gives a generating system of R2, see the example (2) on page 28.

(5) The �ve vectors
1
3
0
2

 ,


3
9
2
8

 ,


5
10
7
12

 ,


2
1
3
2

 ,


0
2
−1
1


is not a generating system of the vector space R4, compare with the ex-
ample on page 10.

(6) If I is an in�nite set, then the vector space F (I) is not �nitely generated.
(7) The vector space C0(R) of all continuous functions from R to R is not

�nitely generated.

We are now interested in �small� generating systems in the sense that the
generating system does not contain any vectors which are not necesarily needed to
generate the vector space. This leads to the following de�nition.

De�nition 2.16 (Linear Dependence). A subset M ⊂ V of the vector space V is
said to be a linear independent subset of V if for every u ∈M the linear subspace
generated by M \ {u} is a proper subspace of spanM . That is, for every u ∈ M
holds

span(M \ {u}) 6= spanM.

A subsetM ⊂ V is said to be a linear dependent subset of V if it is not a linear
independent set of V .

Note that if M is a linear dependent subset of V then this means that there
exists at least one vector u ∈M such that span(M \ {u}) = spanM .

Examples. (1) The empty set ∅ is always a linear independent subset of V .
(2) IfM ⊂ V conatins the zero vector 0 thenM is always a linear depenedent

subset of V .
(3) The vectors (

1
2

)
,

(
3
4

)
,

(
5
6

)
form a linear dependent subset of R2 since any two of those vectors gen-
erate already R2.

(4) Assume that charF 6= 2 (that is 1 + 1 6= 0 in F ). And let u, v ∈ V be
two non-zero vectors of V . Then the set {u, u+ v, u− v} is always linear
dependent.

Lemma 2.17. Let M ⊂ V be a subset. Let v ∈ spanM such that v /∈ M . Then
M ∪ {v} is a linear dependent subset of V .
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Proof. Since M ⊂ M ∪ {v} we have that spanM ⊂ span(M ∪ {v}). On the
other hand, since v ∈ spanM we have that M ∪ {v} ⊂ spanM . But then also
span(M ∪ {v}) ⊂ span(spanM) = spanM . Thus we have the inclusion in both
directions and therefore spanM = span(M ∪{v}). Now since we assumed that v /∈
M we have (M ∪{v})\{v} = M . Therefore span((M ∪{v})\{v}) = span(M ∪{v})
and this shows that M ∪ {v} is a linear dependent subset of V . �

Proposition 2.18 (Characterisation of the Linear Dependency). A subset M ⊂ V
of a vector space V is linear depenedent if and only if there exists �nitely many pair-
wise distinct vectors v1, . . . , vm ∈M such that 0 is a non-trivial linear combination
of the vectors v1, . . . , vm.

Proof. �⇒�: Assume that M is a linear dependent subset of V . Then there
exists a v1 ∈ M such that spanM = span(M \ {v1}). Thus there exist pairwise
distinct vectors v2, . . . , vm ∈ M \ {v1} such that v1 = a2v2 + . . . + amvm for some
numbers a2, . . . , am ∈ F . But this means that

0 = 1v1 − a2v2 − . . .− amvm
is a non-trivial linear combinations of the zero vector 0 of pairwise distinct vectors
v1, . . . , vm.

�⇐�: Assume that there exists pairwise distinct vectors v1, . . . , vm ∈ M such
that the zero vector is a non-trivial linear combination of the these vectors, say

0 = a1v1 + . . .+ amvm

with some number ak 6= 0. Without any loss we may assume that a1 6= 0 and in
particular we may assume with out any loss of generality that a1 = −1. Then

v1 = a2v2 + . . .+ amvm ∈ span(M \ {v1}).

Thus M ⊂ span(M \ {v1}) and therefore spanM ⊂ span(M \ {v1}). On the other
hand span(M\{v1}) ⊂ spanM sinceM\{v1} ⊂M . Therefore we have the inclusion
in both directions and this shows that we have the equality spanM = span(M\{v1})
for v1 ∈M . Therefore M is a linear dependent subset of V . �

Now using the fact that a M is by de�nition a linear independent subset of V
if and only if M is not a linear dependent subset of V one can use the previous
proposition to formulate a characterisation of a linear indepenedent subset of V .

Proposition 2.19 (Characterisation of the Linear Independency). A subset M ⊂
V of the vector space V is a linear indepened subset of V if and only if for every
�nitely many, pairwise distinct vectors v1, . . . , vm ∈M it follows from

a1v1 + . . .+ amvm = 0

that a1 = . . . = am = 0. �

Note that the above proposition is often used in literature to de�ne linear inde-
pendence. Further it follows from the same proposition that if M ′ ⊂M is a subset
of a linear independent subset M of V , then M ′ is also a linearly indepenedent
subset of V .

De�nition 2.20. Let M ⊂ V be a linear indepenedent subset of V . Then we say
thatM is a maximal linear indepenedent subset ofM ′ ⊂ V if for every u ∈M ′ \M
the set M ∪ {u} is linear dependent.

In particular isM a maximal linear independent set of V if for every u ∈ V \M
the set is M ∪ {u} is linear dependent.
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Lemma 2.21. Let M ⊂ V be a linear independent subset of V .

(1) If v ∈ V is a vector such that M ∪ {v} is a linear depenendent set, then
v ∈ spanM .

(2) If M is a maximal linear independent subset of M ′ ⊂ V , then M ′ ⊂
spanM . (In particular spanM ′ = spanM .)

Proof. (1) Assume that M is linear independent and M ∪ {v} is linear
dependent. It follows from Proposition 2.18 that there exists �nitely many
pairwise distinct vectors v1, . . . , vm ∈ M and numbers a, a1, . . . , am ∈ F
(not all equal to zero) such that

av + a1v1 + . . .+ amvm = 0. (68)

If a = 0 then it follow by Proposition 2.18 that M is linear dependend,
but this is silly. Thus a 6= 0 and we can multibly (68) by a−1 and get

v = (−a1a
−1)v1 + . . .+ (−a1a

−1)vm.

Thus v ∈ spanM as claimed.
(2) Let u ∈ M ′ be an arbitrary element. If u ∈ M then clearly u ∈ spanM .

On the other hand, if u /∈ M , then M ∪ {u} is linear dependend (due
to the maximality of M) and thus by the previous result it follows that
u ∈ spanM , too. Alltogether this means that M ′ ⊂ spanM . �

We are now ready to characterize the property of a set M ⊂ V to be a basis of
the vector space V in several di�erent ways.

Proposition 2.22 (Characterisation of a Basis). Let M ⊂ V be a subset of the
F -vector space V . Then the following statements are equivalent:

(1) M is a basis of V .
(2) M is a minimal generating system of V .
(3) M generates V and M is linearly independent.
(4) M is a maximal linear independent subset of V .
(5) M is a maximal linear independent subset of every generating system E

of V which contains M .
(6) There exists a generating system E of V which contains M as a maximal

linear independent subset of E.
(7) There exists a bijective6 map f : F (M) → V such that:

(a) f(x + y) = f(x) + f(y) and f(ax) = af(x) for all x, y ∈ F (M) and
a ∈ F ,

(b) f(eu) = u for every u ∈ M were {eu : u ∈ M} is the standard basis

of F (M) as de�ned in the example on page 28.

Proof. We will follow the following deduction scheme in our proof:

(2)
m

(1) ⇔ (3) ⇒ (4)
m ⇑ ⇓

(7) (6) ⇐ (5)

�(2) ⇔ (3)�: That the statements (2) and (3) are equivalent follows straight
from the de�nition of the linear independence.

�(1) ⇒ (3)�: Assume that M is a basis of V . From the �rst property of a
basis it follows that V = spanM , that is V is generated by M . It remains to show

6For the notation of a bijective map see Appendix A.
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that M is linearly independent. Let us assume towards a contradiction that M is
not linearly independent. Then this means that there exists �nite many vectors
v1, . . . , vm ∈M and numbers a1, . . . , am ∈ F (not all equal to zero) such that

0 = a1v1 + . . .+ amvm.

On the other hand we can also express the zero vector in the following form:

0 = 0v1 + . . .+ 0vm.

But this contradicts to the property of a basis which says that by de�nition there
is only one unique way to write the zero vector as a linear combination of vectors
of M . Therefore our assumption that M is linearly dependent is shown to be false
and it follows that M is linearly independent.

�(3) ⇒ (4)�: We assume that (3) holds, that is M is a linearly independent
generating system of V . We have to show that for every v ∈ V which is not a vector
of M the set M ∪ {v} becomes linearly dependent. But since M is assumed to be
a generating system of V it follows that v ∈ spanM and thus M ∪ {v} is linearly
dependent by Lemma 2.17.

�(4) ⇒ (5)�: If M is a maximal linear independent subset of V then M is also
a maximal linear independent subset of any subset E ⊂ V which contains M .

�(5) ⇒ (6)�: Evident since V is a generating system of V containing M .

�(6) ⇒ (3)�: We assume (6). Since M is already assumed to be linearly inde-
pendent it remains to show that V = spanM . SinceM is a maximal linear indepen-
dent subset of E it follows from the second part of Lemma 2.21 that E ⊂ spanM .
In particular this means that spanE = spanM and since E is a generating system
of V we get that V = spanM .

�(3)⇒ (1)�: We assume that V = spanM (that isM satis�es the �rst property
of a basis) and that M is linearly independent. Thus we need to show that M
satisfy also the second property of a basis. Assume therefore that x, y ∈ F (M) are
two elements such that ∑′

u∈M
x(u)u =

∑′

u∈M
y(u)u.

Then ∑′

u∈M
(x(u)− y(u))u = 0

and sinceM is assumed to be linearly independent this means that x(u)−y(u) = 0
for every u ∈ M (Proposition 2.19). Thus x(u) = y(u) for every u ∈ M and this
means that x = y as required by the de�nition of a basis.

�(1) ⇒ (7)�: We de�ne a function f : F (M) → V by

f(x) :=
∑′

u∈M
x(u)u.

Then f is surjective due to the �rst property of a basis and injective due to the
second property of a basis. This means that f is a bijective map. Further f satis�es
the condition (a), see (54) and (55). Further we have by the de�nition of the map
f and of the elements ev, see (66), for every v ∈M that

f(ev) =
∑′

u∈M
ev(u)u = v

and thus also the condition (b) is satis�ed.
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�(7) ⇒ (1)�: Assume the condition (7) and let v ∈ V be an arbitrary vector.
Since f is surjective there exists a x ∈ F (M) such that f(x) = v. If one applies f
to the equation (67) one gets using the relations (54) and (55)

v = f(x) =
∑′

u∈M
f(x(u)eu) =

∑′

u∈M
x(u)f(eu) =

∑′

u∈M
x(u)u

and thus v ∈ spanM . This is the �rst property of a basis. From the injectivity of
f follows that also the second property of a basis is satis�ed. �

Now one very important result for Linear Algebra is the following theorem
about the existence of a basis for a vector space which we will state without a
proof.

Theorem 2.23 (Existence of a Basis). Every vector space V has a basis. �

The idea of the proof is roughly the following: Due to the characterisation of
a basis (Proposition 2.22) it is enough to show that every vector space V has a
maximal linear independent subset. The existence of such a set is proven using a
result from set theory, called Zorn's Lemma. For more details see the Appendix C.

Example. The �eld of real numbers R can be considered as a vector space over
the �eld of rational numbers Q. Then the above theorem states that there exists a
Q-linear independent subset B ⊂ R such that for every x ∈ R there exists �nitely
many (!) elements b1, . . . , bm ∈ B and numbers a1, . . . , am ∈ Q such that

x = a1b1 + . . .+ ambm.

Note that the above theorem does not give an answer how this set looks like. The
theorem only states that this subset of R exists.

For �nitely generated vector space the existence of a basis is easier prove. We
state therefore the bit weaker form of the above theorem.

Theorem 2.24 (Existence of a Basis for Finitely Generated Vector Spaces). Let
V be a �nitely generated vector space. Then V has a �nite basis. More precisely,
every �nite generating system of V contains a basis of V .

Proof. Let E be a �nite generating system. Then since E is �nite it must
contain a minimal generating system M . But then M is by Proposition 2.22, (2) a
basis of V . �

5. The Rank of a Finite System of Vectors

In the following we will consider nearly exclusively �nitely generated vector
spaces. As a self-evident foundation we will make extensive use of Theorem 2.24
which we obtained in a very direct way.

In this section we will introduce another improtant concept which will recure
over and over again: the rank of a system of vectors. Variants of this concept exists
and they all relate closely to each other.7 The rank of a system of vectors will turn
out to be a very fruitful concept.

Assume that we are given a �nite system of vectors u1, . . . , um of a vector
space V . The rank of this collection shall be the maximal number of linear inde-
pendent vectors in this collection. More precisely this is formulate in the following
way.

7For example in the end of this chapter we will de�ne what we mean by the rank of a matrix
and in the next chapter we will assign to every linear map f between �nite dimensional vector
spaces a number which we will call the rank of f .
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De�nition 2.25 (Rank of a System of Vectors). Let u1, . . . , um be a �nite system
of vectors (not necessarily distinct) of the vector space V . We say that the rank of
this system of vectors is r, in symbols

rank(u1, . . . , um) := r,

if the following two conditions are satis�ed:

(1) There exists a linear independent subset of {u1, . . . , um} which consists
of exactly r vectors.

(2) Every subset of {u1, . . . , um} which consists of r + 1 vectors is linear
dependent.

If we speak in the following of a system u1, . . . , um of vectors of a vector space V
then we mean always the m-tuple (u1, . . . , um) of vectors in V . One must di�eren-
tiate this from the set {u1, . . . , um}. In the later case the order of the vectors is not
important, the order in which the the vectors u1, . . . , um appeare in the m-tuple
are essential!

Note that we have clearly

rank(u1, . . . , um, um+1) ≥ rank(u1, . . . , um),

that is adding a vector to a system of vectors does not decrease the rank of the
system, and that the rank of a system is for obvious reason bounded by m, that is

rank(u1, . . . , um) ≤ m.

Equality holds, that is

rank(u1, . . . , um) = m,

if and only if the system of vectors u1, . . . , um are linearly independent. Summa-
rizing these observations yields the following result.

Proposition 2.26. Let u1, . . . , um a system of vectors of the F -vector space V .
Then the following statements are equivalent:

(1) The system u1, . . . , um is linearly independent.
(2) We have rank(u1, . . . , um) = m.
(3) The set {u1, . . . , um} is a linear independent subset of V consisting exactly

of m vectors.
(4) If there exists elemenst a1, . . . , am ∈ F such that

a1u1 + . . .+ amum = 0

then necessarily a1 = . . . = am = 0. �

Note that if we add the zero vector 0 to a system of vectors u1, . . . , um, then
the rank of this system does not change. That is we have the equality

rank(u1, . . . , um, 0) = rank(u1, . . . , um).

This observation generalizes to the following result.

Proposition 2.27. Let u1, . . . , um be a system of vectors of the vector space V and
u ∈ span{u1, . . . , um}. Then

rank(u1, . . . , um, u) = rank(u1, . . . , um).
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Proof. Let us simplify the notation by denoting with r the rank of the system
of vectors u1, . . . , um, that is we set

r := rank(u1, . . . , um). (69)

We know already that rank(u1, . . . , um, u) ≥ r. Thus it remains to show that also
rank(u1, . . . , um, u) ≤ r is true. In order to show this we need to prove that there
exists no linear independent subset {u1, . . . , um, u} which consists of r+1 elements.

Thus let us assume towards a contradiction that there actually exists a linear
independent set T ⊂ {u1, . . . , um, u} which consists of r + 1 elements. Due to (69)
we have that necessarily u ∈ T and that the set M := T \ {u} is a maximal
linear independent subset of {u1, . . . , um}. Thus it follows from the second part of
Lemma 2.21 that

spanM = span{u1, . . . , um}. (70)

But due to assumption that u ∈ span{u1, . . . , um} we have that u ∈ spanM . Thus
M ∪ {u} = T is linear dependent by Lemma 2.17. But this is a contradiction to
our assumption that T is linearly independent.

Therefore there cannot exists a linearly independent subset of {u1, . . . , um, u}
with r + 1 elements and this shows that rank(u1, . . . , um, u) ≤ r. �

Next we turn our attention to the question how we can determine the rank of
a given system u1, . . . , um of vectors of a F -vector space V . Since we can always
replace the vector space V by the �nitely generated vector space spanned by the
vectors u1, . . . , um we will assume in the following that

V is a �nitely generated F -vector space. (71)

Thus Theorem 2.24 applies and we know that V has a �nite basis. Assume that M
is such a �nite basis of V , say

M = {b1, . . . , bn} (72)

consists of exactly n distinct vectors of V . Then every vector u ∈ V can be written
as

u =
n∑
i=1

aibi = a1b1 + . . .+ anbm (73)

with uniquely determined numbers ai ∈ F . Observe that the n-tuple (a1, . . . , an)
does not � besides of the vector u � only depend on the set M but also on the
numbering of the basis vectors b1, . . . , bn. Therefore it is useful to make the following
de�nition.

De�nition 2.28 (Ordered Basis). Let V be a �nitely generated vector space. An
ordered basis of V is a n-tuple (b1, . . . , bn) of pairwise distinct vectors of V such
that the set {b1, . . . , bn} is a basis of V in the sense of De�nition 2.14.

It is a straight consequence of Theroem 2.24 that every �nitely generated vector
space V posesses an ordered basis. In the following we will usually make use of an
ordered basis of a vector space. In order to simplify the notation we will therefore
agree to call an ordered basis simply just a basis. Therefore it will be the context
which will tell whether the therm �basis� will refer to an set or an ordered system.
When we speak in the following of the canonical basis of the vector space Fn then
we will nearly always mean the ordered system e1, . . . , en of the canonical unit
vector (65) of the vector space Fn.

If V is a �nitely generated F -vector space with b1, . . . , bn being an (ordered)
basis of V then every vector u ∈ V can be expressed in a unique way in the
form (73). One calles the ai ∈ F the coordinates of the vector u with respect to
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the basis b1, . . . , bn. The n-tuple (a1, . . . , an) ∈ Fn is called the coordinate vector
of u with respect to the basis b1, . . . , bn.

Next we will describe an

Algorithm to Compute the Rank of a Given System of Vectors. We
�rst declare � similar to Chapter 1 � what we mean by elementary transformations
of a system of vectors.

De�nition 2.29. Under an elementary transformation of a system of vectors
(u1, . . . , um) of a F -vector space we shall understand one of the following oper-
ations which transforms the system again into a system of m elements:

(I) Replacing one ui in (u1, . . . , um) by ui + auj with a ∈ F and i 6= j.
(II) Exchanging two vectors in the system.
(III) Replacing one vector ui in (u1, . . . , um) by aui where a ∈ F \ {0}.

Next we shall show, that we may use these transformations in order to deter-
mine the rank of a vector system.

Proposition 2.30. The rank of a system of vectors (u1, . . . , um) is not changed
under the elementary transformations of De�nition 2.29.

Proof. (I) We may assume with out any loss of generality that i = 1
and j = 2. Then u′1 := u1 + au2 is a linear combination of the vectors
u1, . . . , um and we have

rank(u1, . . . , um) = rank(u1, . . . , um, u
′
1) ≥ rank(u′1, u2, . . . , um)

by Proposition 2.27 and the observations on page 34. On the other hand
u1 = u′1 − au2 and thus the system u1, . . . , um can be obtained from the
system u′1, u2, . . . , um by an elementary transformation of type (I). Thus
we have

rank(u′1, u2, . . . , um) = rank(u1, . . . , um, u
′
1) ≥ rank(u1, . . . , um)

for the same reason as above. Alltogether this means that

rank(u1, . . . , um) = rank(u′1, u2, . . . , um)

as needed to be shown.
(II) The claim is obvious for a transformation of type (II).
(III) The proof is done analogous as in the case of a transformation of type (I).

�

Now let u1, . . . , um be a given system of vectors of a �nitely generated F -vector
space V . Let b1, . . . , bn be an ordered basis of V . Then every vector of the system
u1, . . . , um can be written in a unique way as a linear combination of the basis
vectors b1, . . . , bn:

ui =
n∑
j=1

aijbj , i = 1, 2, . . . ,m (74)

with numbers aij ∈ F . Let us arrange these numbers in the following m×n-matrix:

A :=


a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

am1 am2 . . . amn

 (75)

We shall call this matrix the coordinate matrix of the vector system u1, . . . , um
with respect to the ordered basis b1, . . . , bn. Note that the rows of this matrix are
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by de�nition exactly the coordinate vectors of the vectors u1, . . . , um with respect
to the basis b1, . . . , bn.

An elementary transformation of the system u1, . . . , um is equivalent with an
elementary row transformation of the coordinate matrix (75). We have seen in
Chapter 1 how we can transform this matrix into a matrix of the form (21). To
achive this form we possible need to exchange columns, but such a column ex-
change corresponds to re-numbering the elements b1, . . . , bn of the basis and this is
irrelevant for computing rank(u1, . . . , um). Thus we optain the following result.

Theorem 2.31 (Computation of the Rank of Finite Systems of Vectors). Let V be
a �nitely generated F -vector space and let b1, . . . , bn be a basis of V . Then one can
transform step by step using elementary transformation any �nite system of vectors
u1, . . . , um of V into a systme u′1, . . . , u

′
m such that the coordinate matrix of this

transformed system with respect to a basis which di�ers from the basis b1, . . . , bn at
most by a re-numeration is of the following form

1 0 0 · · · · · · 0

0 1 0
...

0 0 1
... ∗

...
. . .

...
...

. . . 0
0 0 0 · · · 0 1

0 0


(76)

where the upper left part is the r × r-identity matrix and r is a certain natural
number 0 ≤ r ≤ m,n. Then

rank(u1, . . . , um) = r (77)

Proof. We only have to show the last claim. Since we know by Proposi-
tion 2.30 that elementary transformations do not change the rank of a system of
vectors we need just to show that if u1, . . . , um is a system of vectors such that its
coordinate matrix with respect to some basis b1, . . . , bn is of the form (76) then (77)
holds.

Since the last m− r rows of the matrix (76) contains only zeros it follows that
in this case the vectors ui = 0 for i ≥ r + 1. Thus we have that necessarily

rank(u1, . . . , um) = rank(u1, . . . , ur, 0, . . . , 0) = rank(u1, . . . , ur) ≤ r.

It remains to show that also rank(u1, . . . , ur) ≥ r holds. Now from the de�nition
of the coe�cients of the coordinate matrix � see (74) and (75) � we get for 0 ≤ i ≤ r
the equations

ui = bi +
n∑

j=r+1

aijbj = bi + u∗i

where u∗i ∈ span{br+1, . . . , bn}. Now assume that ci ∈ F are numbers such that

c1u1 + . . .+ crur = 0

is a linear combination of the zero vector. Then

c1u1 + . . .+ crur = c1b1 + . . .+ crbr + u∗ (with u∗ ∈ span{br+1, . . . , bn})
= 0
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if and only if c1 = . . . = cr = 0 since the b1, . . . , bn are linearly independent
and therefore there 0 is only the trivial linear combination of these vectors. Thus
the vectors u1, . . . , ur are linearly independent and it follows rank(u1, . . . , um) =
rank(u1, . . . , ur) ≥ r.

Alltogether we have shown that rank(u1, . . . , um) ≤ r and rank(u1, . . . , um) ≥ r
and thus equality holds. �

Example. Consider following system of four vectors of the vector space V = R5:

u1 :=


1
3
5
2
0

 , u2 :=


3
9
10
1
2

 , u3 :=


0
2
7
3
−1

 , u4 :=


2
8
12
2
1


Its coordinate matrix with respect to the canonical basis e1, . . . , e5 of R5 is the 4×5-
matrix from the example on page 10 which can be transformed using elementary
row transformations as follows:

1 3 5 2 0
3 9 10 1 2
0 2 7 3 −1
2 8 12 2 1

 →


1 3 5 2 0
0 2 2 −2 1
0 0 5 5 −2
0 0 0 0 0



→


1 0 0 3 −7/10
0 1 0 −2 9/10
0 0 1 1 −2/5
0 0 0 0 0


Thus from Theorem 2.31 it follows that rank(u1, u2, u3, u4) = 4. Note that actually
we can already see this from from the second matrix in the above chain of matrices,
that is, we do not necessarily need to completely transform the coordinate matrix
into the form required by Theorem 2.31.

6. The Dimension of a Vector Space

We are now ready to introduce an other very important concept in Linear
Algebra, namely the dimension of a vector Space.

De�nition 2.32. We say that a F -vector space V has dimension n if V has a basis
b1, . . . , bn which consists of exactly n (distinct) vectors.

The aim of this section is to show that if V has dimension m and dimension n
for some integers m and n, then necessarily m = n (Theorem 2.34).

Straight from Theorem 2.31 we get the following result.

Theorem 2.33. Let u1, . . . , um a system of vectors of a vector space V of dimen-
sion n. Then

rank(u1, . . . , um) ≤ n. �

Corollary. Let M be a linearly independent set of a n-dimensional vector space V .
Then M has at most n elements.

Proof. Assume towards a contradiction that M contains at least n+ 1 pair-
wise distinct vectors u1, . . . , un+1. Then these vectors form a linearly independent
system of vectors and we have rank(u1, . . . , un+1) = n+ 1. But this contradicts to
Theorem 2.33 which states that rank(u1, . . . , un+1) ≤ n! Thus the assumption was
wrong and necessarily M has at most n elements. �
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Theorem 2.34 (Invariance of the Dimension). Let V be a �nitely generated vector
space. Then every basis of V has the same number of elements. In other words,
every basis of an n-dimensional vector space consist precisely of n elements.

Proof. Let E ⊂ V be a �nite generating system of V . Apparently E has a
maximal linear independent subsetM . ThenM is a basis of V by Proposition 2.22.
Since E is �nite M must be �nite, too. Say M has precisely n elements. Then V
has dimension n by De�nition 2.32.

Now let M ′ be another basis of V . Then M ′ is a linear independent subset
of V and thus M ′ contains at most n elements by the corollary to Theorem 2.33.
Denote by m the number of elements in M ′. We have then m ≤ n and V has
dimension m by De�nition 2.32. Thus M as a linear independent subset of V has
at most m elements by the corollary to Theorem 2.33, that is n ≤ m. Therefore we
have alltogether m = n. �

The above theorem justi�es that we can speak of the dimension of a vector
space and that we denote the dimension of V in symbols by

dimV := n

in case that V has dimension n. In this case we say also that V is a �nite dimen-
sional vector space. Note that dimV = n for some natural number n if and only if
V is �nitely generated. Thus a vector space is �nite dimensional if and only if it is
�nitely generated. Note further that the trivial zero space V = 0 has dimension 0
since its only basis contains 0 elements (recall that we agreed that the we consider
the empty set ∅ to be the basis of the zero space).

If V is not �nitely generated, then we aggree to say that V has in�nite dimension
and we denote this fact in symbols by

dimV :=∞.

The dimension of a F vector space V depends not only on the set V but also
on the �eld F . For example consider the R-vector space R. Then dim R = 1. On
the other hand if one considers R as a vector space over the rational numbers then
R is in�nite dimensional (compare the example on page 33). Thus the notation

dimF V

might be used to emphasis the �eld F of the F -vector space. Using this notation
we have for example

dimR R = 1 and dimQ R =∞.

Theorem 2.35. Let u1, . . . , um be a system of vectors of a n-dimensional vector
space V . Then this system of vectors forms a basis of V if and only if

rank(u1, . . . , um) = n and m = n

Proof. �⇒�: If u1, . . . , um is a basis of V the vectors are linearly indepen-
dent. Thus rank(u1, . . . , um) = m by Proposition 2.26. It follows from Theo-
rem 2.34 that m = n.

�⇐�: By assumption we have that rank(u1, . . . , um) = m. Thus M :=
{u1, . . . , um} is a linear independent subset of V consisting of exactly m elements
by Proposition 2.26. Since m = n this means by the corollary to Theorem 2.33
that M is a maximal linear independent subset of V and therefore a basis of V by
Proposition 2.22. �
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If M is a basis of a vector space, then M is a linear independent set and with
it every subset N ⊂ M is linearly independent, too. Allso the converse is true: if
N is an linear independent subset of a vector space V , then one can always extend
N to a maximal linear independent subset M of V , which then is a basis of V due
to Proposition 2.22. We shall prove this result for �nite dimensional vector spaces:

Theorem 2.36 (Basis Extension Theorem). Let N be a linear independent subset
of a �nite dimensional vector space V . Then N can be extendet to a basis of V ,
that is there exists a basis M of V such that N ⊂M .

Proof. Let N be an arbitrary linear independent subset of V . Due to the
corollary to Theorem 2.33 the set N has at most n elements. Let B be a basis of
V . Then the set

E := B ∪N
is a �nite generating system of V which contains the linear independent subset N .
Since E is �nite it must surely contain a maximal linear independent subsetM with
N ⊂ M . Then M is a basis of V by Proposition 2.22 which has by construction
the properties required by the theorem. �

Theorem 2.37. Let U a subspace of the vector space V . Then

dimU ≤ dimV. (78)

In particular a subspace of a �nite dimensional vector space is again �nite dimen-
sional.

If V is �nite dimensional then U = V if and only if dimU = dimV .

Proof. If dimV = ∞ then the inequality (78) is clearly satis�ed. Thus we
assume that V is �nite dimensional and set n := dimV .

We �rst need to show that then U is �nite dimensional. Let M be a linear
independent subset of U . Then M is also a linear independent subset of V and
has therefore at most n elements due to the corollary to Theorem 2.33. Let m
be the maximal number such that there exists a linear independent subset of U
with m elements (this number exists since n is a �nite number). Let M be such
a linear independent subset of U with m elements. Then M is a maximal linear
independent subset of U and therefore a basis of U by Proposition 2.22. Thus U is
�nite dimensional and dimU = m ≤ n = dimV . This proves the �rst part.

Assume that V is �nite dimensinal. If U = V , then clearly dimU = dimV . If
on the other hand dimU = dimV , then U has a basis which consists of n := dimU
elements. But then M is also a basis of V due to Theorem 2.35 and it follows that
U = V . �

We shall conclude this section with an application of the basis extension theo-
rem from above which yield a nearly self-evident result:

Proposition 2.38. Let V be an arbitrary vector space (�nite or in�nite dimen-
sional) and let u1, . . . , um be an arbitrary �nite system of vectors of V . Then

dim span{u1, . . . , um} = rank(u1, . . . , um).

That is, the rank of the system u1, . . . , um is the equal to the dimension of the
subspace spanned by the vectors of the system.

Proof. Let us use the following abreviation to simplify the notation:

U := span{u1, . . . , um}, r := rank(u1, . . . , um), k := dimU.
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Theorem 2.24 states that {u1, . . . , um} contains a basisM of U and since dimU = k
it follows that M consists of exactly k distinct vectors. We may assume without
any loss of generality that M = {u1, . . . , uk}. Then

k = rank(u1, . . . , uk) ≤ rank(u1, . . . , uk, . . . , um) = r

On the other hand is u1, . . . , um a system of vectors of the k-dimensional vector
space U and thus r ≤ k by Theorem 2.33. Alltogether we have therefore k = r.

�

Corollary. Let u ∈ V . Then u ∈ span{u1, . . . , um} if and only if

rank(u1, . . . , um, u) = rank(u1, . . . , um).

Proof. �⇒�: This follows from Proposition 2.27.

�⇐�: Due to rank(u1, . . . , um, u) = rank(u1, . . . , um) we get

dim span{u1, . . . , um, u} = dim span{u1, . . . , um}.

But now span{u1, . . . , um} is a subspace of span{u1, . . . , um, u} of the same �nite
dimension and thus span{u1, . . . , um} = span{u1, . . . , um, u} by Theorem 2.37. �

7. Direct Sum and Linear Complements

In this section V shall always denote a �nite dimensional vector space if not
otherwise stated. This section will make extensively use of the basis extension
theorem of the previous section and illustrate its powerfull application.

If U and W are two subspaces of V , then we have seen already that their sum
U +W and their intersection U ∩W are subspace of V (see Proposition 2.7). We
are in the following interested in the situation where U +W is the largest possible
subspace of V , namely the whole space V , and where U ∩W is the smallest possible
subspace of V , namely the zero vector space 0.

De�nition 2.39 (Direct Sum). Let V be an arbitrary vector space (�nite or in�nite
dimensional). Let U andW be two subspaces of V . We say that V is the (internal)
direct sum of the subspaces U and W if the two following conditions are satis�ed:

V = U +W and U ∩W = 0.

If V is the direct sum of U and W , then we may express this fact in symbols by
V = U ⊕W .8

IfW is a subspace of V such that U∩W = 0 then we say thatW is a transversal
space of U in V . If even V = U ⊕W , then we say that W is a linear complement
of U in V .

Note that if W is a linear complement (transversal space) of U in V then also
U is a linear complement (transversal space) of W in V .

As an application of the basis extension theorem we can see that if we are given
a subspace U of the �nite dimensional vector space V then there always a linear
complement W of U in V . To see this we choose a basis M of U and extend it to
a basis B of V . We set M ′ := B \M . Then W := spanM ′ is clearly a subspace of
V such that

V := U ⊕W.
Thus we have just proven the following result.

8Note there exists also an construction of an external direct sum which is normaly denoted
with the same symbol �⊕� which very closely related to the concept of the internal direct sum.
But we do not consider this construction here.
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Theorem 2.40 (Existence of Linear Complements). Let U be a given subspace of
a �nite dimensional vector space V . Then there exists a linear complement W of U ,
that is there exists a subspace W of V such that

V = U ⊕W �

Note that the linear complement of a given subspace U is not unique, that is
there exist in general many linear complements of a given subspace U .

Proposition 2.41. Let U andW be subspaces of an arbitrary vector space V (�nite
or in�nite dimensional). Then V = U ⊕W if and only if for every vector v ∈ V
there exists unique vectors u ∈ U and w ∈W such that

v = u+ w. (79)

Proof. �⇒�: We assume that V = U ⊕W . That we can �nd vectors u ∈ U
and w ∈ W such that (79) holds is clear. Thus we need only to show that this
decomposition is unique.

Therefore let u′ ∈ U and w′ ∈W some vectors (possible distinct from u and w)
such that v = u′ + w′. Then from u+ w = v = u′ + w′ follows that

u− u′ = w′ − w. (80)

Now u − u′ ∈ U and w′ − w ∈ W and thus it follows from (80) that both u − u′
and w′ −w are elemnts of U ∩W = 0. Thus u− u′ = 0 and w′ −w = 0 or in other
words u = u′ and w = w′. Thus the decomposition (79) is seen to be unique.

�⇐�: By assumption V = U+W . Thus we need only to show that U ∩W = 0.
Assume that v ∈ U ∩W . Then both v = v + 0 and v = 0 + v are decompositions
of the form (79). But due to the uniqueness requirement this means that v = 0.
Therefore U ∩W = 0 is the zero space. Alltogether this shows that V = U ⊕W .

�

Corollary. Assume that V = U ⊕W and let u ∈ U and w ∈ W . Then u+ w = 0
if and only if u = 0 and w = 0. �

Theorem 2.42 (Dimension Formula for Subspaces). Let U and W be two �-
nite dimensional subspaces of an arbitrary (�nite or in�nite dimensional) F -vector
space V . Then we have the following dimension formular:

dim(U +W ) = dimU + dimW − dim(U ∩W ) (81)

Proof. Again we will use in this proof the basis extension theorem. We set
m := dim(U ∩W ) and choose a basis a1, . . . , am of U ∩W . On one hand we extend
this basis to a basis

a1, . . . , am, b1, . . . , br (82)

of the subspace U and on the other hand we extend the same basis to a basis

a1, . . . , am, c1, . . . , cs (83)

of the subspaceW . Note that in this notation we have dimU = m+r and dimW =
m+ s. We claim now that

a1, . . . , am, b1, . . . , br, c1, . . . , cs (84)

is a basis of U + W . As soon as we have shown it follows that the dimension
formula (82), since then

dim(U +W ) = m+ r + s = (m+ r) + (m+ s)−m
= dim(U) + dim(W )− dim(U ∩W ).
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It is clear that (84) is a generating system of U +W . It remains to show that
the vectors a1, . . . , am, b1, . . . , br, c1, . . . , cs are linearly independent because then
they form a basis of U +W due to Proposition 2.22. Therefore we assume that the
zero vector 0 is a linear combination of those vectors, that is we assume that

m∑
i=1

λiai +
r∑
i=1

µibi +
s∑
i=1

νici = 0 (85)

for some coe�cients λi, µi, νi ∈ F . We need to show that all those coe�cients are
necessarily equal to zero. To simplify the notation let us denote the three partial
sums of (85) by a, b and c, that is in this notation (85) reads

a+ b+ c = 0. (85′)

Then a ∈ U ∩W , b ∈ U and c ∈W and it follows from (85′) that b = −a− c ∈W
and therefore b ∈ U ∩W . But this means that the coe�cients µ1, . . . , µi are all
equal to zero due to the choice of the vectors b1, . . . , br and thus b = 0. Similarly one
deduces that also the coe�cients ν1, . . . , νs are all equal to zero and thus c = 0. But
then from (85′) follows that a = 0 and thus the remaining coe�cients λ1, . . . , λm
are necessarily all equal to zero, too. Thus we have seen that the vectors (84) are
linearly independent and since they generate U +W this means that those vectors
form a basis of U +W as we wanted to show in order to complete the proof. �

Example. Let U and W be two 2-dimensional subspaces of the 3-dimensional R-
vector space R3 and assume that U 6= W . Then it is easy to see that U +W = R3

and it follows from the above dimension formula that

dim(U ∩W ) = dimU + dimW − dim R3 = 2 + 2− 3 = 1.

Thus U ∩W is a 1-dimensional subspace of R3 and in particular U ∩W is not the
zero space 0. That is there exists a non-zero vector v ∈ U ∩ W and U ∩ W =
span{v} = {av : a ∈ R}. This set is a straight line in R3 passing through the
origin 0. The example shows that two planes in R3 which contain the origin 0 of
R3 � here U and W � intersect always in a straight line passes through the origin
of R3 � here U ∩W .

As a consequence of Theorem 2.42 we shall note the following criterion for a
subspace W being a transversal space or even a linear complement of a given space
U in V .

Proposition 2.43. Let V be an arbitrary vector space (�nite or in�nite dimen-
sional) and let U and W be two �nite dimensional subspaces of V . Then we have
that

(1) W is a transversal space of U in V if and only if

dim(U +W ) = dimU + dimW,

and
(2) W is a linear complement of U in V if and only if

dimV = dim(U +W ) = dimU + dimW.

Proof. This result is consequence of the following two obeservations in the
given setting that U and V are �nite dimensional subspaces of V : The condition
U ∩W = 0 is equivalent with dim(U ∩W ) = 0 and the condition V = U + W is
equivalent with dimV = dim(U +W ). �

Note that the second requirement of the above proposition is equivalent with
the vector space V being the direct sum of the �nite dimensional subspaces U and
W , that is V = U ⊕W . In particular is V in this case �nite dimensional, too.
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8. Row and Column Rank of a Matrix

In this section we shall study a bit in more detail the connection between the
computation of the rank of a system of vectors and elementary transformations of
a matrix.

De�nition 2.44 (Row and Column Rank of a Matrix). Let

A :=


a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

am1 am2 . . . amn

 (86)

be an arbitrarym×n-matrix with coe�cients in a �eld F . We denote by u1, . . . , um
the rows of the matrix A, considered as vectors of the vector space Fm. Similarly
we denote by v1, . . . , vn the columns of the matrix, considered as vectors of the
vector space Fn. Then the row rank of the matrix A is the rank of the system of
vectors u1, . . . , um and is denoted in symbols by

rankrA := rank(u1, . . . , um).

Similarly we de�ne the column rank of the matrix A to be the rank of the system
of vectors v1, . . . , vn and we denote the column rank of A in symbols by

rankcA := rank(v1, . . . , vn).

Note that the row rank of a matrix remains unchanged under elementary row
transformations due to Proposition 2.30. Similarly the column rank remains invari-
ant under elementray row transformations.9

The natural question is how the row and column rank of a matrix relate to
each other. The answer will be simple: both numbers are always equal. This will
mean that it will make sense to assign a rank to a matrix using either ways of
computation. The aim of this section will be to show this equality of row and
column rank. In the next section we will then use the result of this section to
answer the two open problems from Section 5 of Chapter 1.

Let u1, . . . , um be a system of vectors of a �nite dimensional F -vector space V ,
and let b1, . . . , bn be a basis of V . Let us for a while use the following notation: for
every vector u ∈ V we shall denote by ũ the coordinate vector of u with respect to
the basis b1, . . . , bn. (This notation does express the dependency of the coodinate
vectors on the basis b1, . . . , bn but we do not mind this here cause we keep the
basis �xed for the current consideration.) Now the zero vectore 0 is a non-trivial
linear combination of the vectors u1, . . . , um if and only if 0 is a non-trivial linear
combination of the corresponding coordinate vectors ũ1, . . . , ũm. This is because
for arbitrary elements λ1, . . . , λm ∈ F we have( n∑

i=1

λiui

)∼
=

n∑
i=1

λiũi

and ṽ = 0 is equivalent with v = 0. As a consequence of this we get more generaly

rank(u1, . . . , um) = rank(ũ1, . . . , ũm). (87)

Let A be the coordinate matrix of the system of vectors u1, . . . , um with respect to
the basis b1, . . . , bn. Then by its de�nition the rows of the matrix A are precisely
the vectors ũ1, . . . , ũm ∈ Fn. Therefore we have shown the follwoing result.

9Elementary column transformations of type I, II and III of a matrix are de�ned in the very
analogous way as we have de�ned elementary row transformations for matrices on page 8 in the
previous chapter.
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Proposition 2.45. Let u1, . . . , um be a system of vectors of the �nite dimensional
F -vector space V . Let A the coordinat matrix of this system with respect to an
arbitrary basis b1, . . . , bn of V . Then

rankr(A) = rank(u1, . . . , um). �

In particular this means that the column rank of the coordinate matrix A is
only dependent on the system of vectors u1, . . . , um and independent of the choice
of the basis b1, . . . , bn.

In Section 5 we have shown that the rank of a system of vectors u1, . . . , uk is
unchanged under elementary transformations and that the elementary transforma-
tions are in a one-to-one correspondence to row transformations of the coordinate
matrix A of the system u1, . . . , um with respect to the basis b1, . . . , bn. But the rank
of the system u1, . . . , um is by de�nition exactly the column rank of the matrix A
and thus we have shown in Section 5 that the column rank of a matrix A is left
invariant under elementary row transformations (Proposition 2.30).

But what happens in the case of an elementary column transformation of a
matrix. It appears that there is a beautiful analogy to the case of a row transfor-
mation. Without going into detail, the elementary column transformations of the
coordinate matrix A of the system u1, . . . , um with respect to the basis b1, . . . , bn
are in a one-to-one correspondence with elementary transformations of the basis
system b1, . . . , bn. Since a elementary transformation of a vector system does not
change the rank of the system (Proposition 2.30) it means that a basis b1, . . . , bn
of V is transformed to the system b′1, . . . , b

′
n which is again a basis of V . Now the

above mentioned one-to-one correspondence (which needs to be proven but we shall
ommit this not too di�cult proof here) means that if A′ is derived from the coor-
dinate matrix A by an elementary column transformation, then there exists a basis
b′1, . . . , b

′
n such that the coordinate matrix of the system u1, . . . , um with respect to

the new basis b′1, . . . , b
′
n is precisely equal to A′. Thus it follows by Proposition 2.45

that

rankr(A′) = rankr(A)
since both numbers are equal to rank(u1, . . . , um). In other words this means that
the row rank is invariant under elementary column transformations.

Combining this observation with Proposition 2.30 yields the following result
about the row rank of a matrix.

Proposition 2.46. The row rank of a matrix remains invariant under elementray
row and column transformations. That is, if A′ is a matrix which is derived from
the matrix A by elemetary row and column transformations then

rankr(A) = rankr(A′) �

Note that the above result gives now an Answer to Problem 1 as stated in
the end of Chapter 1: the row rank of the matrix C is exactly the number which
satis�es the requirements stated by the problem.

Now there exists no essential di�erence in the de�nition of row and column
rank of a matrix. Let us denote by tA the transposed matrix of A which is the
n ×m-matrix derived from (86) by mirrowing it along the top-left to botom-right
diagonal, that is we set

tA :=


a11 a21 . . . am1

a12 a22 . . . am2

...
...

a1n a2n . . . amn

 (88)
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Then the above statement means more precisely that naturaly

rankr
tA = rankcA

and

rankc
tA = rankrA

and that an elementary column (row) transformations of tA corresponds to a ele-
mentary row (column) transformation of A. Thus we get from Proposition 2.46 the
following result about the invariance of the column rank.

Proposition 2.47. The column rank of a matrix remains invariant under elemen-
tray row and column transformations. That is, if A′ is a matrix which is derived
from the matrix A by elemetary row and column transformations then

rankc(A) = rankc(A′) �

From Chapter 1 we know that we can transform any m × n-matrix A into a
matrix of the form 

1 0 . . . . . . 0

0 1
...

...
. . .

... ∗
...

. . . 0
0 . . . . . . 0 1

0 0


=
(
Ir ∗
0 0

)
(89)

by using only row transformations and possible column transformations of type II
(that is exchanging two columns). Now it is evident how to continue from this form
using elementary column transformations to transform this matrix into a matrix of
the form

A′ :=



1 0 . . . . . . 0

0 1
...

...
. . .

... 0
...

. . . 0
0 . . . . . . 0 1

0 0


=
(
Ir 0
0 0

)
(90)

where the upper left block is the r× r-identity matrix Ir for some number 0 ≤ r ≤
m,n. Let us � before we continue � write this result down in a theorem which in a
way extends Proposition 1.5 from the the previous chaptere were we only allowed
row transformations.

Theorem 2.48. Let F be a �eld. Then any m×n-matrix can be transformed into
a matrix of the form (90) by using elementary row and column transformations.

�
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Now it is apparent that for the matrix A′ in (90) holds

rankrA
′ = rankcA

′ = r.

Since the elementary row and column transformations do not change the row and
column rank of a matrix this means that

rankrA = rankrA
′ = rankcA

′ = rankcA,

that is row and column rank of a matrix agree. Thus we have shown the following
result.

Theorem 2.49. Let A be an arbitrary matrix with coe�cients in a �eld F . Then
the row rank of A is equal to the column rank of A, that is

rankrA = rankcA. �

De�nition 2.50 (Rank of a Matrix). Let A be a matrix with coe�cients in a
�eld F . Then the rank of A is de�ned to be the row rank (or equivalently the
column rank) of A, in symbols

rankA := rankrA.

Let us collect the basic properties of the rank of a matrix:

(1) The rank of a matrix A is equal to the maximal number of linear inde-
pendent rows of A and this number is at the same time also equal to the
maximal number of linear independent columns of A.

(2) If A is the coe�cient matrix of the system u1, . . . , um of vectors of a vector
space V with respect to an arbitrary basis of V , then

rankA = rank(u1, . . . , um).

(3) The rank of a matrix is invariant under elementary row and column trans-
formations.

(4) Every matrix A over an arbitray �eld F can be transformed � using suit-
able elementary row and column transformations � into a matrix of the
form (

Ir 0
0 0

)
where r is the rank of the matrix A.

Algorithm for the Computation of Basis for a Subspace. As an appli-
cation (and repetition) of our knowledge we have obtained so far we shall present
an algorithm to compute the basis of a given subspace of a �nite dimensional vector
space V .

Let V be a vector space over a �eld F of dimension n and let e1, . . . , en be
a basis of V . Assume that a subspace U of V is given by the span of a system
u1, . . . , um of vectors in V , that is

U := span{u1, . . . , um}.

Then the subspace U is determined by the coordinate matrix A = (aij) of u1, . . . , um
with respect to the basis e1, . . . , en:

ui =
n∑
j=1

aijej (i = 1, . . . ,m).

Then it follows from Proposition 2.38 and De�nition 2.50 that

dimU = rank(u1, . . . , um) = rankA.
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We compute the rank of the matrix A with the help of the Gauss Algorithm (see
Chapter 1) using suitable elementary row transformations and column exchanges.
By this we obtain �naly a matrix of the form

C :=
(
Ir B
0 0

)
(91)

where the matrix B is a certain r × (n − r)-matrix over F . It follows that r =
rankA = dimU .

But in addition to the dimension of U we have also also found a basis for U :
let us denote by b′1, . . . , b

′
r the vectors of V of which the coordinate vectors are

precisely the �rst r rows of the matrix C in (91). Then the system has rank r.
If we revert the column exchanges which have been done to optain the matrix C
in (91) then we get a system b1, . . . , br of vectors from the subspace U which has
rank r = dimU . Thus the system b1, . . . , br is a basis of U . Note that b1, . . . , br is
indeed a system of vectors of U since the elementary transformations done to the
system u1, . . . , um do not lead out of the subspace U .

9. Application to Systems of Linear Equations

Already in Chapter 1 we have seen how to decide whether a system of linear
equations is solveable or not (see Section 4.2 in the previous chapter). The answer
given there can be considered to be satisfying our needs. Nonetheless the progress
we have made in this chapter about vector spaces gives us the possibility to get a
deeper theoretical insight into systems of linear equations.

Assume that we are give an arbitrary system of linear equations of m equations
in n unknown variables over a �eld F as in (6):

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

...
...

...
...

am1x1 + am2x2 + · · ·+ amnxn = bm

(92)

Denote by A the simple coe�cient matrix of this system of linear equations and by
C its extended coe�cent matrix. Let v1, . . . , vn be the columns of the matrix A and
denote by b the right most column of the extendet coe�cient matrix. Then the m-
tuples v1, . . . , vm and b are vectors of Fm. Now the system of linear equation (92)
is solveable in F if and only if there exists elements x1, . . . , xn ∈ F such that

x1v1 + . . .+ xnvn = b.

This is again equivalent that b ∈ span{v1, . . . , vn}. The corrolary to Proposi-
tion 2.38 then states that this is the case if and only if

rank(v1, . . . , vn, b) = rank(v1, . . . , vn).

Now the �rst one is by de�nition the rank of the extended coe�cient matrix C and
the latter is the rank of the simple coe�cent matrix A. Thus we have shown the
following solvability criterion for systems of linear equations.

Proposition 2.51. Let C denote the extended and let A denote the simple coe�-
cient matrix of the system of linear equations (92). Then (92) is solveable if and
only if

rankC = rankA. �
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We conclude this section by giving an Answer to Problem 2 as it has been
stated in the end of Chapter 1:

Proposition 2.52. Let F be a �eld and U a subspace of the vector space Fn. Then
there exists a homogeneous system of linear equatinons such that its solution space
is exactly equal to U .

Proof. Due to Theorem 2.37 the subspace U has a �nite generating system
u1, . . . , um. Using elementary row transformations and column exchanges we can
transform the coordinate matrix of u1, . . . , uk with respect to some basis b1, . . . , bn
of V to a matrix of the form

C :=
(
Is B
0 0

)
with some 0 ≤ s ≤ m,n where B is some s × (n − s)-matrix. We consider the
system of vectors obtained from the columns of the matrix(

Is
tB

)
. (93)

(Recall that tB denotes the transposed matrix of B as we have de�ned on page 45.)
Reverting the column exchanges which have possible done to obtain the matrix C
we see that we may assume that the subspace U has been given by a matrix of the
form (93).

We consider now the homogeneous system of linear equations which has the
coe�cent matrix

(−tB, In−s).
It follows from Proposition 1.9 from Chapter 1 that the columns of the matrix (93)
is a basis � after possible reordering of the unknown variables � of the solution base.
Therefor this solution space is equal to the given subspace U . �





CHAPTER 3

Linear Maps

1. De�nition and Simple Properties

So far we have only studied vector spaces on their own. In this chapter we will
study maps between vector spaces. Our interest will not lie in arbitrary maps but
rather in maps which preserve the linear structure of vector spaces.

Note that in Appendix A there is given a short summary about basic mathe-
matical terms which are frequently used when speaking about maps.

De�nition 3.1 (Linear Map). Let V and W be two vector spaces over the same
�eld F . Then a map f : V →W is said to be a linear map if

f(x+ y) = f(x) + f(y) (94)

f(ax) = af(x) (95)

for all vectors x, y ∈ V and all a ∈ F .

Examples. (1) Let f : V →W be given by f(x) := 0 for every vector x ∈ V .
Then the map f is linear since

f(x+ y) = 0 = 0 + 0 = f(x) + f(y)

and

f(ax) = 0 = a0 = af(x)

for every x, y ∈ V and a ∈ F . This linear map, which maps every vector
of V to the zero vector 0 of W is called the trivial linear map.

(2) Let V be a F -vector space and let c ∈ F be a �xed element. Then the
map f : V → V given by f(x) := cx for every vector x ∈ V is linear since

f(x+ y) = c(x+ y) = cx+ cy = f(x) + f(y)

and

f(ax) = c(ax) = a(cx) = af(x)

for every x, y ∈ V and a ∈ F .
(3) Let F be a �eld and consider the F -vector space F 2. Let a, b, c, d ∈ F

some �xed elements. Then the map f : F 2 → F 2 given by

f

(
x1

x2

)
:=
(
ax1 + bx2

cx1 + dx2

)
is linear as can be easily veri�ed.

(4) An example from calculus: consider the R-vector space C∞(R) of all
in�nite many times di�erentiable real valued function on R. Then the
di�erential operator

D: C∞(R)→ C∞(R), f 7→ D(f) := f ′

which maps every function f to its derivative f ′ is linear because the
di�erentiation rules are linear.

51
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(5) Another example from calculus: consider the R-vector space C0([0, 1])
of all continuous real valued functions de�ned on the unit interval [0, 1].
Then the integral operator

I: C0([0, 1])→ C0([0, 1]), f 7→ I(f) := F

which maps every function f to the antiderivative F de�ned by F (x) :=∫ x
0
f(t)dt is linear because the integration is linear.

(6) Let f : V →W be a map between two F -vector spaces. Then f is a linear
map if and only if

f(ax+ by) = af(x) + bf(y)

for every x, y ∈ V and a, b ∈ F .

In mathematics maps between objects which are compatible with the mathe-
matical structure of those objects are often called homomorphism. Now the prop-
erties (94) and (95) state that a linear map is compatible with the linear structure
of a vector space and thus linear maps are also called homomorphisms of vector
spaces.

Lemma 3.2. Let V andW be vector spaces over the same �eld F and let f : V →W
be a linear map. Then f(0) = 0 and f(−x) = −f(x) for every x ∈ V .

Proof. This is veri�ed by two simple calculations: f(0) = f(0·0) = 0·f(0) = 0
and f(−x) = f(−1 · x) = −1 · f(x) = −f(x). �

Proposition 3.3. Let V , V ′ and V ′′ be vector spaces over the same �eld F . If
f : V → V ′ and g: V ′ → V ′′ are two linear maps, then their composite

g ◦ f : V → V ′′, x 7→ (g ◦ f)(x) := g(f(x))

is also a linear map.

Proof. Let x, y ∈ V . Then (g ◦ f)(x + y) = g(f(x + y)) = g(f(x) + f(y)) =
g(f(x)) + g(f(y)) = (g ◦ f)(x) + (g ◦ f)(y). Similarly if x ∈ V and a ∈ F , then
(g ◦ f)(ax) = g(f(ax)) = g(af(x)) = ag(f(x)) = a(g ◦ f)(x). Therefore both
requirements of a linear map are satis�ed for the composite map g ◦ f as had to be
shown. �

Before we study linear maps in more detail we will classify them according to
their mapping properties.

De�nition 3.4. Let V and W be two vector spaces over the same �eld F . We call
a injective linear map f : V → W a monomorphism and a surjective linear map is
called a epimorphism. Finally an isomorphism is a bijective linear map.

Example. Let u1, . . . , un be a system of vectors of an arbitrary vector space V
over a �eld F . Then the map

f : Fn → V,

x1

...
xn

 7→ x1u1 + . . .+ xnun

is a linear map from Fn to V . This map maps the canonical basis vectors e1, . . . , en
of Fn to the vectors f(ek) = uk (1 ≤ k ≤ n). The map f is apparently a monomor-
phism if and only if the vectors u1, . . . , un are linearly independent. The map f
is apparently an epimorphism if and only the u1, . . . , un are a generating system
of V . In other words f is an isomorphism if and only if u1, . . . , un is a basis of V .
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Note that in the above example we have essentially de�ned the map f : Fn → V
by specifying the images of the standard basis vectors of Fn. More generaly the
following result holds.

Proposition 3.5. Let V and W be two vector spaces over the same �eld F . Let
B be a basis of V and f0: B →W an arbitrary map from the basis B to the vector
space W . Then f0 extends in a unique way to a linear map f : V → W . That is,
there exists a unique linear map f : V →W such that f(b) = f0(b) for every b ∈ B.

Proof. Let us �rst prove the uniqueness. Assume that f ′: V →W is an other
linear map satisfying f ′(b) = f0(b) for every b ∈ B. Let v ∈ V be an arbitrary
vector. We want to show that then f(v) = f ′(v). Since B is a basis ov V there
exists a unique x ∈ F (B) such that

v =
∑′

b∈B

x(b)b. (96)

Then by the linearity of f and f ′ follows

f(v) =
∑′

b∈B

f(x(b)b) =
∑′

b∈B

x(b)f(b) =
∑′

b∈B

x(b)f ′(b) =
∑′

b∈B

f ′(x(b)b) = f ′(v).

Therefore f(v) = f ′(v) for every v ∈ V and this means f = f ′. Thus the linear
map f is unique if it exists.

It remains to show that there indeed exists a linear map f : V → W extend-
ing f0: B → W in the requiret way. We do the proof in a constructive way by
de�ning f in the following way: if v ∈ V is an arbitrary vector, then we know that
there exists a unique x ∈ F (B) such that (96) holds. Set

f(v) :=
∑′

b∈B

x(b)f0(b).

Due to the uniquensess of x it follows that this de�nes a well de�ned map f : V →W .
We have to show that this map is linear and that it extends f0. This is left as an
exercise. �

In other words the above proposition states that a linear map f : V → W is
completely characterized by the images of an arbitrary basis B of V .

Example. Assume that

A :=


a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

am1 am2 · · · amn


is an arbitrary m×n matrix with coe�cients in a �eld F . Denote by v1, . . . , vn the
columns of the matrix A, which are then vectors of Fm. Then there exists precisely
one linear map

f : Fn → Fm

which maps the vectors e1, . . . , en of the standard basis of Fn to the vectors
v1, . . . , vn. If x ∈ Fn is an arbitrary vector

x =
n∑
i=1

xiei =

x1

...
xn
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then the value f(x) is given by

f(x) =
n∑
i=1

xivi =


a11x1 + a12x2 + . . . + a1nxn
a21x1 + a22x2 + . . . + a2nxn
...

...
...

am1x1 + am2x2 + . . . + amnxn


2. Isomorphisms and Isomorphism of Vector Spaces

Proposition 3.6. Let V , V ′ and V ′′ be three vector spaces over the same �eld F .
And let f : V → V ′ and g: V ′ → V ′′ be two isomorphisms. Then the composite map
g ◦ f : V → V ′′ and the inverse map f−1: V ′ → V are isomorphisms.

Proof. Left as an exercise. �

De�nition 3.7 (Isomorphismus of Vector Spaces). Let V and W be two vector
spaces over the same �eld F . Then we say that V is isomorphic to W (as F -vector
spaces) if there exists an isomorphism f : V → W . If V and W are isomorphic
vector spaces then we denote this fact in symbols by V ∼= W .

Note the above de�ned relation has the following properties: If V , V ′ and V ′′

are vector spaces over the same �eld F , then

(1) V ∼= V ,
(2) V ∼= V ′ ⇒ V ′ ∼= V ,
(3) V ∼= V ′ and V ′ ∼= V ′′ ⇒ V ∼= V ′′.

In mathematical terms the �rst property means that the relation �∼=� is re�exive, the
second property means that the relation �∼=� is symmetric and the third property
means that �∼=� is transitive. A relation which is re�exive, symmetric and transitive
is also called a equivalence relation.

The importance of the concept of isomorphic vector spaces is apparent: if
f : V → W is an isomorphism of vector spaces then every property of objects of
V which is based on the vector space structure is transfered automatically to the
coresponding images of those images in W . For example if b1, . . . , bn is a basis of V
then f(b1), . . . , f(bn) is a basis ofW . Such a claim does actually not need a seperate
proof since it is a consequence of the nature of an isomorphism. In future we will
not justify such kind of claims by more then saying �due to isomorphy reasons�. For
example due to isomorphy reason we have that if u1, . . . , un are vectors of V , then

rank(f(u1), . . . , f(un)) = rank(u1, . . . , un).

Examples. (1) Let v1, . . . , vn be a linearly independent system of vectors
in V and assume that f : V → W is an isomorphism of F -vector spaces.
Then f(v1), . . . , f(vn) is a linearly independent system of vectors of W .

Proof: Since v1, . . . , vn is a linearly independent system of vectors
it follos that they are all pairwise distinct vectors in V and since f is a
monomorphism it follows that also f(v1), . . . , f(vn) are pairwise distinct
vectors. Let a1, . . . , an ∈ F such that

a1f(v1) + . . .+ anf(vn) = 0. (97)

We want to show that this linear combination is infact the trivial linear
combination of the zero vector. Due to the lienarity of f we have that

0 = a1f(v1) + . . .+ anf(vn)

= f(a1v1) + . . .+ f(anvn)

= f(a1v1 + . . .+ anvn).
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Now f is a monomorphism and since f(0) = 0 and f(a1v1+. . .+anvn) = 0
we get that a1v1 + . . . + anvn = 0. But since v1, . . . , vn was assumed to
be a linearly independent system of vectors it follows that a1 = . . . =
an = 0. That is, the above linear combination (97) is actually the trivial
linear combination of the zero vector. Thus f(v1), . . . , f(vn) is a linearly
independent system of vectors in W . �

Note that we used in this proof only the fact that an isomorphism is a
monomorphism! Thus the result is also true if f is only a monomorphism.

(2) Let v1, . . . , vn be a generating system of V and assume that f : V →W is
an isomorphism of F -vector spaces. Then f(v1), . . . , f(vn) is a generating
system of W .

Proof: We have to show that every y ∈ W can be written as a linear
combination of the vectors f(v1), . . . , f(vn). Therefore let y ∈ W be an
arbitrary vector. Since f is an epimorphism it follows that there exist
x ∈ V such that y = f(x). Since v1, . . . , vn is a generating system of V it
follows that we can write

x = a1v1 + . . .+ anvn

with some elements a1, . . . , an ∈ F . But then by the linearity of f we
have that

y = f(x)

= f(a1v1 + . . .+ anvn)

= f(a1v1) + . . .+ f(anvn)

= a1f(v1) + . . .+ anf(vn)

and thus y is a linear combination of the vectors f(v1), . . . , f(vn). Since
this is true for any y ∈ W it follows that f(v1), . . . , f(vn) is a generating
system of W . �

Note also here, that we needed not the full �power� of an isomorphism.
We just used the fact that an isomorphism is an epimprphism. Thus the
result is also true if f is just an epimorphism.

(3) Let v1, . . . , vn be a basis of V and assume that f : V → W is an isomor-
phism of F -vector spaces. Then f(v1), . . . , f(vn) is a basis of W .

Proof: This follows now from the previous two results since a basis is
a linear independent generating system. �

Note that here we need the full �power� of an isomorphism: a linear
map f between two isomorphic vector spaces � in this case V and W �
maps a basis of V to a basis of W if and only if f is an isomorphism.

Proposition 3.8. Let V be a n-dimensional vector space over the �eld F . Let
B = (b1, . . . , bn) be an ordered basis of V . Then the map

iB : Fn → V,

x1

...
xn

 7→ x1b1 + . . .+ xnbn

is an isomorphism of vector spaces.

Proof. This follows straight from the considerations of the example on page 52
in the previous section. �
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We call the isomorphism iB of the previous proposition the basis isomorphism
of V with respect to the basis B. Its inverse

cB : V → Fn, x1b1 + . . .+ xnbn 7→

x1

...
xn


is called the coordinate isomorphism of V with respect to the basis B.

We can now prove a very strong result about �nite dimensional vector spaces
over the same �eld F , namely that they are characterized by their dimension.

Proposition 3.9. Let V and W be two �nite dimensional vector spaces over the
same �eld F . Then

V ∼= W ⇐⇒ dimV = dimW.

Proof. �⇒�: If V and W are two isomorphic vector spaces then they have
apparently the same dimension, that is dimV = dimW .1

�⇐� Assume that dimV = dimW , say both vector spaces are n-dimensional.
Then V has a �nite basis B with n elements and W has a �nite basis C with n
elements. Then we have the coordinate isomorphism cB : V → Fn of V with respect
to the basis B and the basis isomorphism iC : Fn → W of W with respect to the
basis C. Its composite is apparently an isomorphism

iC ◦ cB : V →W.

Therefore V ∼= W . �

Note that in general it is not (!) true that if dimV =∞ and dimW =∞, that
then V ∼= W . But one can show that V ∼= W if and only if there exists a bijective
map between a basis of V and a basis of W .

3. Dimension Formula for Linear Maps

De�nition 3.10. Let V and W be vector spaces over the same �eld F and let
f : V →W be a linear map. Then the kernel of f is the set

ker f := {x ∈ V : f(x) = 0}

and the image of f is the set

im f := {y ∈W : there exists a x ∈ V such that f(x) = y}.

The image and the kernel of a linear map f : V →W are not just subsets of V
and W , but share even more structure. We have namely the following result.

Proposition 3.11. Let V and W be vector spaces over the same �eld F and let
f : V → W be a linear map. Then ker f is a subspace of V and im f is a subspace
of W .

Proof. We show �rst that ker f is a subspace of V . First note that f(0) = 0
and therefore 0 ∈ ker f . In partitcular ker f is not empty. If x1, x2 ∈ ker f , then
f(x1 + x2) = f(x1) + f(x2) = 0 + 0 = 0 and thus x1 + x2 ∈ ker f . If x ∈ ker f
and a ∈ F , then f(ax) = af(x) = a0 = 0 and thus also ax ∈ ker f . Thus all the
requirements of the supspace criterion of Proposition 2.6 are stais�ed and it follows
that ker f is a subspace of V .

Next we show that im f is a subspace ofW . First of all it is clear that im f is not
empty since V is not empty. Next, if y1, y2 ∈ im f , then there exists x1, x2 ∈ V such

1Note that this holds also in the case that V and W are not �nite dimensional vector spaces.
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that f(x1) = y1 and f(x2) = y2. Then y1 +y2 = f(x1)+f(x2) = f(x1 +x2) ∈ im f
since x1 + x2 ∈ V . If y ∈ im f and a ∈ F then there exists a x ∈ V such that
f(x) = y and we have that ay = af(x) = f(ax) ∈ im f since ax ∈ V . Thus all the
requirements of the supspace criterion of Proposition 2.6 are stais�ed and it follows
that im f is a subspace of W . �

Proposition 3.12. Let V and W be vector spaces over the same �eld F and let
f : V →W be a linear map. Then the following two statements hold:

(1) f is a monomorphism if and only if ker f = 0.
(2) f is an epimorphism if and only if im f = W .

Proof. Note that the second claim is just the de�nition of an epimorphism.
Thus we need only to prove the �rst claim.

�⇒�: Let x ∈ ker f . Then f(x) = 0 = f(0) but this means that x = 0 since
f is assumed to be monomorphism. Therefore ker f = {0} is the trival zero vector
space.

�⇐�: Assume that ker f = {0} and let x, y ∈ V such that f(x) = f(y). Then
f(x − y) = f(x) − f(y) = 0 and thus x − y ∈ ker f . But since ker f = {0} this
means that x − y = 0 and this again is equivalent with x = y. Therefore f is a
monomorphism. �

Note that the above proposition simpli�es in a very essential way the veri�cation
whether a linear map is a monomorphism or not. By de�nition f : V → W is a
monomorphism if for every x, y ∈ V from f(x) = f(y) it follows that x = y. Now
using the fact that f is a linear map it it enough to just verify that f(x) = 0 implies
that x = 0!

Proposition 3.13. Let f : V → W be a linear map of F -vector spaces. Assume
that V is an n-dimensional vector space and that b1, . . . , bn is a basis of V . If one
sets

ui := f(bi)
for 1 ≤ i ≤ n, then

dim(im f) = rank(u1, . . . , un).

Proof. Due to the linearity of f we have for arbirary elements a1, . . . , an ∈ F
the equality

f
( n∑
i=1

aibi

)
=

n∑
i=1

aif(bi) =
n∑
i=1

aiui.

It follows that im f = span(u1, . . . , un). Thus the claim follows from Proposi-
tion 2.38 of Chapter 2. �

De�nition 3.14. Let V and W be arbitrary vector spaces (�nite or in�nite di-
mensional) over the same �eld F . Let f : V → W be a linear map. Then the rank
of f is de�ned to be

rank f := dim(im f).

Note that the above de�nition explicitely allows the case that rank f = ∞.
Further we have apparently the following two constraints on the rank of a linear
map:

rank f ≤ dimW and rank f ≤ dimV.

If W is a �nite dimensional vector space then we have apparently

rank f = dimW ⇐⇒ f is an epimorphism.



58 3. LINEAR MAPS

If V is a �nite dimensional vector space then one can show easily (left as an exercise)
that

rank f = dimV ⇐⇒ f is a monomorphism.

We will soon see that there is a connection between the rank of a linear map f
and the rank of a matrix A as de�ned in Chapter 2. This will then make the above
de�nition a very natural one (see Proposition 3.25).

Theorem 3.15 (Dimension Formula for Linear Maps). Let V and W be vector
spaces over the same �eld F . Assume that V is �nite dimensional and let f : V →W
be a linear map. Then ker f and im f are �nite dimensional subspaces of V and W
respectively and we have the equality

dimV = dim(im f) + dim(ker f). (98)

Proof. First of all note that ker f is �nite dimensional since it is a subspace
of a �nite dimensional space. Then there exists a linear complement U of ker f by
Theorem 2.40, that is there exists a subspace U of V such that

V = U + ker f and U ∩ ker f = 0.

Let g: U → W the restriction of f to the subspace U , that is let g be the linear
map

g: U →W, v 7→ g(v) := f(v).
Apparently we have for the image and the kernel of g the following relations:

im g = im f and ker g = 0.

It follows that g de�nes an isomorphism U ∼= im f . Since U is a subspace of the �nite
dimensional space V it follows that im f is �nite dimensional, too. Furthermore we
have due to the second part of Proposition 2.43

dimV = dimU + dim(ker f)

= dim(im f) + dim(ker f). �

Corollary. We can express the dimension formula for linear maps (98) also in the
form

rank f = dimV − dim(ker f). �

Note that the above corollary explains why the number dim(ker f) is also called
the defect of the linear map f . Furthermore the proof of the dimension formular
veri�es also the following useful result:

Proposition 3.16. Let V and W be arbitrary vector spaces over the �eld F and
let f : V → W be a linear map. If U is a linear complement of ker f then f maps
U isomorphicaly onto im f . �

Again we will show that linear maps between �nite dimensional have a very
rigid behavior. We have the following result which is true for �nite dimensional
vector spaces but not for in�nite dimensonal vector spaces.

Proposition 3.17. Let V and W be two vector spaces over the same �eld F .
Assume that V and W have the same �nite dimension. If f : V → W is a linear
map then the following three statements are equivalent:

(1) f is an isomorphism.
(2) f is a monomorphism.
(3) f is an epimorphism.

Proof. Left as an exercise. �
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4. The Vector Space HomF (V,W )

In this section we will study the structure of linear maps which is essential to
the deeper understanding of Linear Algebra. Linear maps are structure preserving
maps between vector spaces which map vectors to vectors. But they can also be
seen as vectors of suitable vector spaces.

Let V and W vector spaces over the same �eld F . Then we can consider the
set WV of all maps from V to W . In the same way as we de�ned in example 5
on page 23 a vector space structure on the set F I we can de�ne a vector space
structure on the set WV . If f, g ∈WV are two maps V →W , then we de�ne f + g
to be the map which is given by

(f + g)(v) := f(v) + g(v) (99)

for every v ∈ V . Similar if f ∈WV and a ∈ F , then af shall denote the map which
is given by

(af)(v) := af(v) (100)

for every v ∈ V . Apparently f + g ∈ WV and af ∈ WV and one convinces oneself
that with this addition and scalar multiplication WV becomes indeed a F -vector
space.

Proposition 3.18. Let f, g: V →W linear maps and a ∈ F . Then both f + g and
af are linear maps. In particular the set of all linear maps V → W is a subspace
of WV .

Proof. If u, v ∈ V and b ∈ F , then

(f + g)(u+ v) = f(u+ v) + g(u+ v)

= f(u) + f(v) + g(u) + g(v)

= (f + g)(u) + (f + g)(v)

and

(f + g)(bv) = f(bv) + g(bv)

= bf(v) + bg(v)

= b(f(v) + g(v))

= b(f + g)(v)

and therefore f + g is a linear map. Furthermore

(af)(u+ v) = af(u+ v)

= a(f(u) + f(v))

= af(u) + af(v)

= (af)(u) + (af)(v)

and

(af)(bv) = af(bv)

= abf(v)

= b(af)(v)

and thus also af is a linear map.
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The remaining claim that the set of all linear maps V → W is a subspace of
WV follows now using the subspace criterion from the above considerations and
the fact that there exists always at least the trivial linear map V →W . �

De�nition 3.19. Let V and W be vector spaces over the same �eld F . Then we
denote by

HomF (V,W )
the F -vector space of all linear maps from V to W .

Note that if there is no danger of confusion about the underlying �eld, then
we might ommit the �eld in the notation and just write Hom(V,W ) instead of
HomF (V,W ).

We come now to another essential point in this section. Let V , V ′ and V ′′ be
vector spaces over the same �eld F . If f ∈ HomF (V, V ′) and g ∈ HomF (V ′, V ′′)
then the composite map g ◦ f is by Proposition 3.3 a linear map

g ◦ f : V → V ′′,

that is g ◦ f ∈ HomF (V, V ′′). Thus we get a map

◦: HomF (V ′, V ′′)×HomF (V, V ′)→ HomF (V, V ′′), (g, f) 7→ g ◦ f.
This map assigns each pair (g, f) with f ∈ HomF (V, V ′) and g ∈ HomF (V ′, V ′′)
the composite map g ◦ f ∈ HomF (V, V ′′). We say that g ◦ f is the product of f
and g. If there is no danger of confusion we write also gf instead of g ◦ f :

gf := g ◦ f. (101)

The so de�ned �multiplication� of linear maps satis�es rules which are very similar
to the calculation rules we would expect from a multiplication. First of all the
following distributive laws hold:

g ◦ (f1 + f2) = g ◦ f1 + g ◦ f2 (102)

(g1 + g2) ◦ f = g1 ◦ f + g2 ◦ f (103)

where f, f1, f2 ∈ HomF (V, V ′) and g, g1, g2 ∈ HomF (V ′, V ′′). If furthermore h ∈
HomF (V ′′, V ′′′), then the following associative law holds:

h ◦ (g ◦ f) = (h ◦ g) ◦ f (104)

Moreover the multiplication of linear maps is in the following way compatible with
the scalar multiplication. If a ∈ F is an arbitrary element of the �eld F , then

a(g ◦ f) = (ag) ◦ f = g ◦ (af). (105)

For every vector space V we have the identity map idV : V → V which is always a
linear map and thus idV ∈ HomF (V, V ). For every linear map f : V → V ′ holds:

idV ′ ◦f = f ◦ idV . (106)

If there is no danger of confusion then we may leave away the index V of idV and
the above relation (106) reads then

id ◦f = f ◦ id . (107)

Note that the rules (104) and (106) are true in general for arbitrary maps.
The rules (102), (103) and (105) are veri�ed easily if one applies both sides of the
equality to an arbitrary element of x ∈ V and concludes that both sides have the
same element as the image. For example (102) is veri�ed as follows:

(g ◦ (f1 + f2))(x) = g((f1 + f2)(x)) = g(f1(x) + f2(x)) = g(f1(x)) + g(f2(x))

= (g ◦ f1)(x) + (g ◦ f2)(x) = ((g ◦ f1) + (g ◦ f2))(x).
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We shall explicitely note that the product of two (linear) maps f : V → V ′ and
g: W →W ′ is only de�ned if V ′ = W !

Now let us turn to the special case of the vector space HomF (V, V ). In this case
the the product fg := f ◦ g of two elements f, g ∈ HomF (V, V ) is always de�ned.
In addition to the addition �+� on HomF (V, V ) we can also de�ne a multiplication
�◦� on HomF (V, V ):

◦: HomF (V, V )×HomF (V, V )→ HomF (V, V ), (f, g) 7→ fg := f ◦ g (108)

Proposition 3.20. Let V be a vector space over the �eld F . Then the HomF (V, V )
becomes a ring (with unit) under the addition �+� and the above de�ned multipli-
cation �◦�.

Proof. Recall that we have de�ned in the previous chapter on page 21 a ring
to be a set together with an addition and multiplication which satis�es all �eld
axioms except (M2) and (M4).

Now the vector space axioms (A1) to (A4) are precisely the �eld axioms (A1)
to (A4). The calculation rule (104) veri�es the �eld axiom (M1). The identity map
idV is the identity element of the multiplication by the calculation rule (106) and
this veri�es the �eld axiom (M3). Finally the �eld axiom (D) is veri�ed by the
calculation rule (102) and (103). �

De�nition 3.21. An linear map f : V → V is said to be an endomorphism. The
ring HomF (V, V ) is also denoted by

EndF (V ) := HomF (V, V )

and called the endomorphism ring of the F -vector space V .

Note that we may ommit the �eld F in the above notation in case that there
is no danger of confusion, that is we may write End(V ) instead of EndF (V ). Note
further that EndF (V ) is in general not commutative nor is EndF (V ) in general zero
divisor free.

Note that in Proposition 3.20 and in De�nition 3.21 we have yet not paid
attention to the fact that we have also a scalar multiplication de�ned on EndF (V ) =
HomF (V, V ) for which the calculation rule (105) is satis�es.

De�nition 3.22 (F -Algebra). Let F be a �eld. A ring R with unit which is at
the same time also a F -vector space such that

a(gf) = (ag)f = g(af)

for every a ∈ F , g, f ∈ R, is called an algebra (with unit) over F or just an F -
algebra.

With this de�nition and since the endomorphism ring EndF (V ) is also a F -
vector space which satis�es the calculation rule (105) we can summerize the results
of this section in the follwing compact form.

Proposition 3.23. Let V be a vector space over the �eld F . Then the endomor-
phism ring EndF (V ) is in a natural way an F -algebra. �

5. Linear Maps and Matrices

We come now to a central part of Linear Algebra, namely the matrix description
of a linear map. We will only consider the case of linear maps between �nite
dimensional vectorspaces. Therefore let V and W be �nite dimensional vector
spaces over the same �eld F , say

dimV = n and dimW = m
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for some natural numbers n and m. Furthermore let

f : V →W

be a linear map from V to W . We �x an ordered basis B = (b1, . . . , bn) of V and a
ordered basis C = (c1, . . . , cm) of W . By Proposition 3.5 we know that the linear
map f is completely determined by the images

ai := f(bi) (i = 1, . . . , n)

of the basis vectors b1, . . . , bn under the map f . We can describe the images
a1, . . . , an ∈ W as unique linear combinations of the basis vectors c1, . . . , cm of
W . We have then

f(bi) = ai =
m∑
j=1

ajicj (i = 1, . . . , n) (109)

with some unique elements aji ∈ F . Therefore � after we have �xed a basis B for
V and a basis C for W � the linear map f : V → W is completely determined by
the matrix

A :=


a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

am1 am2 · · · amn

 (110)

It is a m× n-matrix with coe�cients in the �eld F . Due to (109) the colums of A
are precisely the coordinate vectors of a1 = f(b1), . . . , an = f(bn) with respect to
the basis c1, . . . , cm of W .

De�nition 3.24 (Coordinate Matrix of a Linear Map). Using the assumptions
and notation introduced above the m × n-matrix A de�ned by (109) is called the
coordinate matrix of the linear map f : V → W with respect to the bases B =
(b1, . . . , bn) and C = (c1, . . . , cm) of V and W .

Note that in the previous chapter we did arrange the coordinate coe�cients in
rows (see page 36). Since we use to write vectors in Fn in columns it is customary
to call the matrix A as de�ned above (and not its transpose tA as we did in the
previous chapter) the coordinate matrix of the system a1, . . . , an with respect of
the basis c1, . . . , cm. With this changed de�nition we can say that the coordinate
matrix of the linear map f : V → W with respect to the bases B and C of the
vector spaces V and W respectively is nothing else than the coordinate matrix of
the system of images f(b1), . . . , f(bn) with respect to the basis C of W .

Example. Consider the map f : R5 → R4 given by
x1

x2

x3

x4

x5

 7→


x1 + 3x2 + 5x3 + 2x4

3x1 + 9x2 + 10x3 + x4 + 2x5

2x2 + 7x3 + 3x4 − x5

2x1 + 8x2 + 12x3 + 2x4 + x5


This map is apparently linear and its coordinate matrix with respect to the standard
bases of R5 and R4 is

A =


1 3 5 2 0
3 9 10 1 2
0 2 7 3 −1
2 8 12 2 1
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Note that sometimes a �too precise� notation is more hindering than helpful. If
we denote the coordinate matrix of the linear map f by c(f), then we may express
the dependency of the coordinate matrix on the bases B and C in symbols by

cBC(f). (111)

But much more important (!) than this notation is that one is in principle aware
of the dependency of the coordinate matrix on the choice of bases!

Example. Let us return to the previous example. Let B be the standard basis of
R5 and consider the following basis C of R4:

c1 :=


1
3
0
2

 , c2 :=


0
0
1
1

 , c3 :=


0
−1
1
0

 , c4 :=


0
1
0
0


Then the coordinate matrix of the linear map f with respect to the bases B and C
calculates to

A′ =


1 3 5 2 0
0 2 2 −2 1
0 0 5 5 −2
0 0 0 0 0


(compare this with the example on page 10 in Chapter 1).

We are now able to explain the connection of the rank of a linear map f as
de�ned in De�nition 3.14 and the rank of a matrix as de�ned in Chapter 2.

Proposition 3.25. Let V and W be two �nite dimensional vector spaces. Let B
and C be bases of V and W respectively. Let f : V →W be a linear map and denote
by A the coordinate matrix of f with respect to the bases B and C. Then

rank f = rankA.

Proof. We have

rank f = dim(im f) (De�nition 3.14)

= rank(f(b1), . . . , f(bn)) (Proposition 3.13)

= rank(a1, . . . , an) (ai = f(bi) for 1 ≤ i ≤ n)

= rankA. (Proposition 2.45 together

with De�nition 2.50) �

We have seen that a linear map f : V → W of an n-dimensional F -vector
space V to an m-dimensional F -vector space W is � after choosing bases for V
and W � completely determined by a m×n-matrix. In order to be able to describe
the connection between linear maps and their coordinate matrices more precisely
we shall �rst study matrices a bit more in general.

Sofar we have just said that a m × n-matrix over a �eld F is a collection of
elements of F arranged into a rectangle with m rows and n columns. We shall give
now a more precise de�nition.

De�nition 3.26 (Matrix). Let F be a �eld and m,n ≥ 1 some natural numbers.
Denote by M and N the sets M := {1, . . . ,m} and N := {1, . . . , n}. By an m× n-
matrix A over F we understand a map

A: M ×N → F, (i, j) 7→ ai,j

which asigns each pair (i, j) of natural numbers 1 ≤ i ≤ m and 1 ≤ j ≤ n an
element ai,j of the �eld F .
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The set of all m× n-matrices over the �eld F is denoted by

Fm,n := FM×N . (112)

Note that if there is no danger of confusion, then we may write also aij instead
of ai,j .

From (112) follows that the set Fm,n obtains in a natural way a F -vector space
structure (see Example 5 on page 23 in the previous chapter). The addition and
scalar multiplication of m×n-matrices over F are therefore de�ned coe�cientwise.
That is

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

am1 am2 · · · amn

+


b11 b12 · · · b1n
b21 b22 · · · b2n
...

...
bm1 bm2 · · · bmn



=


a11 + b11 a12 + b12 · · · a1n + b1n
a21 + b21 a22 + b22 · · · a2n + b2n

...
...

am1 + bm1 am2 + bm2 · · · amn + bmn


and if c ∈ F then

c ·


a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

am1 am2 · · · amn

 =


ca11 ca12 · · · ca1n

ca21 ca22 · · · ca2n

...
...

cam1 cam2 · · · camn


If one assigns every m× n-matrix A as in (110) the mn-tuple

(a11, . . . , a1n, a21, . . . , a2n, . . . , am1 . . . , amn) ∈ Fmn

then one ovtains apparently an isomorphism of F -vector spaces. Thus we have

Fm,n ∼= Fmn.

In particular we have that
dimFm,n = mn.

Thus we can now say about the close connection between linear maps of �nite
dimensional vector spaces and matrices the following.

Theorem 3.27. Let V and W be �nite dimensional vector spaces over the same
�eld F with dimV = n and dimW = m. Let B be a basis of V and C be a basis of
W . If we assign each linear map f : V →W its coordinate matrix c(f) with respect
to the bases B and C, then we obtain an isomorphism

c: HomF (V,W )→ Fm,n

of the F -vector space of all linear maps V → W onto the F -vector space of all
m× n-matrices over F .

Proof. We known already that the coe�cients of the coordinate matrix of
a linear map f : V → W describes the linear map f in a unique way. From this
follows that c is an injective map. The linearity of the map c is evident. And that
the map c is surjective follows from Proposition 3.5. �

Corollary. If V is a F -vector space of dimension n and if W is a F -vector space
of dimension m, then

dim(HomF (V,W )) = mn. �
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The isomorphism from Theorem 3.27 gives a one-to-one correspondence

HomF (V,W ) ∼= Fm,n (113)

but since the isomorphism c and therefore the one-to-one correspondence depends
essentially on the choice of the bases B and C for the vector spaces V and W
this isomorphism is not suitable for identifying linear maps f : V → W with their
coordinate matrices. There is general simply no canonical way to choose one set of
bases over another one.

The situation is di�erent if one considers linear maps from Fn to Fm. For
those vector spaces exists a natural choice for a basis, namely the standard basis of
Fn and Fm. Therefore we can and do identify the linear maps f : Fn → Fm with
their coordinate matrices A := c(f) with respect to the standard basis of Fn and
Fm. Using this identi�cation we get the equality

HomF (Fn, Fm) = Fm,n. (114)

Note the di�erence between (113) and (114): the �rst one is an isomorphism
of vector spaces, the latter an equality (after identi�cation). The equality of (114)
is much stronger than the isomorphism of (113)!

Using this identi�cation we can express the de�nition of the coordinate matrix
of a linear map in the special case of V = Fn and W = Fm in the following way.

Proposition 3.28. The columns of a m×n-matrix A over F are in turn the images
of the canonical unit vectors e1, . . . , en of Fn under the linear map A: Fn → Fm.

�

We can visualize the content of Theorem 3.27 with the help of the following
�commutative diagram�

V W

Fn Fm

//
f

OO� � � � � � � � � �

iB

//A

OO� � � � � � � � � �

iC (115)

where the vertical arrows denote the basis isomorphisms iB and iC for the chosen
bases B for V and C for W (see page 56). That the diagram (115) commutes
means that regardless which way one follows the arrows in (115) from Fn to W the
corresponding composite maps agree. That is

f ◦ iB = iC ◦A.

One proves this by applying both sides of this equality to an arbitrary vector ei of
the standard basis of Fn and one obtains the equality (109).

Note that from (115) follows that

A = i−1
C ◦ f ◦ iB

and

f = iC ◦A ◦ i−1
B .

and if one use the coordinate isomorphisms cB and cC , then

A = cC ◦ f ◦ c−1
B
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or if one wants to use the notation introduced by (111) then one has

cBC(f) = cC ◦ f ◦ c−1
B .

Now since we identi�ed the vector space of m× n-matrices over a �eld F with
the vector space HomF (Fn, Fm) of all linear maps Fn → Fm the natural questions
arises how to calculate the image of a vector x ∈ Fn under a given matrix A = (aij).
The answer to this question is given in the following result.

Proposition 3.29. Let A = (aij) be a m × n-matrix over the �eld F . Then we
can describe the linear map A: Fn → Fm explicitely in the following way: assume
that

y = A(x) with x ∈ Fn and y ∈ Fm.
Then we can determine the coordinates yi of y using the coordinates xj of x by the
following formula

yi =
n∑
j=1

aijxj i = 1, . . . ,m. (116)

Proof. Let e1, . . . , en be the canonical vectors of the standard basis of Fn.
By de�nition we have then

A(ej) =

a1j

...
amj

 , j = 1, . . . , n.

If we apply the linear map A to the element

x =
n∑
j=1

xjej

then we get due to the linearity of A

y = A(x) = A
( n∑
j=1

xjej

)
=

n∑
j=1

xjA(ej)

and thus  y1
...
ym

 =
n∑
j=1

xj

a1j

...
amj

 =
n∑
j=1

a1jxj
...

amjxj


From this one can then read then the claim. �

Compare (116) with (109) on page 62!
Note that we can write now a linear system of equations in a very compact

way. Assume that we have given a non-homogeneous system of m linear equations
in n unknown variables

x1v1 + . . .+ xnvn = b.

Let A be the simple coe�cient matrix of this system, which is then a m×n-matrix
over some �eld F . Then we can write the system of linear equations in the compact
form

A(x) = b.

Apparently the system is solveable if and only if b ∈ imA. In case b = 0 the
solutions M form a linear subspace of Fn, namely M = kerA, and its dimension is
dim(kerA). In the end of this chapter � see Section 12 on page 88 � we will have a
closer look on the content of Chapter 1 in this new view.
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6. The Matrix Product

We come now to a complete new point and it will be the �rst time that we go
esentially beyond the content of Chapter 1. Because of (114) we are able to de�ne
a product of matrices of suitable dimensions.

De�nition 3.30 (Matrix Product). Let F be a �eld and l,m, n ≥ 1 natural num-
bers. For A ∈ F l,m and B ∈ Fm,n we de�ne the product AB of A and B to be the
composite map

AB := A ◦B
which is an element of F l,n.

Note that the content of the above de�nition can be visualized with the follow-
ing commutative diagram:

Fm

Fn F l
��

?????????
A

??���������

B

//
AB

Again arises as a natural question how we can compute the the coe�cents of
the product matrix AB using the coe�cients of the matrices A and B. The answer
is given by the following theorem.

Theorem 3.31 (Formula for the Matrix Product). Let A = (aqp) ∈ F l,m and

B = (brs) ∈ Fm,n be two given matrices. Let C := AB ∈ F l,n be the product
matrix of A and B. Then the coe�cients cij of the matrix C are given by the
formula

cij =
m∑
k=1

aikbkj , 1 ≤ i ≤ l, 1 ≤ j ≤ n. (117)

Proof. Let e1, . . . , en the vectors of the standard basis of Fn. By de�nition
we have then

C(ej) =

c1j...
clj

 , j = 1, . . . , n. (118)

We have to determine the images C(ej) of ej under the linear map C = AB. By
the de�nition of the matrix product we have

C(ej) = A(B(ej)).

For the B(ej) we have � analogous to (118) � by de�nition

B(ej) =

 b1j
...
bmj

 , j = 1, . . . , n. (119)

We can now use the result of Proposition 3.29 to determine the coordinates of the
images C(ej) of the vectors B(ej) under the linear map A. Using (116) on (119)
yields indeed

cij =
m∑
k=1

aikbkj , 1 ≤ i ≤ l

and this is true for 1 ≤ j ≤ n. Thus we have proven (117). �
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Note that the matrix product AB of A with B is only (!) de�ned if the number
of rows of the matrix A is equal to the number of columns of the matrix B.

If A: Fn → Fm is a linear map and

y = A(x)

with

x =

x1

...
xn

 ∈ Fn, y =

 y1
...
ym

 ∈ Fm, (120)

then by Proposition 3.29 we have the equalities

yi =
n∑
i=1

aijxk, i = 1, . . . ,m. (121)

One can consider the vectors x and y in (120) as matrices of a special form, namely
x can be considered as a n× 1-matrix and y can be considered as a m× 1-matrix.
Then the matrix product Ax of the matrices A and x is de�ned and (121) states �
with regard to (117) � that

y = Ax.

A special case of Theorem 3.31 is the multiplication of a 1 × m-matrix (also
called row vector) with a m × 1-matrix (that is column vector). In this case we
have then

(a1, . . . , am)

x1

...
xm

 =
m∑
i=1

aixi = a1x1 + . . .+ amxm. (122)

Thus we can also describe the content of Theorem 3.31 as follows: the coe�cient
cij of the matrix C = AB is the product of the i-th row of the matrix A with the
j-th column of the matrix B. Here the product of the i-th row and j-th column of
A and B is calculated by the formula (122).

Example. (
2 6 3
1 3 5

)2
1
3

 =
(

2 · 2 + 6 · 1 + 3 · 3
1 · 2 + 3 · 1 + 5 · 3

)
=
(

19
20

)

Consider the linear map f : V → W of the n-dimensional F -vector space V to
the m-dimensional F -vector space W . Let B = (b1, . . . , bn) be a basis of the vector
space V and C = (c1, . . . , cm) be a basis of the vector space W . Let

x =
n∑
i=1

xibi

be an arbitrary vector of V . Then x has with respect to the basis b1, . . . , bn the
coordinate vector

x̃ :=

x1

...
xn

 ∈ Fn.
that is x̃ = cB(x) = i−1

B (x). Denote then by y the image of x under the linear
map f , that is

y := fx.
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Denote by

ỹ :=

 y1
...
ym

 ∈ Fm
the coordinate vector of y with respect to the basis c1, . . . , cm of W , that is ỹ =
cB(y) = i−1

B (y). Let A = (aij) the coordinate matrix of f with respect to the bases
B and C. Then it follows from the commutative diagram (115) and the above
considerations that

ỹ = Ax̃.

That is for the coordinates hold the equation (121), namely

yi =
n∑
i=1

aijxk, i = 1, . . . ,m.

Apparently we have the following result about the composite map of two linear
maps.

Proposition 3.32. The product � that is the composite map � of linear maps be-
tween �nite dimensional vector spaces corresponds to the product of their coordinate
matrices.

More precisely: Let V , V ′ and V ′′ be �nite dimensional vector spaces over the
same �eld F , say

dimV = n, dimV ′ = m and dimV ′′ = l.

Furthermore let B be a basis of V , C a basis of V ′ and D a basis of V ′′. If
f : V → V ′ and g : V ′ → V ′′ are linear maps, then for the coordinate matrix A′′ of
the composite map g ◦ f : V → V ′′ with respect to the basis B of V and D of V ′′

holds the equality

A′′ = A′A

where A is the coordinate matrix of f with respect to the bases B and C and A′ is
the coordinate matrix of g with respect to the bases C and D. �

We can visualize the content of the above proposition in a nice way with a
commutative diagram, namely

V V ′ V ′′

Fn Fm F l

//
f

//
g

//
A

OO� � � � � � � � �

iB

//

A′

OO� � � � � � � � �

iC

OO� � � � � � � � �

iD (123)

Here the vertical arrows denote in turn the basis homomorphisms iB , iC and iD.
To be very precise, the previous proposition states that actually the diagram

V V ′

Fn F l

//
gf

//

A′′=A′A

OO� � � � � � � � �

iB

OO� � � � � � � � �

iD (124)
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commutes, that is (gf) ◦ iB = iD ◦ (A′A). But the commutativity of this diagram
follows apparently from the commutativity of the diagram (123). Formaly we can
convince oursel with the following calculation:

(gf) ◦ iB = (g ◦ f) ◦ iB = g ◦ (f ◦ iB) = g ◦ (iC ◦A) = (g ◦ iC) ◦A
= (iD ◦A′) ◦A = iD ◦ (A′ ◦A) = iD ◦ (A′A).

Using the notation introduced in (111) we can express the content of the pre-
vious proposition by

cBD(gf) = cCD(g) · cBC(f). (125)

One can use the follwing help to memorize this:

B

D
=
6C
D
· B
6C

Now from (114) follows that the calculation rules for linear maps transfer in a
natural way to matrices. In particular we have the following rules

A(B1 +B2) = AB1 +AB2 (126)

(A1 +A2)B = A1B +A2B (127)

a(AB) = (aA)B = A(aB) (a ∈ F ) (128)

A(BC) = (AB)C (129)

in case the matrix product is de�ned, that is matrices have the right dimensions.
Of course one can verify those rules for matrix multiplicaton just by using the

formula for matrix multiplication as given in Theorem 3.31, The rules (126), (127)
and (128) are then evident, and even the veri�cation of (129) is not di�cult but
rather a bit cumbersom and � as said � unnecessary.

Note that the role of the identity map idV of an n-dimensional F -vector space V
is taken in the case of the matrices by the n× n-identity matrix

In :=


1 0

1
. . .

0 1

 , In = idFn , (130)

whose colums are in turn the elements e1, . . . , en of the canonical basis of Fn. For
every A ∈ Fm,n holds

ImA = A = AIn. (131)

Note that it is often customary to leave away the index n in the notation for the
identity matrx In, of course only if there is no danger of confusion. Thus (131) can
also be written as

IA = A = AI. (132)

7. The Matrix Description of EndF (V )

Let us turn our attention once again to the case of the linear �self mappings�
of an n-dimensional F -vector space V , that is endomorhpsism

f : V → V

of V and their matrix description.
It follows from Proposition 3.23 that the n× n-matrices

Fn,n = HomF (Fn, Fn) = EndF (Fn)

form a F -algebra. This F -algebra has numerous applications and this motivates
the next de�nition.
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De�nition 3.33. Let F be a �eld and n ≥ 1 a number. Then F -algebra Fn,n is
called the algebra of the n× n-matrices over F and it is denoted in symbols by

Mn(F ) := Fn,n.

Note that the algebra of the n × n-matrices over F is sometimes also called
the (full) matrix ring of degree n over F . Apparently the identity element of the
multiplication in Mn(F ) is the n × n-identity matrix In. The elements of Mn(F )
are also called square matrices (of degree n). As a F -vector space Mn(F ) has
dimension n2.

We use the notation of Theorem 3.31 but this time we set W = V and B = C.
In particular this means that we will use one and the same basis B = (b1, . . . , bn) for
the range and the image for the matrix description of any enodmorphism f : V → V .
The coordinate matrix A = (ars) of the endomorphism f with respect to the basis
B is then de�ned by

f(bi) =
n∑
j=1

ajibj (i = 1, . . . , n). (133)

Compare this with (109)! As a linear map the matrix A is the endomorphism A of
Fn which makes the diagram

V V

Fn Fn

//
f

��
� �
� �
� �
� �
� �
�

cB

��
� �
� �
� �
� �
� �
�

cB

//
A

where the vertical arrows are the coordinate isomorphisms cB : V → Fn. Using the
notation introduced in (111) we have

A = cBB(f).

But we shall also use the notation

A = cB(f)

to denote the coordinate matrix A of the endomorphism f : V → V with respect to
the basis B of V . If now f and g are endomorphisms of V which have the coordinate
matrices A and A′ respectively with respect to the basis B, then the coordinate
matrix of the endomorphism fg = f ◦ g with respect to the same basis B is given
by the product AA′. Using the above introduced notation we get therefore

cB(fg) = cB(f)cB(g).

This is a straight consequence of Proposition 3.32, but compare the result also
with (125)! Furthermore hold

cB(idV ) = In.

In order to summarize the matrix description of endomorphisms in a suitable
compact way let us de�ne �rst what we mean by an ismorphism of F -algebras.
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De�nition 3.34. Let R and S be algebras (with unit) over a �eld F . A linear map
ϕ: R → S is said to be a homomorphism of F -algebras if it satis�es the following
two conditions:

(1) ϕ(fg) = ϕ(f)ϕ(g) for all f, g ∈ R.
(2) ϕ(1) = 1.

If ϕ is bijective, then ϕ is called an isomorphism of F -algebras (and then also the
inverse map ϕ−1: S → R is an isomorphism of F -algebras). Two F -algebras R
and S are said to be isomorphic (as F -algebras) if there exists an isomorphism
ϕ: R→ S of F -algebras and in symbols this fact is denoted by R ∼= S.

Theorem 3.35. Let V be a n-dimensional vector space over the �eld F and let
B = (b1, . . . , bn) be a basis of V . Then the map

cB : EndF (V )→Mn(F ),

which assigns each endomorphism f of V its coordinate matrix with respect to the
basis B of V , is an isomorphism of F -algebras. In particular

EndF (V ) ∼= Mn(F ) (as F -algebras).

Note that we did know already that EndF (V ) ∼= Mn(F ) as vector spaces but
now we also know that they are also isomorphic as F -algebras. This is a stronger
result since a vector space isomorphism between F -algebras is not necessarily a
isomorphism of F -algebras!

8. Isomorphisms (Again)

Proposition 3.36. Let V and W be arbitrary vector spaces over the same �eld F .
Then a linear map f : V →W is an isomorphism if and only if there exists a linear
map g: W → V such that

g ◦ f = idV and f ◦ g = idW . (134)

Proof. �⇒�: If f : V → W is an isomorphism, then f is by de�nition a
bijective map. Thus there exists the inverse map f−1: W → V and this map is
an isomorphism by Proposition 3.6. If we set g := f−1, then apparently (134) is
satis�ed.

�⇐�: If g is a linear map which satis�es (134) then f is apparently bijective
and thus an isomorphism. �

For �nite dimensional vector spaces we have the following result.

Proposition 3.37. Let V be a n-dimensional and W an m-dimensional vector
space over the same �eld F . Then for a linear map f : V → W the following
statements are equivalent:

(1) f is an isomorphism.
(2) We have m = n and rank f = n.
(3) If A is the coordinate matrix of f with respect to some bases of V and W ,

then the linear map A: Fn → Fm is a isomorphism.

Proof. �(1) ⇒ (2)�: If f is an isomorphism, then W = im f and dimW =
m = n and rank f = dim(im f) = dimW = n.

�(2) ⇒ (1)�: We have rank f = dimV and rank f = dimW . Then from the
notes made after the De�nition 3.14 it follows from the �rst equality that f is
a monomorphism and from the latter equality that f is an epimorphism. Thus
alltogether we have shown that f is an isomorphism.
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�(1) ⇒ (3)�: From the commutativity of the diagram (115) we have that A =
cC ◦ f ◦ iB where iB is the basis isomorphism with respect to the basis B of V
and cC = (iC)−1 is the coordinate isomorphism of W with respect to the basis
C of W . Thus A is a isomorphism since it is the composite of three isomorphism
(Proposition 3.6).

�(3)⇒ (1)�: Similar as above, but now we can write f = iC ◦A◦cB as the com-
posite of three isomorphisms and therefore f is an isomorphism by Proposition 3.6.

�

Now Proposition 3.37 states that a linear map A: Fn → Fm is an isomorphism
if and only if n = m and the matrixs A has rank n. In this case there exists
the inverse map which we denote by A−1. We are not yet able to express the
coe�cents of A−1 in terms of the coe�cents of the matrix A as we need for this a
new theoretical approach.2 But we will soon describe an algorithm based on the
Gauss algorithm to calculate the coe�cients for the matrix A−1 from the matrix A.

De�nition 3.38. We say that a matrix A ∈ Fn,n is invertible if the linear map
A: Fn → Fn is an isomorphism. The inverse matrix A−1 of an invertible matrix
is the inverse linear map A−1: Fn → Fn.

Note that apparently the inverse matrix of an invertible matrix is again invert-
ible. Furthermore note that we have from the commutativity of diagram (115) that
if f : V →W is an isomorphism, then

cCB(f−1) = (cCB(f))−1.

9. Change of Bases

Now we have already many times repeated that the coordinate matrix of a
linear map f : V → W depends very much on the chosen bases B and C of the
vector spaces V and W respectively. We shall now study this dependency more
closely.

De�nition 3.39 (Transition Matrix). Let V be an n-dimensional vector space over
the �eld F . Let B = (b1, . . . , bn) and B′ = (b′1, . . . , b

′
n) be two bases of V . Then

there exists unique elements sji ∈ F such that

b′i =
n∑
j=1

sjibj , i = 1, . . . , n. (135)

Then the n× n-matrix

S :=


s11 s12 . . . s1n
s21 s22 . . . s2n
...

...
sn1 sn2 . . . snn


is called the transition matrix from B to B′.

2With the help of determinants we will be able to formulate the Cramer rule for matrix
inversion.
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From De�nition 3.24 and (109) we have that the diagram

V V

Fn Fn

//
idV

OO� � � � � � � � � � �

iB′

//S

OO� � � � � � � � � � �

iB (136)

is commutative, where iB and iB′ denote the coordinate isomorphism corresponding
to the bases B and B′ of the vector space V . Thus S is just the coordinate matrix
of the identity map idV with respect to the bases B′ and B (note the order in which
the bases are mentioned!). That is

S = cB
′

B (idV ). (137)

In particular this means by Proposition 3.37 that S is invertible, that is S: Fn → Fn

is an isomorphism. Now from the commutativity of the diagram (136) one concludes
� since cB = i−1

B and cB′ = i−1
B′ � that the diagram

V

Fn Fn
����������
cB′

��
????????

cB

//S

commutes. Thus for every vector

v =
n∑
i=1

xibi =
n∑
i=1

x′ib
′
i

in V holds cB(v) = ScB′(v), that isx1

...
xn

 = S

x
′
1
...
x′n


So we have for the coordinates of v with respect to bases B and B′ the transfor-
mation equation

xi =
n∑
j=1

sijx
′
j , i = 1, . . . , n.3

Note further that from the commutativity of the diagram (136) it follows that
if S is the transformation matrix from B to B′, then S−1 is the transformation
matrix from B′ to B.

Consider still the notations and conditions of De�nition 3.39. There exists
precisely one linear map

f : V → V

such that f(bi) = b′i for 1 ≤ i ≤ n (Proposition 3.5). It follows from (135) that the
transition matrix S of B to B′ is at the same time the coordinate matrix of the
endomorphism f of V with respect to the basis B, that is

S = cB(f) = cBB(f).

3Note the coe�cients sij in this sum are indeed correct! Compare this with (135) where the

coe�cients sji are used!
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The isomorphism g := f−1: V → V which now maps the basis B′ to the basis B
has then � as an endomorphism of V � the coordinate matrix S−1 with respect to
B, that is

S−1 = cB(g) = cBB(g).

Furthermore we obtain straight from the de�nition the equalities cBB′(f) = I =
cB

′

B (g) and if one applies f to (135) one obtains S = cB
′

B′(f).
Moreover, the transition matrix from the canonical standart basis e1, . . . , en of

Fn to an arbitrary basis s1, . . . , sn of Fn is apparently the matrix

S = (s1, . . . , sn)

which columns are precisely the vectors s1, . . . , sn.

Theorem 3.40 (Transformation of the Coordinate Matrix under Change of Bases).
Let V and W be two �nite dimensional vector spaces over the same �eld F , say
dimV = n and dimW = m. Let B and B′ bases of the vector space V and let
C and C ′ be bases of the vector space W . Assume that f : V → W is a linear
map which has with respect to the bases B and C the coordinate matrix A, then the
coordinate matrix A′ of f with respect to the bases B′ and C ′ is given by

A′ = T−1AS (138)

where S is the transition matrix from B to B′ and T is the transition matrix from
C to C ′.

Proof. Consider the diagram

V W

V W

Fn Fm

Fn Fm

//
f

��
??????????

idV

������������
idW

//
f

//A

OO

iB

OO

iC

OO

iB′

??����������

S

//A′

OO

iC′

__??????????

T

(139)

We claim that this diagram is commutative. The small inner square of this di-
agram commutes by the de�nition of the matrix A. And likewise the big outer
square of this diagram commutes by the de�nition of the matrix A′. The the upper
trapezoid is trivially commutative. The left and right trapezoids are the commuta-
tive diagrams (136). Now the veri�cation of the commutativity of remaining lower
trapezoid is simple:

A′ = (iC′)−1 ◦ f ◦ iB′ (outer square)

= T−1 ◦ i−1
C ◦ idW ◦f ◦ iB′ (right trapezoid)

= T−1 ◦ i−1
C ◦ f ◦ idV ◦iB′ (upper trapezoid)

= T−1 ◦ i−1
C ◦ f ◦ iB ◦ S (left trapezoid)

= T−1 ◦A ◦ S (inner square) �
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If one uses the notation (111) we can � using (137) � write the content of
Theorem 3.40 in the intuitive form

cB
′

C′(f) = cCC′(id) cBC(f) cB
′

B (id) (140)

since S = cB
′

B (id) and T = cC
′

C (id).
Applying Theorem 3.40 to matrices seen as linear maps we get the next result.

Proposition 3.41. Let A be a m×n-matrix with coe�cients in the �eld F . Then
the coordinate matrix A′ of the linear map A: Fn → Fm with respect to arbitrary
bases (s1, . . . , sn) and (t1, . . . , tm) of the vector spaces Fn and Fm respectively is
given by

A′ = T−1AS (141)

where S is the n × n-matrix with columns s1, . . . , sn and T is the m × m-matrix
with columns t1, . . . , tm.

Proof. With respect to the canonical bases of Fn and Fm the coordinate
matrix of the linear map A: Fn → Fm is precisely the matrix A. Now the claim
of the proposition follows from Theorem 3.40 and the note on page 75 regarding
the interpretation of the transition matrix from the standard basis to an arbitrary
basis. �

We shall re-state Theorem 3.40 in the special case of an endomorphism and that
we consider only coordinate matrices with respect to the same bases for domain
and co-domain of the endomorphism.

Theorem 3.42 (Change of Coordinates for Endomorphisms). Let V be a vector
space over the �eld F with dimV = n. Let B and B′ be bases of V . If f has with
respect to the basis B the coordinate matrix A, then the coordinate matrix A′ of f
with respect to the basis B′ is given by

A′ = S−1AS (142)

where S is the transition matrix of B to B′. In particular we have for quadratic
matrices the following result.

If A is a n× n-matrix over F , then the coordinate matrix A′ of the endomor-
phism A: Fn → Fn with respect to an arbitrary basis s1, . . . , sn of Fn is

A′ = S−1AS

where S is the n× n-matrix with the columns s1, . . . , sn. �

10. Equivalence and Similarity of Matrices

The transformation properties of matrices under change of bases which has been
described in Theorem 3.40 and Theorem 3.42 introduce a new, ordering aspect for
matrices. For example, Theorem 3.40 states if A and A′ are m × n-matrices over
the �eld F such that there exists invertible matrices S ∈ Fn,n and T ∈ Fm,m such
that

A′ = T−1AS (143)

then we may see the matrices A and A′ to be in a certain way �eqvivalent� to each
other. Due to Theorem 3.40 we can regard A and A′ to belong to one and the
same linear map f : V → W (with respect to di�erent bases). Similar is true for
quatratic matrices A and A′ in Fn,n. If we have for some invertible S ∈ Fn,n the
equality

A′ = S−1AS (144)
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then A and A′ can be seen as coordinate matrices of one and the same endomor-
phism f : V → V (with respect to di�erent bases of V ). Now these considerations
motivates the following de�nition.

De�nition 3.43 (Equivalence and Similarity of Matrices). Let F be a �eld.

(1) If A,A′ ∈ Fn,m then we say that A is equivalent with A′ in Fn,m, and we
denote this fact in symbols by

A ∼ A′,
if there exists invertible matrices S ∈ Fn,n and T ∈ Fm,m such that the
equality (143) is satis�ed.

(2) If A,A′ ∈ Fn,n then we say that A is similar to A′ in Fn,n, and we denote
this fact in symbols by

A ≈ A′,
if there exists an invertible matrix S ∈ Fn,n such that the equality (144)
is satis�ed.

We shall explicitly put the following result on record again.

Proposition 3.44. (1) Two matrices A,A′ ∈ Fm,n are equivalent if and only
if there exists a linear map f : V →W between an n-dimensional F -vector
space V and an m-dimensional F -vector space W such that both A and
A′ appear as coordinate matrices of f with respect to suitable bases for V
and W .

(2) Two matrices A,A′ ∈ Fn,n are equivalent if and only if there exists an
endomorphism f : V → V of an n-dimensional F -vector space V such that
both A and A′ appear as coordinate matrices of f with respect to suitable
bases for V .

Proof. (1) �⇐�: If A and A′ are coordinate matrices of one and the
same linear map f then A ∼ A′ according to Theorem 3.40.

�⇒�: We assume that A ∼ A′, that is there exists invertible matrices
S ∈ Fn,n and T ∈ Fm,m such that A′ = T−1AS. Let (s1, . . . , sn) be the
system of the columns of the matrix S and let (t1, . . . , tm) be the system
of the columns of the matrix T . Then according to Proposition 3.41 the
linear map A: Fn → Fm has the coordinate matrix A′ with respect to
the bases (s1, . . . , sn) and (t1, . . . , tm) of Fn and Fm respectively. But the
same linear map has the coordinate matrix A with respect to the standard
bases of Fn and Fm. Thus there exists a linear map such that both A and
A′ appear as the coordinate matrix this linear map and this concludes the
proof of the �rst part of the proposition.

(2) The second part of the proposition is proven the same way as the �rst
part. �

Note that the relation �∼� on Fm,n which we have introduced in De�nition 3.43
is an equivalence relation (see page 54). That is, for every A,A′, A′′ ∈ Fn,m hold
the following three statements.

(1) A ∼ A (�re�exivity�)
(2) A ∼ A′ ⇒ A′ ∼ A (�symmetry�)
(3) A ∼ A′ and A′ ∼ A′′ ⇒ A ∼ A′′ (�transitivity�)

Similarly the similarity relation �≈� on Fn,n is an equivalence relation.
Now the natural question is how can one decide easily whether two m × n-

matricesA andB over a �eld F are equivalent. The next result will give a exhaustive
answer to this question.
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Proposition 3.45. Let F be a �eld. Then the following two statements are true.

(1) Every matrix A ∈ Fm,n is equivalent to precisely one matrix of the form

1 0 0 · · · · · · 0

0 1 0
...

0 0 1
... 0

...
. . .

...
...

. . . 0
0 0 0 · · · 0 1

0 0


∈ Fm,n (145)

where the upper left part of this matrix is the r × r-identity matrix and r
is a certain natural number 0 ≤ r ≤ m,n. In this case rankA = r.

(2) The matrices A and B of Fm,n are equivalent if and only if rankA =
rankB.

Proof. (1) Consider the linear map A: Fn → Fm. Set r := dim(imA) =
rankA. Then dim(kerA) = n− r. Let br+1, . . . , br be a basis of kerA. By
the Basis Extension Theorem 2.36 we can extend this to a basis b1, . . . , br
of Fn. Set ci := Abi for i = 1, . . . , r. Then c1, . . . , cr is a linear indepen-
dent subset of Fm and again using Theorem 2.36 we can extend this set
to a basis c1, . . . , cm of Fm. Then we have

A(bi) = ci (1 ≤ i ≤ r) and A(bi) = 0 (r + 1 ≤ i ≤ n).

Thus the coordinate matrix of the linar map A with respect to the above
constructed bases for Fn and Fm is precisely of the form (145). It follows
that

A ∼
(
Ir 0
0 0

)
. (146)

with r = rankA. The uniqueness will follow from the next part.

(2) �⇒�: If A ∼ B then by Proposition 3.44 there exists a linear map f : V →
W such that both matrices A and B appeare as coordinate matrices of
f with respect to suitable bases for V and W . Then rankA = rank f =
rankB by Proposition 3.25. In particular

A 6∼
(
Ir 0
0 0

)
if r 6= rankA and this completes the proof of the �rst part of the propo-
sition.

�⇐�: If r := rankA = rankB, then by the �rst part it follows that
both A and B are equivalent to a matrix of the form (146). But then by
the transitivity of the relation �∼� it follows that A ∼ B. �

Proposition 3.45 classi�es all m×n-matrices upto equivalence of matrices: two
matrices of Fm,n are equivalent if and only if they have the same rank. More over
the proposition states, that in every class of matrices which are equivalent to each
other exists precisely one matrix of the form (145). Therefore every equivalence
class of such matrices can be labeled with a �representative� of such a class, which



11. THE GENERAL LINEAR GROUP 79

is outstanding before all other members of this class, namely(
Ir 0
0 0

)
,

a representative which has a very simple form. This simple matrix which represents
the class of all m × n-matrices with rank r over the �eld F is called the normal
form of this class.

The problem we have discussed above is an example of a classi�cation problem
which are encountered frequently in mathematics. Of course classi�cation problems
do in general have such a simple solution even if there exists a complete solution to
a given problem.

We have classi�ed all m×n-matrices over a �eld F upto equivalence. A natural
question is whether we can classify all quadratic n × n-matrices up to similarity.
How would a normal form for such a class look like? But this problem is much
harder to solve and in this lecture we will not develope the tools which are needed
to give an answer to this problem.

11. The General Linear Group

We begin this section with a small excursion to the world of Algebra. Recall
De�nition 2.3 where we de�ned a ring (with unit). If R is a ring then we say that
an element a ∈ R is invertible (in R) if there exists a b ∈ R such that

ab = 1 and ba = 1.

We denote the set of all invertible elements of a ring R by R×, that is we de�ne

R× := {a ∈ R : a is invertible}.

The elements of R× are called the units of the ring R. If a is a unit and b ∈ R
such that ab = 1 and ba = 1, then we call b the (multiplicative) inverse of a. Note
that if a ∈ R is invertible then its multiplicative inverse is uniquely de�ned. It is
customary to denote this unique multiplicative inverse element of a by �a−1�.

Examples. (1) Consider the ring of integers Z. The only two invertible ele-
ments in Z are 1 and −1. Thus Z× = {1,−1}.

(2) Let F be a �eld. Then F× = {x ∈ F : x 6= 0}.
(3) Let V be a F -vector space. Then EndF (F ) is a ring and EndF (V )× is

precisely the set of all isomorphisms f : V → V (see Proposition 3.47).

We make the following algebraic observations about R×: If a and b are units
of R, then also their product ab is a unit of R, that is the set R× is closed under
the multiplication of R. This is due to ab(b−1a−1) = aa−1 = 1 and likewise
ba(a−1b−1) = bb−1 = 1. In particular (ab)−1 = b−1a−1 (note the change in the
order of a and b!). Furthermore 1 ∈ R× and apparently a−1 ∈ R× for every
a ∈ R×. Finally, since the multiplication on R is associative it follows that the
multiplication restricted to the units of R is also associative.

A set G together with a law of composition

G×G 7→ G, (x, y) 7→ xy

which stais�es precisely the above conditions is called in mathematics a group. More
preciesly we have the following de�nition.
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De�nition 3.46 (Group). A group is a tuple G = (G, ∗ ) consisting of a set G
together with a map

∗: G×G→ G, (x, y) 7→ x ∗ y

(called the law of composition) if the follwoing three group axioms are satis�ed:

(G1) (x ∗ y) ∗ z = x ∗ (y ∗ z) for every x, y, z ∈ G.
(G2) There exists an element e ∈ G (called the identity element of G) such that

x ∗ e = x and e ∗ x = x for all x ∈ G.
(G3) For every x ∈ G there exists an element y ∈ G (called the inverse element

of x) such that x ∗ y = e and y ∗ x = e.

If x ∗ y = y ∗ x for every x, y ∈ G, then the group G is called abelian4.

Examples. (1) The set of integers Z is an abelian group under the usual
addition.

(2) Let F be a �eld. Then F is an abelian group under the addition. Fur-
thermore F× is an abelian group under the multiplication.

(3) Let V be a vector space. Then V is an abelian group under the addition
of vectors.

(4) Let R be a ring. Then the set R× of all units of R forms a group under
the multiplication of R.

After this short excurse into the world of Algebra we return to Linear Algebra.
Given an arbitrary vector space V over a �eld F we consider the endomorhismn
ring EndF (V ) of V . We make the following observation.

Proposition 3.47. Let f : V → V be an endomorphism of the vector space V .
Then the following two statements are equivalent.

(1) f is an isomorphism.
(2) f is a unit of the endomorphism ring EndF (V ) of V .

Proof. By Proposition 3.6 is f precisely then an isomorhphism if there exists
a linear map g: V → V such that g ◦ f = id and f ◦ g = id. But this is equivalent
with f being invertible in EndF (V ). �

De�nition 3.48 (General Linear Group). The group of all invertible elements of
the endomorphism ring EndF (V ) of the F -vector space V is denoted by

GLF (V ) := EndF (V )×

and is called the General Linear Group of the F -vector space V . In the special case
of V = Fn we set

GLn(F ) := Mn(F )× = EndF (Fn)×

and this group is called the General Linear Group (of degree n) over the �eld F .
An element f ∈ GLF (V ), that is an isomorphism f : V → V , is also called an

automorphism. Therefore the group GLF (V ) is sometimes also called the automor-
phism group of V .

Proposition 3.49. Let V be an n-dimensional vector space over the �eld F . then

GLF (V ) ∼= GLn(F ) (isomorphism of groups).

4Named after the Norwegian mathematician Niels Henrik Abel, 1802�1829
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Proof. Note that we say that two groups G and G′ are isomorphic (as groups)
if there exists a group isomorphism f : G → G′, that is a bijective map such that
f(xy) = f(x)f(y) for all x, y ∈ G.

Now let B be any basis of V . Then we know by Theorem 3.35 that the coor-
dinate isomorphism

cB : EndF (V )→Mn(F )
is an isomorphism of F -algebras. In particular cB maps isomorphism of V to
invertible matrices of F . Apparently cB induces then an isomorphism of groups
GLF (V )→ GLn(F ). �

Because of the above result it is now possible to restrict our attention without
any loss of generality to the groups GLn(F ) when studying the general linear groups
of �nite dimensional F -vector spaces.

Again we tie up with Chapter 1: Let A be a m× n-matrix over a �eld F with
columns v1, . . . , vn, that is the vi (1 ≤ i ≤ n) are all vectors of Fm. We consider
an elementary column transformation of type I. Let us denote by Uij(a) precisely
the elementary transformation

(. . . , vi, . . . , vj , . . .) 7→ (. . . , vi, . . . , vj + avi, . . .)

of the system of vectors (v1, . . . , vn) which replaces the vector vj in (v1, . . . , vn) by
the vector vj + avi (i 6= j and a ∈ F ). Consider on the other hand the linear map

T : Fn → Fn

de�ned by the equations

Tej = ej + aei, T ek = ek (for k 6= j), (147)

where e1, . . . , en denotes as usuall the standard basis of Fn. Then we have for the
composite map (that is the matrix product) AT by de�nition ATej = A(ej+aei) =
Aej + aAei = vj + avi and for k 6= j we get ATek = Aek = vk. That is we have

(AT )ej = vj + avi, (AT )ek = vk (for k 6= j). (148)

Now recall the following (compare this with Proposition 3.28): the columns of a
m × n-matrix C over F are in turn the images of e1, . . . , en under the linear map
C: Fn → Fm. From (148) it follows that the elementary column transformation
Uij(a) is obtained by multiplying the matrix A from right with the n× n-matrix

T
(n)
ij (a) :=



1
...

1
... 0

· · · · · · · · ·
. . . · · · a · · · · · ·

. . .
...
1

0
...

. . .
... 1


(149)

which has on the main diagonal only ones �1� and otherwise only zeros except the
entry in the i-th row and j-th column where we have the element a. That is, if the

coe�cients of the matrix T
(n)
ij (a) are denoted by tkl then we have

tkl =


1 if k = l,

a if k = i and l = j,

0 otherwise.



82 3. LINEAR MAPS

Proposition 3.50 (Interpretation of Elementary Row and Column Transforma-
tions of Type I with the Help of Matrix Multiplications). Let A be an m×n-matrix
over a �eld F . Denote by (v1, . . . , vn) the system of its columns and denote by
(u1, . . . , um) the system of its rows. An elementary column transformation Uij(a)
of A � that is replacing of the j-th column vj of A by vj + avi � is obtained by

multiplying the matrix A with the special matrix T
(n)
ij (a) from the right. Likewise

the e�ect of multiplying the matrix A with T
(m)
ij (a) from the left is the elementary

row transformation Uji(a), that is replacing the i-th row of A by ui + auj.

Proof. We have already shown that the proposition is true for column trans-
formations. The second part of the proposition one veri�es by calculating in a

similar way the matrix T
(m)
ij (a)A. �

De�nition 3.51 (Elementary Matrices). The set of matrices Tij(a) of the form
(149) for i 6= j and a ∈ F are called n× n-elementary matrices over F .

One obtains directly from the de�nion (147) the following result about elemen-
tary matrices.

Proposition 3.52. The follwoing two calculation rules for the elementary n× n-
matrices over a �eld F are satis�ed:

Tij(a+ b) = Tij(a)Tij(b) (a, b ∈ F ) (150)

Tij(0) = I (151)

In particular every elementary n×n-matrices is invertible, that is Tij(a) ∈ GLn(F )
for every 1 ≤ i 6= j ≤ n and a ∈ F . For the inverse of an elementary n× n-matrix
we have the simple formula

Tij(a)−1 = Tij(−a). (152)

�

If one applies successively elementary column transformation to a matrix A
then by Proposition 3.50 this corrsponds to successively multiplying A from the
right by certain elementary matrices T1, . . . , Tr:

((AT1)T2) · · · )Tr = A(T1T2 · · ·Tr). (153)

Similarly successively elementary row transformations are corresponds by Proposi-
tion 3.50 to successively multiplying A from the left by certain elementary matrices
T1, . . . , Tr:

Tr(· · ·T2(T1A)) = (Tr · · ·T1)A. (154)

In order to describe the repeated application of elementary column and row
transformations of type I in a better way we make the following de�nition.

De�nition 3.53 (The Special Linear Group). The set

SLn(F )

of all possible products of elementary n× n-matrices over the �eld F is called the
special linear group (of degree n) over F .

Proposition 3.54. The special linear group SLn(F ) is a subgroup of the general
linear group GLn(F ).
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Proof. Note that a subset H of a group G is called a subgroup if it is a group
under the law of composition of G.5

The matrix product of two elements T1T2 · · ·Tr and T ′1T
′
2 · · ·T ′r′ is apparently

again an element of SLn(F ). Thus the matrix product de�nes a law of composition
on SLn(F ). It is clear that this law of composition inherits the associativity from
the associativity of the matrix product. Due to (151) we have I ∈ SLn(F ) for the
identity matrix. Finally it is follows from 152 and the de�nition of SLn(F ) that the
inverse element of T1T2 · · ·Tr is given by

(T1T2 · · ·Tr)−1 = T−1
r · · ·T−1

2 T−1
1

and it is therefore also an element of SLn(F ). Therefore SLn(F ) is a group under
the matrix product and thus a subgroup of GLn(F ). �

Let A ∈ GLn(F ) be an invertible matrix over the �eld F . This means that

rankA = n. (155)

We try solve the task to transform the matrix

A =


a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

an1 an2 . . . ann


into a matrix of a as simple form as possible, and this only by using the fact (155)
and row transformations of type I. To avoid triviality we may assume that n ≥ 2.

Since the column rank of A is equal to rankA = n we have that the �rst row of
A is not empty. Thus we can achive by using a suitable row transformation of type
I that the second entry of the �rst column of A � that is a21 � is di�erent from 0.
Then by adding a−1

21 (1− a11)-times the second row to the �rst row we get a matrix
A′ with

a′11 = 1.
Now we can eliminate the coe�cients in the �rst column below the element a′11 by
suitable row transformations and get a matrix A′′ of the form

A′′ =


1 ∗ ∗ . . . ∗
0
... C
0

 (156)

with a (n− 1)× (n− 1)-matrix C which must have rank n− 1. If n ≥ 3, then we
can apply the above described algorithm to the matrix C. If one takes into account
that the row transformations of A′′ which corresponds to the row transformations
applied to the matrix C do not a�ect the zero entries in the �rst row of (156) we
see that we can transform the matrix A into a matrix of the form

1
1 ∗

. . .

. . .

0 1
d


, (d 6= 0). (157)

5Compare the de�nition of a subgroup with the de�nition of a linear subspace, see De�ni-
tion 2.5 on page 23.
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The main diagonal of this matrix consist only of ones except the last entry, which
is an element d ∈ F from which we know only that it is di�erent from zero. The
entries in this matrix below the main diagonal are all zero. Apparently we can �
only with the help of row transformations of type I � transform this matrix into
the following form

Dn(d) :=



1
1 0

. . .

. . .

0 1
d


, (d 6= 0), (158)

which is a diagnoal matrix with only ones on the diagonal except that the last
element of the diagonal is an element d ∈ F from which we only know that it is
di�erent from zero. We have that Dn(d) ∈ GLn(F ). Thus we have shown:

Theorem 3.55. If A is an invertible n × n-matrix over a �eld F , then we can
transform this matrix by row transformations of type I into a diagonal matrix of
the special form (158) for some non-zero d ∈ F .

In other words, if A ∈ GLn(F ), then there exists a S ∈ SLn(F ) and a non-zero
d ∈ F such that

A = SDn(d). (159)

were Dn(d) is a diagonal matrix of GLn(V ) of the special form (158).

Proof. We have already shown the �rst part of the theorem. Now from
the �rst part and Proposition 3.50 follows that there exist elementary matrices
T1, . . . , Tr such that

Tr · · ·T1A = Dn(d).
Since all elementary matrices are invertible we get then

A = T−1
1 · · ·T−1

r Dn(d)

and we see that (159) is satis�ed with S := T−1
1 · · ·T−1

r ∈ SLn(F ). �

Note that we can of course transform an invertible n× n-matrix using elemen-
tary column transformations of type I to a matrix of the special form (158). That
is, we get similar to the above result a decomposition

A = Dn(d′)S′ (160)

of A with S′ ∈ SLn(F ) and a non-zero d′ ∈ F .
The previous theorem shows that the matrices of the special linear group

SLn(F ) are by far not as special as one would imagine on the �rst sight. The
elements of SLn(F ) are � upto a simple factor of the simple form Dn(d) � already
all elements of GLn(F )!6

Now a natural uniqueness question arises from the existence of the decompo-
sition (159). And further, does in (159) and (160) hold d = d′. If we could give
a positive answer to those questions, then we could assign in a non-trivial way to
every invertible matrix A over F a non-zero element d = d(A) ∈ F as an invariant.
In other words: according to Theorem 3.55 we know that we can transform every
invertible n × n-matrix A over F � only by using elementary row transformations
of type I � into the form Dn(d) for some non-zero element d ∈ F . Ineviteable we

6The mathematical precise result is that the general linear group is isomorphic (as groups) to
a semi-direct product of the special linear group and the multiplicative group F× of the �eld F ,
in symbols GLn(F ) ∼= SLn(F ) o F×.
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have to ask ourself what kind of character this number has. Does it only depend
on the original matrix A? Does always appear the same number d regardless how
we transform the matrix A with the help of elementary transformations of type I
into the form (158)? Let us formulate this question more precisely in the following
way.

Problem 3. Is it possible to assign every invertible n × n-matrix over a �eld F
an non-zero element d = d(A) of F such that this number does not change under
a row transformation of type I and such that we assign this way to the (invertible)
matrix Dn(d) precisely the element d?

The next theorem gives the following complete answer to this problem.

Theorem 3.56. For every element A ∈ GLn(F ) there exists precisely one decom-
position of the form

A = SDn(d)

with S ∈ SLn(F ) and a non-zero d ∈ F . Likewise the decomposition in (160) is
unique and we have the equality d = d′.7

But we are not yet able to proof this theorem because we will need more
theoretical concepts. A direct proof of Theorem 3.56 would be desireable but the
claim of this theorem is not evident. We have a similar situation as we had in the
end of Chapter 1 with Problem 1. There we were not able to answer this problem
before we introduced a new concept, namely the rank of a matrix in Chapter 2.
Similar we will need to �nd a new, suitable invariant for matrices to answer this
problem. This will lead to the concept of determinants of a n × n-matrix. If we
have introduced this new concept, then the proof of Theorem 3.56 � and with it
the solotion of Problem 3 � will turn out to be very simple.8

So far we have only shown how row and column transformations of type I are
described using matrices. Now we shall complete the list of elementary transfor-
mations by showing how an elementary row or column transformation of type II
and III are described with the help of matrix multiplication.

Proposition 3.57. Let A be a m×n-matrix over a �eld F . Then the multiplication
of the matrix A from right with a diagonal matrix of the form

D
(n)
i (a) :=



1
...

. . .
... 0

1
...

· · · · · · · · · a · · · · · · · · ·
... 1

0
...

. . .

... 1


(161)

(the only non-zero entries are on the main diagonal and are all equal to 1 except the
entry at position (i, i) which is equal to a ∈ F ) performs the following elementary
column transformation of type III: replacing the i-th column vi of A by avi, a ∈ F .

7Note that we do not have necessarily the equality S = S′!
8See page 98 where we will �nally carry out the proof of Theorem 3.56.
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Similarly the same row transformation will be performed, if A is multiplied from

the left with the matrix D
(m)
i .

Finally, an elementary column or row transformation of type II � that is switch-
ing the i-th column (or row) with the j-th column (or row) of the matrix A � is
obtained by multiplying the matrix A from right (or left) with a matrix of the form

R
(n)
ij :=



. . .
...

...

1
...

...
0 · · · · · · · · · 1
... 1

...
...

. . .
...

... 1
...

1 · · · · · · · · · 0
...

... 1
...

...
. . .



(162)

which is derived from the n × n-identity matrix by switching the i-th with the j-th
column.

Proof. The proof of this proposition is left as an exercise. �

It is apparent that claims of the type

�A m × n-matrix A over F can be transformed with the help of
certain elementary transformations to a matrix A′.�

can be formulated using suitable products of matrices of the form (149), (161)
and (162).

Recal for example Theorem 2.48 from the previous chapter. It states that we
can transform any matrix A of rank r with the help of elementary column and row
transformations to a matrix A′ of the form

A′ =
(
Ir 0
0 0

)
.

We can rewrite this theorem in our new language in the following way:

Theorem 3.58. Let A be an m × n-matrix over the �eld F . Then there exists
matrices P ∈ GLm(F ) and Q ∈ GLn(F ) such that the equality

PAQ =
(
Ir 0
0 0

)
(163)

holds. Here r = rankA and Ir denotes the r × r-identity matrix.

Proof. From Theorem 2.48 we know that we can transform the matrix A
using elementary row and column transformations into the desired form. Thus
there exists invertible matrices P1, . . . , Ps and Q1, . . . , Qt of the form (149), (161)
and (162) such that

Ps · · ·P2P1AQ1Q2 · · ·Qt =
(
Ir 0
0 0

)
(164)

Therefore (163) holds with P := Ps · · ·P2P1 and Q := Q1Q2 · · ·Qt. The claim that
r = rankA follows from the observation that the rank of a matrix is invariant under
elementary row and column transformations and that the matrix of the right hand
side of (163) has apparently rank r. �
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Note that the content of Theorem 3.58 is nothing else than what we have said
before in Proposition 3.45 even though we gave there a complete di�erent kind of
proof. But now the theorem tells also how one can establish the equivalence

A ∼
(
Ir 0
0 0

)
, r = rankA

of matrices of Fm,n in an e�ective way, namely by applying suitable elementary
column and row transformations using the recipe from Chapter 1.

Now consider the special case of quadratic n×n-matrices. If one obtains � after
the algorithm treminates � the n×n-identity matrix I then rankA = n and A is an
invertible matrix. In this way we can not only verify whether a given n×n-matrix A
is invertible or not, but we also get tool to compute the inverse matrix A−1 for a
given invertible matrix A. If (164) is satis�ed with r = n, then

Ps · · ·P2P1AQ1Q2 · · ·Qt = I.

Therefore we get9

A = P−1
1 P−1

2 · · ·P−1
s IQ−1

t · · ·Q−1
2 Q−1

1

= P−1
1 P−1

2 · · ·P−1
s Q−1

t · · ·Q−1
2 Q−1

1

= (Q1Q2 · · ·QtPs · · ·P2P1)−1.

and thus we have for the inverse matrix A−1 of the matrix A the equality

A−1 =
(
(Q1Q2 · · ·QtPs · · ·P2P1)−1

)−1

= Q1Q2 · · ·QtPs · · ·P2P1. (165)

Now in the case that A is invertible Theorem 3.55 states that actually elementary
row transformations are already enough to achive the transformation of A to I.
That is we can in this case assume with out any loss of generality that

Ps · · ·P2P1A = I (166)

where P1, . . . , Ps−1 are elementary matrices and Ps = Dn(d−1) is a diagonal matrix
of the form (158).10 Then (165) is just

A−1 = Ps · · ·P2P1

= Ps · · ·P2P1I. (167)

If one interpretes the equality (167) by means of elementary row transformations
of matrices we get the following result.

Proposition 3.59 (Calulating the Inverse Matrix). Let A be an n×n-matrix over
the �eld F . If one can transform the matrix A with elementary row transformations
to the identity matrix I then A is invertible. If one applies the same row trans-
formations in the same order to the identity matrix I, then the indentity matrix
transforms to the inverse A−1 of A. �

Example. We want to determine the invers matrix of the matrix

A :=


1 1 1 1
1 1 0 0
1 0 1 0
1 0 0 1


9Using amongst othere the following easily to verify calculation rules for elements g, h of a

group G: (gh)−1 = h−1g−1 and (g−1)−1 = g. The proof of these rules are left as an exercise.
10Note that the value of s and the matrices Pi in (166) are not necessarily the same as

in (165).
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Therefore we write the matrix A and the identity matrix I next to each other and
write blow this what we obtain by succesively applying the same elementary row
transformations to both matrices:

1 1 1 1 1 0 0 0
1 1 0 0 0 1 0 0
1 0 1 0 0 0 1 0
1 0 0 1 0 0 0 1
1 1 1 1 1 0 0 0
0 0 −1 −1 −1 1 0 0
0 −1 0 −1 −1 0 1 0
0 −1 −1 0 −1 0 0 1
1 1 1 1 1 0 0 0
0 −1 0 −1 −1 0 1 0
0 −1 −1 0 −1 0 0 1
0 0 −1 −1 −1 1 0 0
1 1 1 1 1 0 0 0
0 1 0 1 1 0 −1 0
0 0 −1 1 0 0 −1 1
0 0 −1 −1 −1 1 0 0
1 1 1 1 1 0 0 0
0 1 0 1 1 0 −1 0
0 0 1 −1 0 0 1 −1
0 0 0 −2 −1 1 1 −1
1 1 1 1 1 0 0 0
0 1 0 1 1 0 −1 0
0 0 1 −1 0 0 1 −1
0 0 0 1 1

2 − 1
2 − 1

2
1
2

...
...

1 0 0 0 − 1
2

1
2

1
2

1
2

0 1 0 0 1
2

1
2 − 1

2 − 1
2

0 0 1 0 1
2 − 1

2
1
2 − 1

2
0 0 0 1 1

2 − 1
2 − 1

2
1
2

This means that the matrix A is indeed invertible and its inverse A−1 is:

A−1 =


− 1

2
1
2

1
2

1
2

1
2

1
2 − 1

2 − 1
2

1
2 − 1

2
1
2 − 1

2
1
2 − 1

2 − 1
2

1
2



12. Application to Systems of Linear Equations (Again)

Recall that in a note on page 66 we have already mentioned that we can see
Chapter 1 also in the view of linear maps. We return swiftly to this topic. Therefore
consider the system of linear equations

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

...
...

...
...

am1x1 + am2x2 + · · ·+ amnxn = bm

(168)
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of m equations in the n unknown variables x1, . . . , xn over a �eld F . Then to �nd
all solution to this system of equations is equivalent to �nd all solutions x to the
equation

Ax = b (169)

where A is the simple coe�cient matrix of (168) and b ∈ Fm the vector with the
coe�cients b1, . . . , bm.

To �nd all solution to the homogeneous part of (168) is equivalent to �nd all
solutions to

Ax = 0. (170)

Thus we see that the set of all solutions to the homogeneous part of (168) is precisely
the kernel of the linear map A: Fn → Fm, that is in the notation Chapter 1 we
have

M0 = kerA,
in particular � since we know that kerA is a linear subspace of Fn � the set of
all solutions M0 is a subspace of Fn which is the content of Proposition 1.3 in
Chapter 1.

Apparently the set M of all solutions to (169) is given by

M = x′ +M0

where x′ ∈ Fn is some element such that Ax′ = b is satis�ed, which is Proposi-
tion 1.2.

Now (169) is solvable if and only if

b ∈ imA (171)

and in this case the solution is unique if and only if the linear map A is a monomor-
phism which is equivalent with

kerA = 0. (172)

Proposition 1.7 of Chapter 1 is a consequence of the dimension formula for
linear maps: By this formula we have

dimFn = dim(imA) + dim(kerA)

and thus

dim(kerA) = dimFn − dim(imA)

≥ dimFn − dimFm

= n−m
where the inequalty is due to dim(imA) ≤ dimFm. Thus dim(kerA) > 0 if n > m
and in this case there must exists a non-trivial solution to (170) in this case.

In the special case of m = n we know from the dimension formula for linear
maps that the linear map A: Fn → Fn is an epimorphism if and only if it is a
monomorphism. Thus b ∈ imA for every b ∈ Fn if and only if kerA = 0, that is,
if and only if the homogeneous equation (170) has only the trivial solution. This
proves Proposition 1.8 in Chapter 1.





CHAPTER 4

Determinants

1. The Concept of a Determinant Function

In this section F denotes always a �eld. While we have studied in Section 11 of
the previous chapter the general linear group of a vector space we have encountered
in a natural way the problem (see Problem 3 on page 85) whether there exists a
function

d: GLn(F )→ F

with the following two properties:

(1) If A,A′ ∈ GLn(F ) are two matrices and A′ is obtained from A by an
elementary column transformation of type I, then

d(A′) = d(A).

(2) For every matrix Dn(a) ∈ GLn(F ) of the form (158) we have

d(Dn(a)) = a.

One can show � the proof is left as an exercise � that the above two properties are
equivalent with the following three properties:

(1) If A,A′ ∈ GLn(F ) are two matrices and A′ is obtained from A by an
elementary column transformation of type I, then

d(A′) = d(A).

(2) If A,A′ ∈ GLn(F ) are two matrices and A′ is obtained from A by multi-
plying a column with a non-zero element a ∈ F , then

d(A′) = ad(A).

(3) For the identity matrix I ∈ GLn(F ) holds

d(I) = 1.

Now these considerations motivate the following de�nition of a determinant
function. (Note that we include in this de�nition also non-invertible matrices.)

De�nition 4.1 (Determinant Function). A map

d: Fn,n → F

is called a determinant function if it satis�es the following three properties:

(1) If A,A′ ∈ Fn,n are two matrices and A′ is obtained from A by replacing
the i-th column with the sum of the i-th and j-th column (1 ≤ i, j ≤ n,
i 6= j), then

d(A′) = d(A).

(2) If A,A′ ∈ Fn,n are two matrices and A′ is obtained from A by multiplying
a column with a non-zero element a ∈ F , then

d(A′) = ad(A).

91
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(3) For the identity matrix I holds

d(I) = 1.

Note that if one identi�es a n × n-matrix A over F with system v1, . . . , vn of
its columns then a determinant function is nothing else then a map which maps
n-tuples of vectors of Fn to the �eld F , in symbols

d: (Fn)n → F,

and which satis�es with the following three properties:

(1) For every system v1, . . . , vn of vectors of Fn and every 1 ≤ i, j ≤ n with
i 6= j holds

d(v1, . . . , vj−1, vj + vi, vj+1, . . . , vn) = d(v1, . . . , vn).

(2) For every system v1, . . . , vn of vectors of Fn, every a ∈ F and every
1 ≤ j ≤ n holds

d(v1, . . . , vj−1, avj , vj+1, . . . , vn) = ad(v1, . . . , vn).

(3) For the canonical basis e1, . . . , en of Fn holds

d(e1, . . . , en) = 1.

Depending on which point of view is more convenient we will consider in the
following a determinant function either to be a map from all n× n-matrices to the
�eld F or we will consider it as a function of all n-tuples of vectors of Fn.

Proposition 4.2. Let A and A′ be n× n matrices over F and let d: Fn,n → F be
a determinant function. Then the following three statements are true:

(1) If A′ is obtained from A by adding the a times the j-th column of A to the
i-th column of A (a ∈ F , i 6= j), then

d(A′) = d(A). (173)

(2) If A′ is obtained from A by exchanging two columns, then

d(A′) = −d(A). (174)

(3) If A′ is obtained from A by multiplying the i-th column by a ∈ F , then
d(A′) = ad(A). (175)

Proof. We denote in this proof the colums of the matrix A by v1, . . . , vn.

(1) In order to avoid triviality we may assume that a 6= 0. Then

d(v1, . . . ,vi, . . . , vj , . . . , vn) = a−1d(v1, . . . , vi, . . . , avj , . . . , vn)

= a−1d(v1, . . . , vi + avj , . . . , avj , . . . , vn)

= d(v1, . . . , vi + avj , . . . , vj , . . . , vn).

(2) We have

d(v1, . . . ,vi, . . . , vj , . . . , vn) = d(v1, . . . , vi + vj , . . . , vj , . . . , vn)

= d(v1, . . . , vi + vj , . . . , vj − (vj + vi), . . . , vn)

= d(v1, . . . , vi + vj , . . . ,−vi, . . . , vn)
= d(v1, . . . , vj , . . . ,−vi, . . . , vn)
= −d(v1, . . . , vj , . . . , vi, . . . , vn).

(3) This is just the second property of a determinant function. �

In the mathematical language there is another common notation for invertible
and non-invertible matrices:



1. THE CONCEPT OF A DETERMINANT FUNCTION 93

De�nition 4.3. Let A be a n×n-matrix over the �eld F . Then A is called singular
if A is not invertible. Likewise A is called non-singular (or regular) if it is invertible,
that is if A ∈ GLn(F ).

Proposition 4.4. Let d: Fn,n → F be a determinant function and A ∈ Fn,n a
matrix. Then A is singular if and only if d(A) = 0.

Proof. �⇒�: We know that a matrix is singular if it doesn't have full rank,
that is if rankA < n. This is the case if and only if there exists one colum vi
which is a linear combination of the remaining n− 1 columns. Without any loss of
generality we may assume that

v1 = a2v2 + . . .+ anvn

for some elements a2, . . . , an.

d(v1, . . . , vn) = d(v1 − a2v2 − . . .− anvn, v2, . . . , vn)
= d(0, v2, . . . , vn)
= 0

where the last equality follows from the second property of a determinant function.

�⇐�: We assume that A is non-singular. Then Theorem 3.55 states that we
can write

A = SDn(a)

for some S ∈ SLn(F ) and a non-zero a ∈ F where Dn(a) is the diagonal matrix
of the special form (158). But this means that A is derived from the identity
matrix by multiplying the last column with a and furthermore only elementary
transformations of type I. Thus d(A) = a and since a 6= 0 it follows that d(A) 6= 0.
Thus necessarily A must be singular if d(A) = 0. �

Note that we still do not know whether determinant functions exist! In order
to �nd an answer to the question whether determinant functions exists in general
we proceed in a way which is common to existence probelms in mathematics: often
one studies the hypothetical properties of an object � which is postulated to exists
� in detail until one is able to actually prove the existence of the object in question
or until one gathers enough evidence which rules out the possibility that the object
in question can exist. So let us continue with the studies.

Let d: Fn,n → F and d′: Fn,n → F be two determinant functions. Then we
know already that d(A) = 0 = d′(A) if A ∈ Fn,n is a singular matrix. On the
other hand we have seen in the previous proof that if A = SDn(a), then d(A) = a
and for the same reason d′(A) = a, too. We can summarize this observation in the
following result.

Proposition 4.5. Let d: Fn,n → F and d′: Fn,n → F are two determinant func-
tions, then d(A) = d′(A) for every A ∈ Fn,n. In other words there exists at most
one determinant function on Fn,n. �

Proposition 4.6. A determinant function d: Fn,n → F is �linear in every column�,
that is for every 1 ≤ i ≤ n holds

d(v1, . . . , vi−1, avi + bwi, vi+1, . . . , vn) =

= ad(v1, . . . , vi−1, vi, vi+1, . . . , vn) + bd(v1, . . . , vi−1, wi, vi+1, . . . , vn) (176)

for all v1, . . . , vi, wi, . . . , vn in Fn and all a, b ∈ F .
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Proof. Note �rst that due to (175) it is enough to verify the claim for the
special case a = b = 1. Due to (174) we can furthermore assume with out any loss
of generality that i = 1.

Since the vector space Fn has dimension n it follows that the system

v1, w1, v2, . . . , vn

of n+1 vectors in Fn is linear dependent. Therefore there exists a non-trivial linear
combination

cv1 + c′w1 + c2v2 + . . .+ cnvn = 0 (177)

of the zero vector with c, c′, c2, . . . , cn ∈ F . Now either c = c′ = 0 or not.
Assume �rst that c = c′ = 0. Then (177) is a non-trivial linear combination of

the form

c2v2 + . . .+ cnvn = 0

and thus rank(v2, . . . , vn) < n − 1. But then all the terms in (176) are equal to 0
and therefore the equality holds (compare with Proposition 4.4).

Thus it remains to verify the case that c 6= 0 or c′ 6= 0. It is enough to verify
one of the two possibilities, say c 6= 0. Without any loss of generality we may then
also assume that in this case c = −1. Thus from (177) follows that

v1 = c′w1 + c2v2 + . . .+ cnvn.

Using this and repeatedly (173) we get

d(v1 + w1, v2, . . . , vn) = d(c′w1 + c2v2 + . . .+ cnvn + w1, v2, . . . , vn)

= d((c′ + 1)w1 + c2v2 + . . .+ cnvn, v2, . . . , vn)

= d((c′ + 1)w1 + c2v2 + . . .+ cn−1vn−1, v2, . . . , vn)
= . . . =

= d((c′ + 1)w1 + c2v2, v2, . . . , vn)

= d((c′ + 1)w1, v2, . . . , vn)

= (c′ + 1)d(w1, v2, . . . , vn)

= c′d(w1, v2, . . . , vn) + d(w1, v2, . . . , vn)

and on the other hand

d(v1, v2, . . . , vn) = d(c′w1 + c2v2 + . . .+ cnvn, v2, . . . , vn)

= d(c′w1 + c2v2 + . . .+ cn−1vn−1, v2, . . . , vn)
= . . . =

= d(c′w1 + c2v2, v2, . . . , vn)

= d(c′w1, v2, . . . , vn)

= c′d(w1, v2, . . . , vn).

Combining these two equations we get that also in this case

d(v1 + w1, v2, . . . , vn) = d(v1, v2, . . . , vn) + d(w1, v2, . . . , vn)

is true. �
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2. Proof of Existence and Expansion of a Determinant with Respect to
a Row

Theorem 4.7 (Existence of a Determinant). Let F be a �eld. Then for every
natural number n ≥ 1 exists precisely one determinant function d: Fn,n → F . We
denote this function by det or more precise detn.

Proof. We know already that if a determinant function exists, then it is
unique. We did prove this in Proposition 4.5. Thus it remains to verify the the
existence of a determinant function. We will carry out this proof by induction with
respect to n.

�n = 1�: If A = (a) is a 1 × 1-matrix, then det1(A) := a de�nes apparently
the determinant function.

�n− 1⇒ n�: We assume that n > 1 and that we have a determinant function
detn−1 : Fn−1,n−1 → F is given. We want to construct a map d: Fn,n → F using
detn−1. For every n× n-matrix A = (aij) over F de�ne

d(A) :=
n∑
j=1

(−1)n−janj detn−1(Anj). (178)

Here Anj denotes the (n− 1)× (n− 1)-matrix which is derived from A by leaving
away the n-th row and j-th column. We need to verify that the so de�ned map is
indeed a determinant function. Thus we need to verify all the three properties of a
determinant function from De�nition 4.1, one by one.

(1) Assume that the matrix A′ = (a′rs) is obtained from the matrix A = (ars)
by replacing the i-th column vi of A by vi + vk where vk ist the k-th
column of A and i ≤ k. Then

a′ni = ani + ank and a′nj = anj for j 6= i.

Furthermore we have A′ni = Ani and if j 6= i, k then

detn−1(A′nj) = detn−1(Anj).

Finally it follows from Proposition 4.6 that detn−1(A′nk) can be written
as

detn−1(A′nk) = detn−1(Ank) + detn−1(B)

where B is a matrix which is derived from the matrix Ain by shifting the
k-th row past |k − i| − 1 rows. Every time vk is shifted by one row the
sign of the determinant gathers an additional factor of −1. Thus we get

detn−1(B) = (−1)k−i−1 detn−1(Ani)

(note that (−1)|k−i|−1 = (−1)k−i−1) and alltogether

detn−1(A′nk) = detn−1(Ank) + (−1)k−i−1 detn−1(Ani).

Collecting this information and using (178) we get

d(A′)− d(A) = (−1)n−i
[
a′ni detn−1(A′ni)− ani detn−1(Ani)

]
+ (−1)n−k

[
a′nk detn−1(A′nk)− ank detn−1(Ank)

]
= (−1)n−iank detn−1(Ani) + (−1)n−kank detn−1(Ani) = 0

and therefore we have indeed d(A′) = d(A).
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(2) Assume that the matrix A′ = (a′rs) is obtained from A = (ars) by multi-
plying the i-th column with a number a ∈ F . Then

a′ni = aani and a′nj = anj for j 6= i.

Furthermore we have A′ni = Ani and if j 6= i then

detn−1(A′nj) = a detn−1(Anj)

because for j 6= i the matrix A′nj is obtained from Anj by multiplying
a column of Anj with the element a. Using this information we obtain
from (178) indeed the desired equality d(A′) = ad(A):

d(A′) =
n∑
j=1

(−1)n−ja′nj detn−1(A′nj)

= a

n∑
j=1

(−1)n−janj detn−1(Anj) = ad(A).

(3) If A = (ars) is the n × n-identity matrix In over F , then an,1 = an,2 =
. . . = an,n−1 = 0 and ann = 1. Furthermore Ann = In−1. Therefore
d(In) = detn−1(In−1) = 1 by (178).

Thus the map d: Fn,n → F de�ned by (178) satis�es all properties of a deter-
minant function. Therefore we de�ne detn := d. And this concludes the induction
step �n− 1⇒ n�. �

Now after this lengthish technical proof we know that for every �eld F and
every n ≥ 1 there exists a unique map Fn,n → F satisfying the properties of a
determinant function as de�ned in De�nition 4.1, namely detn.

De�nition 4.8. Let F be a �eld and let det be the unique determinant function

det : Fn,n → F.

If A ∈ Fn,n then the number det(A) ∈ F is called the determinant of A. The
determinant of A is also denoted by |A|, that is∣∣∣∣∣∣∣

a11 . . . a1n

...
...

an1 . . . ann

∣∣∣∣∣∣∣ := det(A).

But what kind of map is this? The answer will be given by the following

Proposition 4.9. Let F be a �eld and n ≥ 1. Let A = (ars) be a n × n matrix
over F . Then detn(A) is a polynomial of degree n in the n2 variables a11, . . . , ann.

Proof. We prove this claim again by induction with respect to n.

�n = 1�: Apparently det1(A) = a11 is a polynomial of degree 1 in the single
variable a11.

�n−1⇒ n�: We assume that detn−1 is a polynomial of degree n−1 in (n−1)2

variables. Then from (4.1),

detn(A) =
n∑
j=1

(−1)n−j anj detn−1(Anj)︸ ︷︷ ︸
polynomial of degree n

,

follows that detn−1 is apparently a polynomial of degree n in the n2 variables
a11, . . . , ann. This proves the induction step. �
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The �rst three determinant functions are then explicitly the following:

det1(A) = a11

det2(A) = a11a22 − a12a21

det3(A) = a11a22a33 + a12a23a31 + a13a21a32

− a11a23a32 − a12a21a33 − a13a22a31

Note that the number of terms in those polynomials is increasing drastically with n.
For n = 1 we have one summand, for n = 2 we have 2 = 1 · 2 summands, for n = 3
we have 6 = 1 · 2 · 3 summands. The general rule is that detn(A) is a polynomial
with n! = 1 · 2 · 3 · · ·n, that is n-factorial summands. For example det10(A) is a
polynomial with 3 628 800 summands in 100 variables! Thus it becomes apparent
that it is di�cult to memorize those polynomials and that we need to develope
calculation methodes to simplify the calculation of a determinant in the concrete
case.

One way to simplify the calculation can be obtained from the equation (178)
which can also be written as

det(A) =
n∑
j=1

(−1)n+janj det(Anj)

with the help of the equality (−1)n−j = (−1)n+j . If the last row of the matrix
A contains many coe�cients which are equal to 0, then the right hand side of the
above equation contains only few summands. In the extreme case that only one
coe�cient of the last row of A is di�erent from zero, say only the j-th coe�ent
anj 6= 0, then the above equation simpli�es to

det(A) = (−1)n+janj det(Anj).

Since Anj is only a (n− 1)× (n− 1)-matrix it is apparent that the right hand side
of this equation is easier to calculate than the left hand side.

But can we gain a similar advantage if another row of the matrix A � say the
i-th row � is sparsely populated with non-zero coe�cients? The answer to this
question is: yes, we can! Assume that A′ is the n × n-matrix whichi is obtained
from A by shifting the i-th row downwards past the n − i rows below it. This is
done by n − i-times exchanging two adjacent rows and thus we have the equality
det(A′) = (−1)n−i det(A). Therefore

det(A) = (−1)i−n det(A′)

=
n∑
j=1

(−1)i+ja′nj det(A′nj)

and after using the apparent equalities a′nj = aij and A
′
nj = Aij we get

=
n∑
j=1

(−1)i+jaij det(Aij).

Thus we have obtained the following general formula to �expand the determinant
of A along the i-th row �.



98 4. DETERMINANTS

Proposition 4.10. Assume that A is an n× n-matrix over the �eld F . Then we
have for every 1 ≤ i ≤ n the equality

detA =
n∑
j=1

(−1)i+jaij det(Aij) (179)

where Aij denotes the (n− 1)× (n− 1)-matrix which is obtained from A by leaving
away the i-th row and j-th column.

Example. Consider the following calculation:∣∣∣∣∣∣∣∣
0 10 4 0
2 3 1 5
0 0 3 0
4 6 2 3

∣∣∣∣∣∣∣∣ = 3

∣∣∣∣∣∣
0 10 0
2 3 5
4 6 3

∣∣∣∣∣∣ = 30
∣∣∣∣2 5
4 3

∣∣∣∣ = 30(2 · 3− 5 · 4) = −420.

Here we have expanded the determinant in the �rst step along the 3-rd row and
then in the next step we have expanded it along the 1-st row. Notice how fast
the determinant shrinks in size. Only in the last step there was no way to gain
simplicity by applying previous proposition.

Before we begin to study the determinant function more closely we shall give
now the Answer to Problem 3 (which has been stated on page 85) by �nally
verifying Theorem 3.56.

Proof of Theorem 3.56. Let A ∈ GLn(F ). Then by Theorem 3.55 there
exists a decomposition of A of the form

A = Dn(a)S (180)

with S ∈ SLn(F ) and a ∈ F×. We want to show that this decomposition is unique.
Assume therefore that there exists another decomposition of A of this form, say

A = Dn(a′)S′

with S′ ∈ SLn(F ) and a′ ∈ F×. Then

Dn(a)S = Dn

and it follows

Dn(a) = Dn(a′)S′S−1

Since SLn(F ) is a group it we have that S′S−1 ∈ SLn(F ) and thus the above
equation means that Dn(a) is obtained from Dn(a′) by elementary column trans-
formations of type I. Therefore necessarily detDn(a) = detDn(a′). Since Dn(a) is
obtained from the identity matrix I by multiplying the last column by a it follows
that detDn(a) = a det I = a. Likewise detDn(a′) = a′ and thus we must have that
a = a′ and therefore Dn(a) = Dn(a′). Multiplying the previous equation from the
left with Dn(a)−1 and from the right with S yields then the equality

S = S′.

Therefore the decomposition (180) is uniue.
We still have to prove the second claim of Theorem 3.56, namely if have a

decomposition of A of the form

A = S′Dn(a′) (181)

then necessarily a′ = a where a is the element of F× which appeared in (180).
Interpreting (180) in terms of column transformations we see that A is obtained
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from the identity matrix I by applying elementray column transformations of type I
and then by multiplying the the last column by a′. Therefore

detA = a′ det I = a′.

Similarly, if we interprete (181) in terms of column transformations it follows that
detA = a since A is obtained from the identity matrix by multiplying the last
column by a and then applying column transformations of type I only. Therefore
a = a′. �

3. Elementary Properties of a Determinant

Proposition 4.11. A n× n-matrix A over the vield F is invertible if and only if
detA 6= 0. In other words:

A is singular ⇐⇒ detA = 0.

Proof. This is precisely Proposition 4.4. �

Proposition 4.12. The determinant function is a multiplicative map in the fol-
lowing sense: for every A,B ∈Mn(F ) we have the equality

detAB = detA detB. (182)

Proof. Consider �rst the case that detB = 0. Then the right hand side
of (182) is equal to 0. We have to show that in this case also the left side is equal
to 0. Since detB = 0 it follows from the previous proposition that B is singular.
In particular this means that rankB < n. But then also rankAB = dim(imAB) ≤
dim(imB) = rankB < n and thus the matrix AB is singular, too. But that
implies that the left hand side of (182) is equal to 0. Therefore in this case the
equation (182) is satis�ed.

Thus we can consider the remanining case that B is invertible. By Theorem 3.55
there exists a S ∈ SLn(F ) and a non-zero b ∈ F such that B = SDn(b). We get
the equality

AB = ASDn(b).
This means, the matrix AB is obtained from A by applying �rst several column
transformations of type I and �nally by multiplying the last column by the ele-
ment b. Thus

detAB = bdetA.
Since apparently detB = b we obtain from this the desired equality. �

Corollary. If A,B ∈Mn(F ) then we have the equality

detAB = detBA.

If moreover A is invertible then we have the equality

det(A−1) =
1

detA
.

Proof. The �rst claim is evident. If A is invertible then it follows from Propo-
sition 4.12 that detAdetA−1 = detAA−1 = det I = 1 and thus the claim is evident.

�

Note that the content of Proposition 4.12 can be interpreted in the language
of Algebra as follows: the determinant function is a �group homomorphism�1

det : GLn(F )→ F×.

1A map f : G→ G′ of groups is called a group homomorphism if f(xy) = f(x)f(y) for every
g, h ∈ G. Thus a isomorphism of groups is a bijective group homomorphism.
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where F× is the multiplicative group of all non-zero (and thus inverible) elements
of the �eld F .

Proposition 4.13 (Characterisation of the Special Linear Group). The special
linear group SLn(F ) consists precisely of all n×n-matrices A over F with detA = 1.
That is

SLn(F ) = {A ∈Mn(F ) : detA = 1}.

Proof. �⇒�: Let S ∈ SLn(F ). Then S can be obtained from the identity
matrix I by applying column transformations of type I only. Thus detS = det I = 1.

�⇐�: Assume that A ∈ Mn(F ) with detA = 1. By Proposion 4.11 we know
that A ∈ GLn(F ). Thus it follows by Theorem 3.55 that there exists a S ∈ SLn(F )
and a non-zero c ∈ F such that

A = SDn(c)

and Proposition 4.12 follows that detA = detS detDn(c). Since S ∈ SLn(F ) it
follows that detS = 1. Thus also detDn(c) = 1. On the other hand we have
apparently detDn(c) = cdet I = c and thus necessarily c = 1. Therefore Dn(c) = I
and it follows that A = S is an element of SLn(F ). �

Note that sofar we have introduced the concept of a determinant only by looking
at the columns of a matrix and only by considering elementary column transfor-
mations. De�nition 4.1 is in no way symmetric with respect to columns and rows.
Assume that d: Mn(F )→ F is a function which satis�es the analogous conditions
as in De�nition 4.1 but just with respect to rows. We shall call such a function
for the moment a row determinant function. Likewise we shall mean for the mo-
ment by a column determinant function a function which satis�es the conditions of
De�nition 4.1.

Furthermore, if d: Mn(F ) → F is an arbitrary function then we shall denote
by td the function

td: Mn(F )→ F,A 7→ td(A) := d(tA)

where tA denotes the transposed matrix of A (see page 45). It is apparent that
d is a row (column) determinant function if and only if td is a column (row) de-
terminant function. Thus everything we have said about so far about a column
determinant function remains valid for row determinant functions. Furthermore it
is a consequence of Theorem 4.7 that there exists precisely one row determinant
function d: Mn(F )→ F , namely tdet.

Theorem 4.14. For every A ∈Mn(F ) holds the equality

detA = det tA.

Proof. We will prove this by showing that the column determinant function
det is also a row determinant function. It follows then by Proposition 4.5 that
det = tdet.

(1) Let A,A′ ∈ Mn(F ) and assume that A′ is obtained from A by a row
transformation of type I, that is there exists a S ∈ SLn(F ) such that
A′ = SA. Then

detA′ = detSA = detS detA

where the last equality is due Proposition 4.12. Since S ∈ SLn(F ) we
have that detS = 1 and thus detA′ = detA.
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(2) Let A,A′ ∈Mn(F ) and assume that A′ is obtained from A by multiplying

the i-th row by a ∈ F . That is A′ = D
(n)
i (a)A where D

(n)
i (a) is the

diagonal matrix (161). Then

detA′ = detD(n)
i (a)A = detD(n)

i (a) detA

where the last equality is due Proposition 4.12. Since detD(n)
i (a) = a we

have then detA′ = a detA.
(3) Clearly det I = 1 is satis�ed. �

Thus we have seen that we actually need not to distinguish between column and
row determinant functions because they are actually the very same functions. Thus
we shall abolish this notation again and we will from now on speak the determinant
function or just determinant

det : Mn(F )→ F.

As an consequence of the previous result we get a variation of the Proposi-
tion 4.10, namely how to expand a determinant with respect to an arbirary column.
Precisely this is the following

Proposition 4.15. Assume that A is an n× n-matrix over the �eld F . Then we
have for every 1 ≤ i ≤ n the equality

detA =
n∑
j=1

(−1)i+jaji det(Aji) (183)

where Aij denotes the (n− 1)× (n− 1)-matrix which is obtained from A by leaving
away the i-th row and j-th column.

Proof. Denote by A′ = (a′ij) the transposed matrix of A. Then a′ij = aji and
A′ij = Aji. Using this information and Proposition 4.10 we get

detA = det tA

=
n∑
j=1

(−1)i+ja′ij det(A′ij)

=
n∑
j=1

(−1)i+jaji det(Aji) �

We can enrich the collection of identities given in Proposition 4.10 and 4.15
by two more identities which are less important but which then combined give a
compact formula for matrix inversion.

Lemma 4.16. Let A ∈Mn(F ). Then we have for any 1 ≤ i, k ≤ n with i 6= k the
following two equalities:

n∑
j=1

(−1)i+jaij det(Akj) = 0 (184)

n∑
j=1

(−1)i+jaji det(Ajk) = 0 (185)

Proof. Assume that A′ is the matrix which is obtained from A by replacing
the k-th row of A by the i-row of A. Then the system of vectors obtained from the
rows of A′ is linear dependent and thus detA′ = 0. If one expands A′ along the
k-th row one obtains precisely (184). The equality (185) is veri�ed in a similar way.

�
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De�nition 4.17 (Complimentary Matrix). Let A ∈Mn(F ). Then the complimen-

tary matrix Ã to A is de�ned to be the n× n-matrix which has the coe�cients

ãij := (−1)i+j det
n−1

(Aji). (186)

Note the twist in the indices i and j on both sides of the equation!

Theorem 4.18 (Cramer's Rule for the Complementary Matrix). For any A ∈
Mn(F ) we have the two equalities

AÃ = det(A) I and ÃA = det(A) I

Proof. Using the formula for the matrix product (see Theorem 3.31) we get

that the coe�cient in the i-th row and k-th column of the matrix C := AÃ is given
by

cik =
n∑
j=1

aij ãjk

=
n∑
j=1

aij(−1)j+k det
n−1

(Akj)

=
n∑
j=1

(−1)j+kaij det
n−1

(Akj)

=

{
detA if i = k,

0 if i 6= k,

where the �rst case is due to Proposition 4.10 and the remaining case due to
Lemma 4.16. But this means that C = det(A) I.

The second equality is shown in a similar way or follows straight from the fact
that Mn(F ) is a ring. �

Theorem 4.19 (Cramer's Rule for the Matrix Inversion). Let A ∈ GLn(F ). As-
sume that A′ is the inverse matrix of A. Then the coe�cients a′ij of A′ are given
by the formula

a′ij =
1

detA
(−1)i+j det(Aji) (187)

Proof. If A is invertible then detA 6= 0 by Proposition 4.11. Thus we obtain
from

det(A)I = AÃ

the equation

A−1 =
1

detA
Ã.

For A−1 = (a′ij) this states then precisely (187). �

Note that the importance of the Cramer's rule for matrix inversion does lie so
much in the ability to actually calculate the inverse of a matrix but rather in the
theoretical content of it. Consider the case that F = R or F = C. Since we know
that the determinant is a polynomial in the coe�cients of the matrix we know that
it is a continuous function. Thus (187) states that the coe�cients of the inverse
matrix A−1 depend in a continuous way on the coe�cients of the matrix A.
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Example. Assume that the matrix

A :=
(
a b
c d

)
with coe�cients in the �eld F is invertible. Then detA = ac− bd 6= 0 and we have
by above theorem the equality

A−1 =
1

detA

(
d −b
−c a

)
.

In praticular if A ∈ SLn(F ) then detA = 1 and we get the even more simple formula

A−1 =
(
d −b
−c a

)
.

Let us turn to an special case where A is a square matrix over F of the form

A :=
(
B C
0 B′

)
where B ∈Mm(F ), B′ ∈Mn(F ) and C is an arbitrary m× n-matrix over F . If A
is singular then it follows that either B, B′ or both are singular, too. Thus trivialy

detA = detB detB′ (188)

since both sides of this equation are equal to 0. We want to show that this equation
is even true in the case that A is regular2.

In the case that A is regular it follows that necessarily B and B′ are regular,
too (why?). Thus we can transform the matrix A by applying only elementary row
transformations of type I to the �rst m rows into a matrix of the form

A′ :=
(
Dm(b) C ′

0 B′

)
with b = detB where C ′ is a m × n-matrix over F . Applying elementary row
transformations of type I to the last n rows we can transform the matrix A′ into a
matrix of the form

A′′ :=
(
Dm(b) C ′

0 Dn(b′)

)
with b′ = detB′. Finally by adding suitable multiples of the last n rows to the �rst
m rows we can transform A′′ to a matrix of the form

A′′′ :=
(
Dm(b) 0

0 Dn(b′)

)
.

Now A′′′ is a diagonal matrix which is obtained from the identity matrix I by
multiplying the n-th and the last column by the elements b and b′. Therefore
detA′′′ = bb′ det I = detB detB′. Thus we have seen that we can transform the
matrix A to a matrix A′′′ by using elementary row transformations of type I only.
Thus detA = detA′′′ and it follows that (188) is also satis�ed in the case that A is
a regular matrix.

2Recall that a square matrix is called regular if it is not singular which is by de�nition
equivalent with being invertible, see De�nition 4.3.
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Using induction we obtain then the following general result:

Theorem 4.20. Let B1, . . . , Br be arbitrary square matrices over the same �eld F .
Then we have the equality ∣∣∣∣∣∣∣∣∣

B1 ∗
B2

. . .

0 Br

∣∣∣∣∣∣∣∣∣ =
r∏
i=1

|Bi| (189)

�

Note that the symbol
∏

is the comon way to de�ne an arbitrary product in
the same way as

∑
is used denote a sum. That is the right hand side of (189) is

just the compact form to denote the product detB1 · · · detBr.

Example. In particula the result of the previous theorem is true in case the Bi
are all 1× 1-matrixes. In this case we get the following simple rule: assume that A
is a upper triangular matrix, that is

A =


a11 a12 . . . a1n

a22 . . . a2n

. . .
...

0 ann

 .

Then detA = a11 · · · ann is the product of the elements on the diagonal.

Let us conclude this section with a note about one possible use of the determi-
nant function. Recall that in Section 10 of the previous chapter we introduced the
concept of similarity of square matrices: two matrices A,A′ ∈ Mn(F ) are called
similar if there exists a regular n× n-matrix S over F such that

A′ = S−1AS.

Thus in this case we have

detA′ = detS−1AS

= detAS−1S

= detA.

where the second equality is due to the corollary to Proposition 4.12 and the last
equality is due to S−1S = I is the identity matrix. Thus similar matrices have
always the same determinant. Thus we have a convenient way to verify whether
two matrices are not (!) similar to each other. For example the real matrices(

1 0
0 1

)
and

(
0 1
1 0

)
cannot be similar since the �rst matrix has determinant +1 and the latter matrix
has determinant −1. So these two matrices cannot represent one and the same
endomorphism f : R2 → R2. It would be much more di�cult to show this without
the concept of a determinant.

Note that the converse is not true in general: if two n × n-matrices over the
same �eld have the same determinant they might still be not similar to each other!
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4. The Leibniz Formula for Determinants

Recall the �rst three determinat functions which

det1(A) = a11

det2(A) = a11a22 − a12a21

det3(A) = a11a22a33 + a12a23a31 + a13a21a32

− a11a23a32 − a12a21a33 − a13a22a31

(see page 97). These polynomials share a great amount of symmetries and the
recursive formuly (178) hints that even the following determinant functions share
similar symmetries. The natural question arises whether there is a compact formula
for the determinant for an arbitrary n × n-matrix which exposes this symmetries.
And the answer is: yes! In this section � which will be the last one about determi-
nants in general � we will derive this formula which is known as the Leibniz formula
for determinants.3 But before we can state this formula we need to take again an
excursion into the realms of Algebra. The aim of this excursion is to study the
behaviour of detA under arbitrary permutations of the columns of A.

Assume that M is an arbitrary non-empty set. We shall denote by

SM

the set of all bijective maps σ: M → M . Such a bijective map shall be called a
permutation of M . We make the following observations about this set. If σ, τ ∈ S,
then the composite map

σ ◦ τ : M →M,x 7→ σ(τ(x))

is again a bijective map and thus an element of SM . Therefore we obtain a multili-
cation on the set SM . The product στ of two elements of σ, τ ∈ SM is de�ned to be
the composite map σ ◦ τ .4 Forming the composite map is an associative operation.
Apparently the identity map onM is contained in SM and σ ◦ id = σ and id ◦σ = σ
for every σ ∈ SM . Thus id ∈ SM is the identity element for this product and is
also called the trivial permutation. Furthermore the inverse map σ−1 is de�ned
for every σ ∈ SM and is itself a bijective map σ−1: M → M and thus an element
of SM . Clearly σ−1 is the inverse element of σ with respect to the above de�ned
product on SM , that is σ ◦ σ−1 = id and σ−1 ◦ σ = id. Therefore SM satis�es
with this product all the properties required by a group (see De�nition 3.46). This
group is called the group of permutations of M .

As a warning, note that in general the group SM is not abelian!5 Therefore we
have to be carefull when switching the order of elements in a product of permuta-
tions as does mostly leave the result not unchanged.

We are interested in the group of permutations in the following special case:

De�nition 4.21 (Symmetric Group of n Elements). Let n ≥ 1 be a natural number
and denote by N the set of the natural numbers 1 ≤ i ≤ n, that is N := {1, . . . , n}.
Then the group of permutations of N is called the symmetric group of n elements
and is denoted by

Sn := SN .

3Named after the German polymath Gottfried Wilhelm von Leibniz, 1646�1761.
4Compare this with the de�niton of the multiplication of two endomorphisms of a vector

space, that is 3.21. Though EndF (V ) is not a group under this multiplication the construction
is of a very similar kind. But then again the restriction of this multiplication to the set of all
automorphisms yields a group, namely the GLF (V ).

5One can show that the group SM is abelian if and only if the setM has not more 3 elements.
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We have to make some basic observations about the group Sn. Amongst all
the permutations of the set N = {1, . . . , n} there are certain simple perumtations.
This leads to the next de�nition.

De�nition 4.22. Let τ ∈ Sn. If there exists natural numbers 1 ≤ i, j ≤ n, i 6= j
such that

τ(i) = j and τ(j) = i

and such that τ(k) = k for any other integer 1 ≤ k ≤ n then τ is called a transpo-
sition.

That is, a transposition of the set N switches two numbers of N and leaves all
the other elements of N unchanged. We shall in the following denote by τi,j the
transposition which maps i 7→ j and j 7→ i. Note that there exist no transposition
in S1 as we need at least two di�erent elements in N .

The next result about transpositions is apparent:

Lemma 4.23. For any transposition τ ∈ Sn holds τ2 = id. �

We will use this result without further reference. Another very intuitive result
is the following. It basically states that any �nite collection objects can be ordered
by exchanging switching �nitely many times suitable objects (you might want to
try this with a deck of cards). Precisely formulatet this is the following

Lemma 4.24. Let σ ∈ Sn be a non-trivial permutation. Then σ can be written as
a �nite product of transpositions, that is there exists a decomposition

σ = τ1 · · · τk
where the τi (1 ≤ i ≤ k) are all transpositions of the set N .

Proof. We proof the result by induction with respect to n ≥ 2.
�n = 2�: There exists only one non-trivial permutation σ ∈ Sn and this per-

mutation is equal to τ1,2. Thus the claim of the lemma is apparently satis�ed.

�n− 1 ⇒ n�: Thus we assume that n > 2 and that the lemma is prooven for
all n′ ≤ n − 1. Denote by N ′ the set {1, . . . , n − 1}. Let σ ∈ Sn. Then either
σ(n) = n or σ(n) 6= n.

Consider the �rst case, that is σ(n) = n. Then the restriction of σ to the set N ′

is an element of Sn−1 and by induction follows that

σ = τ1 · · · τk
is a product of transpositions of N ′. But then the same decomposition is also a
product of transpositions of N . And this proves the claim of the lemma in the case
that σ(n) = n.

Thus it still remains to consider the case that σ(n) 6= n. Set i := σ(n) and
furthermore set σ′ := τi,nσ. Then σ′ is a permutation of N such that σ′(n) =
τi,n(σ(n)) = τi,n(i) = n. If σ′ is the trivial permutation then σ = τi,n and the claim
of the lemma is proven. Thus we may assume that σ′ is not the trivial permutation
and we can apply the considerations of the �rst case. We get a decomposition
σ′ = τ1 · · · τk of σ′ into transpositions. But then due to τi,nτi,n = id we get that
σ = τi,nτi,nσ = τi,nσ

′ = τi,nτ1 · · · τk is a decomposition of σ into transpositions
of N . And this completes the remaining case of the induction step. �

In the words of an Algebraist the above lemma states that the group Sn (n ≥ 2)
is generated by the transpositions of the set N .

Note that the above lemma does not state that the decomposition of a per-
mutation into transpositions is unique. The lemma just states that always such a
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decomposition exists. But even though the decomposition of a permutation σ is
not unique there is a property which is uniquely de�ned: it will turn out � and
this is not a trivial result � is that for a given permutation σ ∈ Sn the number
of transpositions needed for its decomposition into transpositions is either always
even or always odd. We will see this soon. But before we are heading towards this
result we shall still state the following not to di�cult observation.

Lemma 4.25. The symmetric group of n elements Sn has n! = 1 · 2 · · · (n− 1) · n
elements.

Proof. Left as an exercise to the reader. �

We begin to return from our excursion to the real of Algebra back to Linear
Algebra . Let F be a �eld and n ≥ 1 a �xed integer n ≥ 1. For any σ ∈ Sn we
know that there exists a unique linear map P : Fn → Fn de�ned by the equations

Pσej = eσ(j), 1 ≤ j ≤ n, (190)

where (e1, . . . , en) denotes canonical standard basis of Fn (Proposition 3.5). Then
the columns of the matrix Pσ are precisely the vectors

Pσ = (eσ(1), . . . , eσ(n)), (191)

since the columns of a matrix are precisely the images of the vectors of the canonical
standard basis (Proposition 3.28). The matrix Pσ is therefore obtained from the
identity matrix by permutation of the columns.

De�nition 4.26. Let σ ∈ Sn. Then the matrix Pσ as de�ned above is called the
permutation matrix belonging to the permutation σ.

In particular the special matrix Rij as introduced in (162) in the previous
chapter is then nothing else then the permutation matrix belonging to the trans-
position τij .

Straight from the de�nition (190) follows that we have the equality

PσPτ = Pστ (192)

for every σ, τ ∈ Sn. Therefore we get that the set of all permuation matrices forms
a group which we shall for the moment denote by Pn(F ). It is a subgroup of the
genral linear group GLn(F ). It follows from (192) that

P : Sn → Pn(F ), σ 7→ Pσ

is a homomorphism of groups and it is apparent that this homomorphism is actually
an isomorphism of groups. Thus the symmetric group Sn is isomorphic to Pn(F )
as groups.

Now let A ∈ Mn(F ) be an arbitrary n × n-matrix. Denote by v1, . . . , vn the
system of column vectors of A. Furthermore denote for any σ ∈ Sn by Aσ the
matrix for which the system of column vectors is precisely vσ(1), . . . , vσ(n), that is
we de�ne

Aσ := (vσ(1), . . . , vσ(n)).
Note that in particular Iσ = Pσ due to (191). Due to (190) we have then

Aσ = APσ. (193)

Thus we can interprete the permutation of the columns of the matrix A by a
multiplication of A from the right with a permutation matrix. From (193) follows
then

detAσ = detA detPσ. (194)
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Thus in order to determine detAσ we must calculate detPσ. In the particular case
of a transposition τ we know from (174) that

detPτ = −1.

For an arbitrary non-trivial permutation σ ∈ Sn we know from Lemma 4.24 that
there exists a decomposition of σ into transpositions ti and therefore it follows that
we get

detPσ = detPτ1 · · · detPτk
= (−1)k.

Since the left hand side of this equation depends only on Pσ (and therefore σ)
but since it is independent of the decomposition it follows that the number k is
independently of the decomposition either even or odd.6

De�nition 4.27. Let F be a �eld with charF 6= 2. Then the function

sgn : Sn → {+1,−1}, σ 7→ sgn(σ) := detPσ (195)

which assigns each element of the symmetric group of n elements Sn either the
number 1 or the number −1 is called the sign function. If sgn(σ) = +1 then we
say that σ is an even permutation and if sgn(σ) = −1 we say that σ is an odd
permutation.

Note that whether a permutation σ ∈ Sn is even or odd is independent of
the choice of the �eld F . It is purely a property of the permutation σ. Moreover
nothing hinders us to use the de�nition of a sign function also in the case that
charF = 2. But since the symbols +1 and −1 denote in this case the same element
of F we have that this function does not carry much (actually any) information
when charF = 2. It is then just the constant 1 function.

Note that with this notation we can now write the equation (194) as

detAσ = sgnσ detA.

We return now to the actual aim of this section, namely to derive a closed
expression for the determinant of a n× n-matrix

A = (aij)

over a �eld F . Let us denote by v1, . . . , vn the system of columns of A. Then we
have

detA = det(v1, . . . , vn)

= det
( n∑
i=1

ai1ei, . . . ,

n∑
i=1

ainei

)
and using the multilinearity of the determinant (Proposition 4.6) we get

=
∑

(i1,...,in)∈Nn

ai1,1 · · · ain,n det(ei1 , . . . , een). (196)

Here the last sum is taken over all n-tuples (i1, . . . , in) of elements in N . If in such
an n-tuple two numbers coincide then the rank of the system ei1 , . . . , een

is strictly
less than n and therefore det(ei1 , . . . , een) = 0. Thus we actually only taket the
sum in (196) only over all n-tuples (i1, . . . , in) for which hold

{i1, . . . , in} = {1, . . . , n}.7 (197)

6Note that we silently ignored the case that charF = 2. But this does not in�uence the
following discussion.

7Note that this is an equality of sets!
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Now if (i1, . . . , in) is such an n-tuple, then σ(k) := ik de�nes an bijective map
σ: N → N and is therefore an element of Sn. Vice versa, if σ ∈ Sn, then
(σ(1), . . . , σ(n)) is apparently an n-tuple which satis�es (197). Thus we get from
the equality (196) the formula

detA =
∑
σ∈Sn

sgn(σ)aσ(1),1 · · · aσ(n),n. (198)

Theorem 4.28 (The Leibniz Formula for Determinants). Let A = (aij) be an
arbitrary n× n-matrix over the �eld F . Then

detA =
∑
σ∈Sn

sgn(σ)a1,σ(1) · · · an,σ(n). (199)

Proof. The formula (199) follows from (198) due to detA = det tA. �

Notice the impressive beauty and simplicity of the Leibniz formula (199). Yet
it is not important for the explicite computation of a determinant. To compute
a determinant it the properties and results from Section 1 and Section 3 of this
chapter are the useful ones.

The importance of the Leibniz formula lies in the theoretical insight it provides.
It gives an explicite relationship between the coe�cients of the matrix A and the
value of its determinant detA:

For example, if F = R or F = C, then the determinant turns out to be a
continuous function in the coe�cients of the matrix A, because after all it is a
polynomial and polynomials are continuous. Or in case that A is a matrix with
only integer coe�cients, then the determinant must be an interger aswell.
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APPENDIX A

Some Terminology about Sets and Maps

1. Sets

We shall collect in this section a few mathematical de�nitions about sets. We
will restrict ourself to what is know as naive set theory (and will not touch the
more complicated issues about axiomatic set theory).

De�nition A.1. A set A is a well de�ned collection of objects. The objects of a
set are called elements of the set.

If x is an element of the set A, then we denote this fact in symbols by x ∈ A.
If x is not an element of the set A, then we denote this fact by x /∈ A. If A and B
are sets, then the sets are equal if they contain precisely the same elements. The
set which does not contain any elements is called the empty set and denoted in
symbols by ∅.

Note that the above de�nition means that a set A is charactericed by its ele-
ments. In order to show that two sets A and B are equal we have to show always (!)
two seperate things:

(1) For every x ∈ A holds x ∈ B.
(2) For every x ∈ B holds x ∈ A.
Note that the above statements are really two di�erent statements. If the �rst

is true, then we say that A is a subset of B and vice versa, if the second statement
is true, then we say that B is a subset of A. That is:

De�nition A.2. Let A and B be sets. Then we say A is a subset of B if for every
x ∈ A holds x ∈ B. We denote this fact in symbols by A ⊂ B.

Thus A = B if and onyl if A ⊂ B and B ⊂ A. Note that the empty set is
subset of every set.

We may describe sets by listing there elements in curly bracets. That is, the
empty set is given by

{}

and the set containing all integers from 1 to 5 is given by

{1, 2, 3, 4, 5}.

We might also list the elements of a set by its property. For example we may write
the set N of all natural numbers is

N := {i ∈ Z : i ≥ 0},

which reads N is by de�nition the set of all integers i for which hold i ≥ 0. This is
just a few examples, also other, similar notations are possible.
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We can construct new sets out of given sets. The most common constructs are
the following:

De�nition A.3. Let A and B be sets. Then the their union A ∪B is the set

A ∪B := {x : x ∈ A or x ∈ B}

and their intersection A ∩B is the set

A ∩B := {x : x ∈ A and x ∈ B}.

The (set theoretic) di�erence A \B of A and B is the set

A \B := {x : x ∈ A and x /∈ B}

Note that always A∪B = B ∪A and A∩B = B ∩A but in general it is not (!)
true that A \B = B \A.

Another common way to construct new sets out of given ones is to form the
cartesian product.

De�nition A.4. Let A and B sets. Then the cartesian product A × B is the set
of all pairs (a, b) with a ∈ A and b ∈ B, that is

A×B := {(a, b) : a ∈ A and b ∈ B}.

Note that (a, b) = (c, d) if and only if a = c and b = d. Note that in general
A × B 6= B × A. Furthermore it is always true that A × ∅ = ∅ and ∅ × A = ∅.
Cartesian products with more factors are de�ned in a smimilar way.

If n ≥ 1 is a natural number then the n-fold cartesian product of a set A is
usual denoted by An, that is

An := A× . . .×A︸ ︷︷ ︸
n-times

.

Elements in An are called n-tuples. We set A0 := ∅. Apparently A1 = A and
A2 = A×A. Note that this explains the notation Fn in Chapter 1 and Chapter 2.

2. Maps

We shall collect a few basic mathematical de�nitions about maps in general,
not speci�c to Linear Algebra.

De�nition A.5. Let A and B two sets. Then a map (or function) f from A to
the set B,

f : A→ B, x 7→ f(x),
is a rule which assigns each element x ∈ A precisely one element f(x) ∈ B. The set
A is called the domain of f and the set B is called the range (or co-domain) of f .

Two maps f : A→ B and g: C → D are equal if A = C, B = D and for every
x ∈ A holds f(x) = g(x).1

If x ∈ A then the element f(x) ∈ B is the image of x under f . If y ∈ B then
the pre-image of y under f is the set f−1(y) := {x ∈ A : f(x) = y} which is a
subset (and not an element!) of A. Similarly if A′ ⊂ A, then the image of A under
f is the set

f(A) := {f(x) : x ∈ A}

1One might relax the de�nition of �equal maps� by leaving away the requirement B = D,
depending on the situation.



2. MAPS 115

and this is a subset of the set B. On the other hand, if B′ ⊂ B, then by the
pre-image of B′ under f we mean the set

f−1(B′) := {x ∈ A : f(x) ∈ B′}

and this is a subset of the set A
We may classify maps by the number of elements in the pre-images of elements

in the range:

De�nition A.6. Let f : A→ B be a map. Then we say that f is an injective map2

if the following statement is true:

The pre-image f−1(y) contains at most 1 element for every y ∈ B. (200)

Likewise we say that f is a surjective map3 if the following statement is true:

The pre-image f−1(y) contains at least 1 element for every y ∈ B. (201)

A bijective map is a map which is both injective and surjective.

Note that the statement (200) is equivalent with

For every x, y ∈ A follows from f(x) = f(y) that x = y.

And similarly the statement (201) is equivalent with

f(A) = B.

Note further that every injective map f : A → B de�nes always bijective map
A→ f(A).

We can construct new maps from given ones:

De�nition A.7. Let f : A→ B be a map and A′ ⊂ A. Then the restriction f |A′
of f to the set A′ is the map

f |A′: A′ → B, x 7→ f(x).

Furthermore, if C is another set and g: B → C is another map, then by the
composite map g ◦ f of f and g we mean the map

g ◦ f : A→ C, x 7→ g(f(x)).

Note that the operation of forming composite maps is associative. That is, if
h: C → D is another map, then

h ◦ (g ◦ f) = (h ◦ g) ◦ f.

For every set A there exists the map

idA : A→ A, x 7→ x

which is called the identity map of the set A. If there is no danger of confusion
then the identity map of the set A is denoted just by id. If A′ ⊂ A, then the map

i: A′ → A, x 7→ x

is called the inclusion of A′ into A. This map is the restriction of the identity map
of A to the subset A′ and this map is always injective.

If f : A → B is a bijective map, then for every y ∈ B the pre-image f−1(y)
contains precisely one element. We can de�ne a map

f−1: B → A

2An injective map is also know as an one-to-one map in the literature.
3A surjective map is also know as a map onto in the literature.
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which maps every y ∈ B to precisely this one element x ∈ A for which holds
f(x) = y. This map is called the inverse map of the bijective map f . Note that
the inverse map is only de�ned for bijective maps!

Apparently if f is a bijective map, then its inverse map f−1 is again a bijective
map. The inverse map (f−1)−1 of the inverse map f−1 is again equal to f . If
f : A→ B and g: B → C are bijective maps, then g ◦ f is a bijective map, too, and
we have the equality

(g ◦ f)−1 = f−1 ◦ g−1.

It is useful to know that a map f : A→ B is a bijectvie map if and only if there
exist a map g: B → A such that g ◦ f = idA and f ◦ g = idB . In this case g = f−1.



APPENDIX B

Fields with Positive Characteristic

In Chapter 2, when we de�ned the algebraic structure of a �eld, we have only
given exapmles of �elds with characteristic 0. In this appendix we shall give some
concrete examples of �elds with positive characteristic. We will construct �elds
with only �nite many elements.

De�ne for a given number m > 0 the set Fm to be

Fm := {0, 1, 2, . . . ,m− 1}.
That is, the set Fm consists of exactly m elements. We shall de�ne an addition and
a multiplication on Fm which makes the this set into a ring and we will see under
which conditions this ring is also a �eld.

We need a result basic result from number theory: the division algorithm for
integers. This result states that if m > 0 is a given positive integer and x an
arbitrary integer, then there exists unique integers q and r such that

x = qm+ r and 0 ≤ r < m. (202)

We say that r is the reminder of the division of x by m and we denote this reminder
in the following by

rm(x).
Now we de�ne the addition and the multiplication in Fm as follows:

x+ y := rm(x+ y) and x · y := rm(xy) (203)

for every x, y ∈ Fm. The so de�ned addition and multiplication is called the addition
and multiplication modulo m. We shall state without a proof the following result.

Proposition B.1. Let m > 0 be a positive integer. Then:

(1) The set Fm together with the addition and multiplication modulo m as
de�ned in (203) is a commutative ring with unit.

(2) The ring Fm is a �eld if and only if m is a prime number. �

Apparently we have for any prime number p the equality char(Fp) = p. On
the other hand one has the following result which gives a strong constraint on the
characteristic of a �eld.

Proposition B.2. Let F be a �eld with char(F ) > 0. Then char(F ) = p is a prime
number.

Proof. We only need to show that if char(F ) = k is not a prime, then F
cannot be a �eld. Assume therefore that k = mn for some 1 < m,n < k. Then
x := me 6= 0 and y := ne 6= 0. On the other hand

xy = (me)(ne) = (mn)e = ke = 0

but this contradicts to (39). Thus F is not a �eld if k is not a prime. Thus if F is
a �eld with char(F ) > 0 then char(F ) is necessarily a prime number. �
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APPENDIX C

Zorn's Lemma and the Existence of a Basis

Recall that we have proven the existence of a basis for a vector space V only
in the case that V had been a �nitely generated vector space. In this case the
proof was even relatively easy. If one wants to prove the existence of a basis in the
general case where V is not necessarily �nitely generated one needs much heavier
machinery to conquer the problem.

The key to prove the existence of a basis for vector spaces which are not �nitely
generated is Zorn's Lemma1, which is a result of set theory and equivalent to the
Axiom of Choice.

Before we can state Zorn's Lemma we need some de�nitions.

De�nition C.1. Let X be a set. A relation �≤� is said to be a partial order on X
if the following three conditions hold:

(1) The relation �≤� is re�exive, that is x ≤ x for every x ∈ X.
(2) The relation �≤� is antisymmetric, that is for every x, y ∈ X it follows

from x ≤ y and y ≤ x that x = y.
(3) The relation �≤� is transitive, that is for every x, y, z ∈ X it follows from

x ≤ y and y ≤ z that x ≤ z.
A partial order on X is called a total order if x ≤ y or y ≤ x for every x, y ∈ X,

that is any two elements of X can be compared in either or the other way.
Let A ⊂ X be a subset of a partialy ordered set. Then m ∈ X is an upper

bound of A if x ≤ m for every x ∈ A. An element m ∈ X is called a maximal
element if m ≤ x implies m = x for every x ∈ X.

Example. LetX be an arbitrary set. Then the subset relation �⊂� de�nes a partial
order on the set of subsets of X.

Zorn's Lemma. Every non-empty partially ordered set in which every chain (that
is totally ordered subset) has an upper bound contains at least one maximal element.

�

Let V be an arbitrary vector space over a �eld F . Denote by L the set of
all linear independent subsets of V . Then L is a partial ordered set under the
inclusion relation �⊂�. We want to show that L satisi�es the conditions required
by Zorn's Lemma.

First of all L is not empty since the empty set ∅ is a linear independent subset
of V (see the examples to De�nition 2.16) and thus ∅ ∈ L .

Let C ⊂ L be a subset which is totaly ordered by the inclusion relation �⊂�.
We claim that its union

C :=
⋃
M∈C

M

1Named after the American algebraist, group theorist and numelrical analyst Max August
Zorn, 1906�1993.
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is linear independent subset. Therefore choose pairwise distinct vectors v1, . . . , vn ∈
C and assume that a1, . . . , an ∈ F are numbers such that

a1v1 + . . .+ anvn = 0 (∗)
is a linear combination of the zero vector. Now there exists M1, . . . ,Mn ∈ C such
that vi ∈Mi for i = 1, . . . , n. Since C is by assumption totaly ordered by incluseion
there exists a 1 ≤ i0 ≤ n such that Mi ⊂ Mi0 for every i = 1, . . . , n. In particular
this means that (∗) is a linear combination of the zero vector by vectors of the is
linearly independent set Mi0 . Thus a1 = . . . = an = 0. Now since v1, . . . , vn had
been arbitrary, but pairwise distinct vectors in C this shows that C is a linearly
independent subset of V and therefore an element of L and by construction for
every M ∈ C holds M ⊂ C. Thus C has an upper bound.

Since C was an arbitrary chain of L this shows that every chain in L has an
upper bound. Thus the can apply Zorn's Lemma which states that there exists a
maximal element B ∈ L .

Then B is a maximal linear independent subset of V and thus by Proposi-
tion 2.22 it follows that B is a basis of V . This proves Theorem 2.23 of Chapter 2:

Theorem (Existence of a Basis). Every vector space has a basis. �

The interesting issue about this theorem is that it is so strong that it can be
proven to be equivalent with Zorn's Lemma (see [Bla84]). If we require that every
vector space has a basis, then it follows that the Axiom of Choice must hold and
thus Zorn's Lemma holds, too. In this sense the existence of a basis is a very deep
and strong result of Linear Algebra.

Note the beauty of the above theorem! It takes only as little as six words we
can state a theorem which relates to the very foundation of mathematics.

Observe that with a slightly addapted proof we can verify that the basis exten-
sion theorem � that is Theorem 2.36 � holds true in the in�nite dimensional case,
too. Precisely we have the following result.

Theorem (Basis Extension Theorem). Let N be a linear independent subset of a
vector space V . Then N can be extendet to a basis of V , that is there exists a basis
M of V such that N ⊂M . �



APPENDIX D

A Summary of Some Algebraic Structures.

Semigroup: A semigroup H = (H, ∗) is a non-empty set H together with
a binary operation

∗ : H ×H → H, (x, y) 7→ x ∗ y

which satis�es the associativity law. Note that a semigroup is not required
to hava an idenitity element. A semigroup H is said to be commutative if
x ∗ y = y ∗ x for every x, y ∈ H.

Monoid: A monoid H = (H, ∗) is a semigroup which has a identity element.
An element e ∈ H is said to be an identity element if x∗e = x and e∗x = x
for every x ∈ H. The identity element of a monoid is always unique. A
monoid is called commutative if it is a commutative semigroup.

Group: A group G = (G, ∗) is a monoid where every element of G has an
inverse element. If x ∈ G, then y ∈ G is an inverse element of x if x∗y = e
and y ∗ x = e where e is the identity element of G. An inverse element
is always unique, therefore one can speak of �the� inverse elment of an
element x ∈ G. A group is called abelian if it is a commutative monoid.
(See page 80.)

Ring: A ring (with unit) R = (R,+, · ) is a set R together with two binary
operations

+: R×R→ R, (x, y) 7→ x+ y, (addition)

· : R×R→ R, (x, y) 7→ xy (multiplication)

satisfying the following three conditions:
(1) (R,+) is an abelian group.
(2) (R, · ) is an monoid.
(3) x(y + z) = xy + xz for every x, y, z ∈ R (distributive law).
The identity of the addition is usually denoted by �0� and the identity of
the multiplication is usually denoted by �1�. In order to avoid triviality
one usually requires that 0 6= 1, that is the identity element of the addition
and the identity element of the multiplication are di�erent elements. A
ring where the multiplication is commutative is called a commutative ring.
A zero divisor of R is an element 0 6= x ∈ R such that xy = 0 for some
0 6= y ∈ R. A ring which does not have zero divisors is called a regular
ring. (See page 21.)

Field: A �eld F = (F,+, · ) is a commutative ring such that (F •, · ) is
a group (where F • := F \ {0}). That is, in a �eld the multiplication
is commutative and every non-zero element has a multiplicative inverse.
(See page 19.)
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Vector Space: A vector space V = (V,+, · ) over a �eld F is a set F with
two maps

+: V × V → V, (x, y) 7→ x+ y, (addition)

· : F × V → V, (a, x) 7→ ax (scalar multiplication)

satisfying the following conditions:
(1) (F,+) is an abelian group.
(2) (ab)x = a(bx) for every a, b ∈ F and x ∈ V .
(3) 1x = x for every x ∈ V .
(4) a(x+ y) = ax+ ay for every a ∈ F and x, y ∈ V .
(5) (a+ b)x = ax+ bx for every a, b ∈ F and x ∈ V .
Elements of V are called vectors and elements of F are called scalars. (See
page 21.)

Algebra: A algebra (with unit) V over a �eld F (or F -algebra) is a vector
space over the �eld F with a multiplication

· : V × V → V, (x, y) 7→ xy

satisfying the following conditions:
(1) V together with the addition of vectors and the above de�ned mul-

tiplication on V is a ring.
(2) For every x, y ∈ V and a ∈ F holds

a(xy) = (ax)y = x(ay).

Note that we use by abuse of notation the very same symbol for the scalar
multiplication and the multiplication on V ! (See page 61.)

Examples. (1) The set of natural numbers

N := {0, 1, 2, 3, . . .}
is a commutative monoid under addition and under multiplication.

(2) The set of strictly positive natural numbers

N+ := {1, 2, 3, . . .}
is a commutative semigroup under addition and a commutative monoid
under multiplication.

(3) The set of integers

Z := {0,±1,±2,±3, . . .}
is a abelian group under addition and a commutative monoid under mul-
tiplication. In particular (Z,+, · ) is a commutative, regular ring.

(4) The set of all rational numbers

Q := { rs : r ∈ Z and s ∈ N+}
is a �eld under the addition and multiplication.

(5) The set of all real numbers R is a �eld under the additon and multiplica-
tion.

(6) The set of all complex numbers

C := {a+ ib : a, b ∈ R}
is a �eld under the multiplication of complex numbers (note that for the
imaginary unit i holds the relation i2 = −1).

(7) If V is a F -vector space, then the endomorphism ring

EndF (V ) := {f : f : V → V is a linear map}
is a F -algebra in a natural way (see page 61).
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(8) In particular the algebra of the n× n-matrices over a �eld F

Mn(F ) := Fn,n

is a F -algebra (see page 71).
(9) The general linear group

GL(V ) := {f ∈ EndF (V ) : f is an isomorphism}
of the F vector space V is a group (see page 80).

(10) In particular the set of all invertible n× n-matrices over F

GLn(F ) := GLF (Fn)

is a group, called the general linear group of degree n.





APPENDIX E

About the Concept of a Rank

In Section 5 we de�ned the important concept of a rank. The rank of a system
of vectors is a typical example of how a simple but well crafted de�nition can
result into a very fruitful concept in mathematics. This appendix shall recollect
the di�erent variants of the rank and point out some aspects of the concept.

Recall De�nition 2.25 were we de�ned what we mean by the rank of the �nite
system of vectors u1, . . . , um is r, namely:

(1) There exist a linear independent subset of the set {u1, . . . , um} which
consists of exactly r vectors.

(2) Any subset of {u1, . . . , um} which consists of r+1 vectors is linear depen-
dent.

We obtained straight away some simple results about the rank: the rank of a
system of m vectors is always bounded by the number m, that is

rank(u1, . . . , um) ≤ m,

and equality holds if and only if u1, . . . , um are m pairwise distinct vectors which
form a linar independent set. Another simple result has been that the rank of a
system of vectors is not decreasing if new vectors are added, that is

rank(u1, . . . , um+1) ≥ rank(u1, . . . , um),

and that the rank does not increase if um+1 is a linear combination of the vectors
u1, . . . , um (Proposition 2.27).

The rank of a system of vectors is invariant under elementary transformations
(De�nition 2.29 and Proposition 2.30). And Theorem 2.31 described an algorithm
how to compute the rank of a �nite system of vectors using the Gauss Algorithm.

The invariance of the dimension (Theorem 2.34) is the �rst non-trivial result
which we was obtained using the concept of a rank. The key to the proof of this
result is Proposition 2.38 which states that the rank of a �nite system of vectors is
bounded by the dimension of the vector space, that is

rank(u1, . . . , um) ≤ dimV.

The so obtained theorem about the invariance of the dimension enabled us to de�ne
the dimension of a vector space in a proper way. Proposition 2.38 gives intuitive
interpretation of the rank of a system of vectors, namely

rank(u1, . . . , um) = dim span(u1, . . . , um).

Since the columns and rows of an m × n-matrix over a �eld F can be seen as
elements of the vector space Fm and Fn the concept of a rank extends in a natural
way to matrices. We de�ned � see De�nition 2.44 � the column rank of a m × n-
matrix A to be the rank of the n vectors u1, . . . , un obtained from the colums of
the matrix A, that is

rankc(A) := rank(u1, . . . , un).
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Similarly we de�ne the row rank of A to be the rang of the m vectors v1, . . . , vm
obtained from the rows of the matrix A, that is

rankr(A) := rank(v1, . . . , vm).

It turns out � see Theorem 2.49 � that the row and the column rank are equal
for every matrix A, that is

rankrA = rankcA.

Thus we can de�ne the rank of a matrix A to be either of those two numbers, that
is

rankA := rankr(A)
which is done in De�nition 2.50. Using the interpretation given in Proposition 2.38
this means that the rank of a matrix A is equal to the dimension of the vector space
spanned by the vectors obtained from the columns of A and that this number is
equal to the dimension to the dimension of the vector space spanned by the vectors
obtained from the rows of A.

In Chapter 3 the rank of a linar map f : V →W is introduced in De�nition 3.14
as the dimension of image space of f , that is

rank f := dim(im f).

Note that this allows the possibility of rank f = ∞. In the case that V an W
are �nite dimensional vector spaces Proposition 3.25 states the following relation
between the rank of matrices and the rank of a linar map: for any coordinate matrix
A of the linear map f we have the equality

rank f = rankA.

Thus the rank of a linear map turns out to be a very natural de�nition.
From the rank of a linear map f : V →W we can draw some basic conclusions.

For example if V is a �nite dimensional then f is a monomorphism if and only if
rank f = dimV . Likewise, if W is �nite dimensional then f is an epimorphism if
and only if rank f = dimW . And from this follows that f is an isomorphism of
�nite dimensional vector spaces of same dimension n if and only if rank f = n.

From the dimension formula for linear maps � that is Theorem 3.15 � we get
in the case that V is �nite dimensional the following interpretation for the rank of
a linear map:

rank f = dimV − dim(ker f)
and this explains why the dimension of the kernel of a linear map is also called
the defect of a linear map. In particular a linear map is a monomorphism if it has
defect 0.
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