advancing learning, changing lives

Core Mathematics 1

Edexcel AS and A-level Modular Mathematics

Greg Attwood
Alistair Macpherson
Bronwen Moran
Joe Petran
Keith Pledger
Geoff Staley
Dave Wilkins

Contents

The highlighted sections will help your transition from GCSE to AS mathematics.
About this book v
1 Algebra and functions 1
1.1 Simplifying expressions by collecting like terms 2
1.2 The rules of indices 3
1.3 Expanding an expression 4
1.4 Factorising expressions 5
1.5 Factorising quadratic expressions 6
1.6 The rules of indices for all rational exponents 8
1.7 The use and manipulation of surds 10
1.8 Rationalising the denominator of a fraction when it is a surd 11
Summary of key points 14
2 Quadratic functions 15
2.1 Plotting the graphs of quadratic functions 16
2.2 Solving quadratic equations by factorisation 17
2.3 Completing the square 19
2.4 Solving quadratic equations by completing the square 20
2.5 Solving quadratic equations by using the formula 22
2.6 Sketching graphs of quadratic equations 23
Summary of key points 26
3 Equations and inequalities 27
3.1 Solving simultaneous linear equations by elimination 28
3.2 Solving simultaneous linear equations by substitution 29
3.3 Using substitution when one equation is linear and the other is quadratic 30
3.4 Solving linear inequalities 31
3.5 Solving quadratic inequalities 35
Summary of key points 40
4 Sketching curves 41
4.1 Sketching the graphs of cubic functions 42
4.2 Interpreting graphs of cubic functions 47
4.3 Sketching the reciprocal function 49
4.4 Using the intersection points of graphs of functions to solve equations 52
4.5 The effect of the transformations $\mathrm{f}(x+a), \mathrm{f}(x-a)$, and $\mathrm{f}(x)+a$ 55
4.6 The effect of the transformations $\mathrm{f}(a x)$ and $a f(x)$ 60
4.7 Performing transformations on the sketches of curves 64
Summary of key points 68
Review Exercise 1 69
5 Coordinate geometry in the (x, y) plane 73
5.1 The equation of a straight line in the form $y=m x+c$ or $a x+b y+c=0$ 74
5.2 The gradient of a straight line 77
5.3 The equation of a straight line of the form $y-y_{1}=m\left(x-x_{1}\right)$ 79
5.4 The formula for finding the equation of a straight line 81
5.5 The conditions for two straight lines to be parallel or perpendicular 84
Summary of key points 90
6 Sequences and series 91
6.1 Introduction to sequences 92
6.2 The nth term of a sequence 93
6.3 Sequences generated by a recurrence relationship 95
6.4 Arithmetic sequences 98
6.5 Arithmetic series 100
6.6 The sum to n of an arithmetic series 103
6.7 Using Σ notation 107
Summary of key points 111
7 Differentiation 112
7.1 The derivative of $\mathrm{f}(x)$ as the gradient of the tangent to the graph $y=\mathrm{f}(x)$ 113
7.2 Finding the formula for the gradient of x^{n} 116
7.3 Finding the gradient formula of simple functions 120
7.4 The gradient formula for a function where the powers of x are real numbers 124
7.5 Expanding or simplifying functions to make them easier to differentiate 125
7.6 Finding second order derivatives 126
7.7 Finding the rate of change of a function at a particular point 127
7.8 Finding the equation of the tangent and normal to a curve at a point 128
Summary of key points 132
8 Integration 133
8.1 Integrating x^{n} 134
8.2 Integrating simple expressions 136
8.3 Using the integral sign 137
8.4 Simplifying expressions before integrating 138
8.5 Finding the constant of integration 140
Summary of key points 142
Review Exercise 2 143
Practice paper 147
Examination style paper 149
Formulae you need to remember 152
Lists of symbols and notation 153
Answers 156
Index 184

About this book

This book is designed to provide you with the best preparation possible for your Edexcel C1 unit examination:

- This is Edexcel's own course for the GCE specification.
- Written by a senior examining team at Edexcel: the chair of examiners, chief examiners and principal examiners.
- The LiveText CD-ROM in the back of the book contains even more resources to support you through the unit.
- A matching C1 revision guide is also available.

Finding your way around the book
Detailed conten
list shows which
parts of the C1
specification are
covered in each
section sections 2.1 to 2.5 provide excellent transition material from your GCSE mathematics

Concise learning points

Step-by-step worked examples - they are model solutions and include examiners hints

Each chapter has a different colour scheme, to help you find the right chapter quickly

Each chapter ends with a mixed exercise and a summary of key points.

Brief chapter overview and 'links' to underline the importance of mathematics: to the real world, to your study of further units and to your career

LiveText

LiveText software

The LiveText software gives you additional resources: Solutionbank and Exam café. Simply turn the pages of the electronic book to the page you need, and explore!

Unique Exam café feature:

- Relax and prepare - revision planner; hints and tips; common mistakes
- Refresh your memory - revision checklist; language of the examination; glossary
- Get the result! - fully worked examination-style paper with chief examiner's commentary

Solutionbank

- Hints and solutions to every question in the textbook
- Solutions and commentary for all review exercises and the practice examination paper

Pearson Education Limited, a company incorporated in England and Wales, having its registered office at Edinburgh Gate, Harlow, Essex, CM20 2JE. Registered company number: 872828

Text © Greg Attwood, Alistair David Macpherson, Bronwen Moran, Joe Petran, Keith Pledger, Geoff Staley, Dave Wilkins 2008

First published 2004 under the title Heinemann modular mathematics for Edexcel AS and A-Level Core Mathematics 1

This edition 2008

12111009
109876543

British Library Cataloguing in Publication Data is available from the British Library on request.
ISBN 9780435519100

Copyright notice

All rights reserved. No part of this publication may be reproduced in any form or by any means (including photocopying or storing it in any medium by electronic means and whether or not transiently or incidentally to some other use of this publication) without the written permission of the copyright owner, except in accordance with the provisions of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency, Saffron House, 6-10 Kirby Street, London EC1N 8TS (www.cla.co.uk). Applications for the copyright owner's written permission should be addressed to the publisher.

Edited by Susan Gardner
Typeset by Techset Ltd
Original illustrations © Pearson Education Limited, 2008
Illustrated by Techset Ltd
Cover design by Christopher Howson
Picture research by Chrissie Martin
Cover photo/illustration © Edexcel
Printed in the UK by Scotprint

Acknowledgements

The author and publisher would like to thank the following individuals and organisations for permission to reproduce photographs:

Alamy / Hideo Kurihara p1; Shutterstock / photosbyjohn p15; Creatas p27; iStockPhoto.com p41; Pearson Education Ltd / Jules Selmes p73; akg-images p91; Science Photo Library / Sheila Terry p112; akg-images / Erich Lessing p133

Every effort has been made to contact copyright holders of material reproduced in this book. Any omissions will be rectified in subsequent printings if notice is given to the publishers.

After completing this chapter you should be able to
1 simplify expressions and collect like terms
2 apply the rules of indices
3 multiply out brackets
4 factorise expressions including quadratics

5 manipulate surds.
This chapter provides the foundations for many aspects of A level Mathematics. Factorising expressions will enable you to solve equations; it could help sketch the graph of a function. A knowledge of indices is very important when differentiating and integrating. Surds are an important way of giving exact answers to problems and you will meet them again when solving quadratic equations.

Algebra and functions

Did you know?

...that the surd
$\frac{\sqrt{5}+1}{2} \approx 1.618$
is a number that occurs both in nature and the arts? It is called the 'golden ratio' and describes the ratio of the longest side of a rectangle to the shortest. It is supposed to be the most aesthetically pleasing rectangular shape and has been used by artists and designers since Ancient Greek times.

1.1 You can simplify expressions by collecting like terms.

Example 1

Simplify these expressions:
a $3 x+2 x y+7-x+3 x y-9$
b $3 x^{2}-6 x+4-2 x^{2}+3 x-3$
c $3\left(a+b^{2}\right)-2\left(3 a-4 b^{2}\right)$
a $3 x+2 x y+7-x+3 x y-9$

$$
=3 x-x+2 x y+3 x y+7-9
$$

$$
=2 x+5 x y-2
$$

b $3 x^{2}-6 x+4-2 x^{2}+3 x-3$. $=3 x^{2}-2 x^{2}-6 x+3 x+4-3$ $=x^{2}-3 x+1$
c $3\left(a+b^{2}\right)-2\left(3 a-4 b^{2}\right)$.
$=3 a+3 b^{2}-6 a+8 b^{2}$
$=-3 a+11 b^{2}$

Rewrite the expression with the like terms next to each other.

$$
+7-9=-2
$$

$3 x^{2}$ and $3 x$ are not like terms: $3 x^{2}=3 \times x \times x \quad 3 x=3 \times x$
$1 x^{2}$ is written as x^{2}.

Muttiply the term outside the bracket by both terms inside the bracket:
$-2 \times 3 a=-6 a$
$-2 \times-4 b^{2}=8 b^{2}$
So $-2\left(3 a-4 b^{2}\right)=-6 a+8 b^{2}$

Exercise 1A

Simplify these expressions:
$14 x-5 y+3 x+6 y$
$23 r+7 t-5 r+3 t$
$33 m-2 n-p+5 m+3 n-6 p$
$43 a b-3 a c+3 a-7 a b+5 a c$
$57 x^{2}-2 x^{2}+5 x^{2}-4 x^{2}$
$64 m^{2} n+5 m n^{2}-2 m^{2} n+m n^{2}-3 m n^{2}$
$75 x^{2}+4 x+1-3 x^{2}+2 x+7$
$86 x^{2}+5 x-12+3 x^{2}-7 x+11$
$93 x^{2}-5 x+2+3 x^{2}-7 x-12$
$104 c^{2} d+5 c d^{2}-c^{2} d+3 c d^{2}+7 c^{2} d$
$112 x^{2}+3 x+1+2\left(3 x^{2}+6\right)$
$124\left(a+a^{2} b\right)-3\left(2 a+a^{2} b\right)$
$132\left(3 x^{2}+4 x+5\right)-3\left(x^{2}-2 x-3\right)$
$147\left(1-x^{2}\right)+3\left(2-3 x+5 x^{2}\right)$
$154(a+b+3 c)-3 a+2 c$
$164\left(c+3 d^{2}\right)-3\left(2 c+d^{2}\right)$
$175-3\left(x^{2}+2 x-5\right)+3 x^{2}$
$18\left(r^{2}+3 t^{2}+9\right)-\left(2 r^{2}+3 t^{2}-4\right)$

1.2 You can simplify expressions and functions by using rules of indices (powers).

$\square a^{m} \times a^{n}=a^{m+n}$

$$
a^{m} \div a^{n}=a^{m-n}
$$

$$
\left(a^{m}\right)^{n}=a^{m n}
$$

$$
a^{-m}=\frac{1}{a^{m}}
$$

$$
a^{\frac{1}{m}}=\sqrt[m]{a}
$$

$a^{\frac{n}{m}}=\sqrt[n]{a^{n}}$

Example 2

Simplify these expressions:
a $x^{2} \times x^{5}$
b $2 r^{2} \times 3 r^{3}$
c $b^{4} \div b^{4}$
d $6 x^{-3} \div 3 x^{-5}$
e $\left(a^{3}\right)^{2} \times 2 a^{2}$
f $\left(3 x^{2}\right)^{3} \div x^{4}$

$a \quad$	$x^{2} \times x^{5}$
	$=x^{2+5}$
	$=x^{7}$
b	$2 r^{2} \times 3 r^{3}$
	$=2 \times 3 \times r^{2} \times r^{3}$
	$=6 \times r^{2+3}$
	$=6 r^{5}$
c	$b^{4} \div b^{4}$
	$=b^{4-4}$
	$=b^{0}=1$
d	$6 x^{-3} \div 3 x^{-5}$
	$=6 \div 3 \times x^{-3} \div x^{-5}$
	$=2 \times x^{2}$
	$=2 x^{2}$
e	$\left(a^{3}\right)^{2} \times 2 a^{2}$
	$=a^{6} \times 2 a^{2}$
	$=2 \times a^{6} \times a^{2}$
	$=27 x^{2}$
	$=2 \times a^{6+2}$
	$=2 a^{8}$
	$\left(3 x^{2}\right)^{3} \div x^{4}$
	$=27 x^{6} \div x^{4}$
	$=27 \times 1 \times x^{6} \div x^{4}$

Use the rule $a^{m} \times a^{n}=a^{m+n}$ to simplify the index.

Rewrite the expression with the numbers together and the r terms together.
$2 \times 3=6$
$r^{2} \times r^{3}=r^{2+3}$

Use the rule $a^{m} \div a^{n}=a^{m-n}$

Any term raised to the power of zero $=1$.

$$
x^{-3} \div x^{-5}=x^{-3--5}=x^{2}
$$

Use the rule $\left(a^{m}\right)^{n}=a^{m n}$ to simplify the index. $a^{6} \times 2 a^{2}=1 \times 2 \times a^{6} \times a^{2}$

$$
=2 \times a^{6+2}
$$

Use the rule $\left(a^{m}\right)^{n}=a^{m n}$ to simplify the index.

Exercise 1B

Simplify these expressions:

$\mathbf{1}$	$x^{3} \times x^{4}$	$\mathbf{2}$	$2 x^{3} \times 3 x^{2}$
$\mathbf{3}$	$4 p^{3} \div 2 p$	$\mathbf{4}$	$3 x^{-4} \div x^{-2}$
$\mathbf{5}$	$k^{3} \div k^{-2}$	$\mathbf{6}$	$\left(y^{2}\right)^{5}$
$\mathbf{7}$	$10 x^{5} \div 2 x^{-3}$	$\mathbf{8}$	$\left(p^{3}\right)^{2} \div p^{4}$
$\mathbf{9}$	$\left(2 a^{3}\right)^{2} \div 2 a^{3}$	$\mathbf{1 0}$	$8 p^{-4} \div 4 p^{3}$
$\mathbf{1 1}$	$2 a^{-4} \times 3 a^{-5}$	$\mathbf{1 2}$	$21 a^{3} b^{2} \div 7 a b^{4}$
$\mathbf{1 3}$	$9 x^{2} \times 3\left(x^{2}\right)^{3}$	$\mathbf{1 4}$	$3 x^{3} \times 2 x^{2} \times 4 x^{6}$
$\mathbf{1 5}$	$7 a^{4} \times\left(3 a^{4}\right)^{2}$	$\mathbf{1 6}$	$\left(4 y^{3}\right)^{3} \div 2 y^{3}$
$\mathbf{1 7}$	$2 a^{3} \div 3 a^{2} \times 6 a^{5}$	$\mathbf{1 8}$	$3 a^{4} \times 2 a^{5} \times a^{3}$

1.3 You can expand an expression by multiplying each term inside the bracket by the term outside.

Example 3

Expand these expressions, simplify if possible:
a $5(2 x+3)$
b $-3 x(7 x-4)$
c $y^{2}\left(3-2 y^{3}\right)$
d $4 x\left(3 x-2 x^{2}+5 x^{3}\right)$
e $2 x(5 x+3)-5(2 x+3)$

Hint: A - sign outside a bracket changes the sign of every term inside the brackets.

$\begin{aligned} \text { a } & 5(2 x+3) \\ & =10 x+15\end{aligned}$	
$\begin{aligned} b & -3 x(7 x-4) \\ & =-21 x^{2}+12 x \end{aligned}$	
c $y^{2}\left(3-2 y^{3}\right)$	
$=3 y^{2}-2 y^{5}$.	
d $4 x\left(3 x-2 x^{2}+5 x^{3}\right)$	
$=12 x^{2}-8 x^{3}+20 x^{4}$	
e $2 x(5 x+3)-5(2 x+3)$	
$=10 x^{2}+6 x-10 x-15$	
$=10 x^{2}-4 x-15$	

$$
5 \times 2 x+5 \times 3
$$

$$
\begin{aligned}
& -3 x \times 7 x=-21 x^{1+1}=-21 x^{2} \\
& -3 x \times-4=+12 x
\end{aligned}
$$

$$
y^{2} x-2 y^{3}=-2 y^{2+3}=-2 y^{5}
$$

Exercise 1C

Expand and simplify if possible:

| $\mathbf{1}$ | $9(x-2)$ | $\mathbf{2}$ |
| :--- | :--- | :--- |$x(x+9)$

You can factorise expressions.

Factorising is the opposite of expanding expressions.
When you have completely factorised an expression, the terms inside do not have a common factor.

Example 4

Factorise these expressions completely:
a $3 x+9$
b $x^{2}-5 x$
c $8 x^{2}+20 x$
d $9 x^{2} y+15 x y^{2}$
e $3 x^{2}-9 x y$

3 is a common factor of $3 x$ and 9 . x is a common factor of x^{2} and $-5 x$.

4 and x are common factors of $8 x^{2}$ and $20 x$. So take $4 x$ outside the bracket.
$3, x$ and y are common factors of $9 x^{2} y$ and $15 x y^{2}$. So take $3 x y$ outside the bracket.

Exercise 1D

Factorise these expressions completely:
$\left.\begin{array}{|l|l|l}\hline \mathbf{1} & 4 x+8 & \mathbf{2} \\ \hline\end{array}\right)$

1.5 You can factorise quadratic expressions.

A quadratic expression has the form $a x^{2}+b x+c$, where a, b, c are constants and $a \neq 0$.

Example 5

Factorise:
a $6 x^{2}+9 x$
b $x^{2}-5 x-6$
c $x^{2}+6 x+8$
d $6 x^{2}-11 x-10$
e $x^{2}-25$
f $4 x^{2}-9 y^{2}$

3 and x are common factors of $6 x^{2}$ and $9 x$.
So take $3 x$ outside the bracket.

Here $a=1, b=-5$ and $c=-6$.
You need to find two brackets that multiply together to give $x^{2}-5 x-6$. So:
(1) Work out $a c$.
(2) Work out the two factors of ac which add that give you b.
-6 and $+1=-5$
(3) Rewrite the $b x$ term using these two factors.
(4) Factorise first two terms and last two terms.
(5) $x+1$ is a factor of both terms, so take that outside the bracket. This is now completely factorised.

c $x^{2}+6 x+8$	
$=x^{2}+2 x+4 x+8$.	
$=x(x+2)+4(x+2)$	
$=(x+2)(x+4)$	
d $6 x^{2}-11 x-10$	
$=6 x^{2}-15 x+4 x-10$	
$=3 x(2 x-5)+2(2 x-5)$	
$=(2 x-5)(3 x+2)$	
$\text { e } x^{2}-25$	
$=x^{2}-5^{2}$	
$=(x+5)(x-5)^{\circ}$	
$\text { f } \begin{aligned} & 4 x^{2}-9 y^{2} \\ & =2^{2} x^{2}-3^{2} y^{2} \end{aligned}$	
$=(2 x+3 y)(2 x-3 y)$	

Since $a c=8$ and $2+4=6=b$, factorise.
$x+2$ is a factor so you can factorise again.
$a c=-60$ and $4-15=-11=b$.
Factorise.
Factorise $(2 x-5)$.

This is called the difference of two squares as the two terms are x^{2} and 5^{2}.
The two x terms, $5 x$ and $-5 x$, cancel each other out.

This is the same as $(2 x)^{2}-(3 y)^{2}$.

- $x^{2}-y^{2}=(x+y)(x-y)$

This is called the difference of two squares.

Exercise 1E

Factorise:

1	$x^{2}+4 x$	2	$2 x^{2}+6 x$
3	$x^{2}+11 x+24$	4	$x^{2}+8 x+12$
5	$x^{2}+3 x-40$	6	$x^{2}-8 x+12$
7	$x^{2}+5 x+6$	8	$x^{2}-2 x-24$
9	$x^{2}-3 x-10$	10	$x^{2}+x-20$
11	$2 x^{2}+5 x+2$	12	$3 x^{2}+10 x-8$
13	$5 x^{2}-16 x+3$	14	$6 x^{2}-8 x-8$
15	$2 x^{2}+7 x-15$	16	$2 x^{4}+14 x^{2}+24$
17	$x^{2}-4$	18	$x^{2}-49$
19	$4 x^{2}-25$	20	$9 x^{2}-25 y^{2}$
21	$36 x^{2}-4$	22	$2 x^{2}-50$
23	$6 x^{2}-10 x+4$	24	$15 x^{2}+42 x-9$

Hints:

Question 14 - Take 2 out as a common factor first. Question 16 - let $y=x^{2}$.

1.6 You can extend the rules of indices to all rational exponents.

$\square a^{m} \times a^{n}=a^{m+n}$
$a^{m} \div a^{n}=a^{m-n}$
$\left(a^{m}\right)^{n}=a^{m n}$
$a^{\frac{1}{m}}=\sqrt[m]{a}$
$\boldsymbol{a}^{\frac{n}{m}}=\sqrt[n]{\boldsymbol{a}^{n}}$

Hint: Rational numbers can be written as $\frac{a}{b}$ where a and b are both integers, e.g. $-3.5,1 \frac{1}{4}, 0.9,7,0 . i \dot{3}$
$a^{-m}=\frac{1}{a^{m}}$
$a^{0}=1$

Example 6

Simplify:
a $x^{4} \div x^{-3}$
b $x^{\frac{1}{2}} \times x^{\frac{3}{2}}$
c $\left(x^{3}\right)^{\frac{2}{3}}$
d $2 x^{1.5} \div 4 x^{-0.25}$

a $x^{4} \div x^{-3}$	
$=x^{4--3}$	Use the rule $a^{m} \div a^{n}=a^{m-n}$.
x^{7}	Remember $-+-=+$

b	$\mathrm{x}^{\frac{1}{2}} \times x^{\frac{3}{2}}$

This could also be written as \sqrt{x}.
Use the rule $a^{m} \times a^{n}=a^{m+n}$.
$=x^{\frac{1}{2}+\frac{3}{2}}$
$=x^{2}$
Use the rule $a^{m} \div a^{n}=a^{m-n}$.
Remember $-+-=+$.
$=x^{2}$
$c\left(x^{3}\right)^{\frac{2}{3}} \cdot$ Use the rule $\left(a^{m}\right)^{n}=a^{m n}$.
$=x^{3 \times \frac{2}{3}}$
$=x^{2}$

| d $2 x^{1.5} \div 4 x^{-0.25}$ | |
| :--- | :--- | | Use the rule $a^{m} \div a^{n}=$ |
| :--- |
| |
| $=\frac{1}{2} x^{1.5--0.25}$ |\quad| $1.5-4=\frac{1}{2}$ |
| :--- |

Example 7

Evaluate:
a $9^{\frac{1}{2}}$
b $64^{\frac{1}{3}}$
c $49^{\frac{3}{2}}$
d $25^{-\frac{3}{2}}$
a $9^{\frac{1}{2}}$
$=\sqrt{9} \cdot$
$= \pm 3^{\circ}$

Using $a^{\frac{1}{m}}=\sqrt[m]{a}$.
$= \pm 3^{\circ}$
When you take a square root, the answer can be positive or negative as $+\times+=+$ and $-\times-=+$.
b $64^{\frac{1}{3}}$
$=\sqrt[3]{64}$
$=4$
This means the cube root of 64 .
As $4 \times 4 \times 4=64$.
c $49^{\frac{3}{2}}$
$=(\sqrt{49})^{3}$
Using $a^{\frac{n}{m}}=\sqrt[m]{a^{n}}$.
This means the square root of 49 , cubed.
$= \pm 343$
d $25^{-\frac{3}{2}}$
$=\frac{1}{25^{\frac{3}{2}}} \cdot \quad$ Using $a^{-m}=\frac{1}{a^{m}}$.
$=\frac{1}{(\pm \sqrt{25})^{3}}$.
$\sqrt{25}= \pm 5$
$=\frac{1}{(\pm 5)^{3}}$
$= \pm \frac{1}{125}$

Exercise 1F

1 Simplify:
a $x^{3} \div x^{-2}$
b $x^{5} \div x^{7}$
c $x^{\frac{3}{2}} \times x^{\frac{5}{2}}$
d $\left(x^{2}\right)^{\frac{3}{2}}$
e $\left(x^{3}\right)^{\frac{5}{3}}$
f $3 x^{0.5} \times 4 x^{-0.5}$
g $9 x^{\frac{2}{3}} \div 3 x^{\frac{1}{6}}$
h $5 x^{1 \frac{2}{5}} \div x^{\frac{2}{5}}$
i $3 x^{4} \times 2 x^{-5}$

2 Evaluate:
a $25^{\frac{1}{2}}$
b $81^{\frac{1}{2}}$
c $27^{\frac{1}{3}}$
d 4^{-2}
e $9^{-\frac{1}{2}}$
f $(-5)^{-3}$
g $\left(\frac{3}{4}\right)^{0}$
h $1296^{\frac{1}{4}}$
i $\left(1 \frac{9}{16}\right)^{\frac{3}{2}}$
j $\left(\frac{27}{8}\right)^{\frac{2}{3}}$
k $\left(\frac{6}{5}\right)^{-1}$
$1\left(\frac{343}{512}\right)^{-\frac{2}{3}}$
1.7 You can write a number exactly using surds, e.g. $\sqrt{2}, \sqrt{3}-5, \sqrt{19}$.

You cannot evaluate surds exactly because they give never-ending, non-repeating decimal fractions, e.g. $\sqrt{2}=1.414213562 \ldots$
The square root of a prime number is a surd.

You can manipulate surds using these rules:
$\sqrt{(a b)}=\sqrt{a} \times \sqrt{b}$
$\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$

Example 8

Simplify:
a $\sqrt{12}$
b $\frac{\sqrt{20}}{2}$
c $5 \sqrt{6}-2 \sqrt{24}+\sqrt{294}$
a $\sqrt{12}$
$=\sqrt{(4 \times 3)}$
$=\sqrt{4} \times \sqrt{3}$
Use the rule $\sqrt{a b}=\sqrt{a} \times \sqrt{b}$.
$=2 \sqrt{3}$
b $\frac{\sqrt{20}}{2}$.
$\sqrt{20}=\sqrt{4} \times \sqrt{5}$
$=\frac{\sqrt{4} \times \sqrt{5}}{2}$ $\sqrt{4}=2$
$=\frac{2 \times \sqrt{5}}{2}$
$=\sqrt{5}$
c $5 \sqrt{6}-2 \sqrt{24}+\sqrt{294}$
$=5 \sqrt{6}-2 \sqrt{6} \sqrt{4}+\sqrt{6} \times \sqrt{49}$.
$=\sqrt{6}(5-2 \sqrt{4}+\sqrt{49})$.
$\sqrt{6}$ is a common factor.
Work out the square roots $\sqrt{4}$ and $\sqrt{49}$.
$=\sqrt{6}(5-2 \times 2+7)$
$=\sqrt{6}(8)$
$=8 \sqrt{6}$

Exercise 1G

Simplify:

1	$\sqrt{28}$	2	$\sqrt{72}$	3	$\sqrt{50}$
4	$\sqrt{32}$	5	$\sqrt{90}$	6	$\frac{\sqrt{12}}{2}$
7	$\frac{\sqrt{27}}{3}$	8	$\sqrt{20}+\sqrt{80}$	9	$\sqrt{200}+\sqrt{18}-\sqrt{72}$
10	$\sqrt{175}+\sqrt{63}+2 \sqrt{28}$	11	$1 \sqrt{28}-2 \sqrt{63}+\sqrt{7}$	12	$\sqrt{80}-2 \sqrt{20}+3 \sqrt{45}$
13	$3 \sqrt{80}-2 \sqrt{20}+5 \sqrt{45}$	14	$\frac{\sqrt{44}}{\sqrt{11}}$	15	$\sqrt{12}+3 \sqrt{48}+\sqrt{75}$

You rationalise the denominator of a fraction when it is a surd.

The rules to rationalise surds are:

- Fractions in the form $\frac{1}{\sqrt{a}}$, multiply the top and bottom by \sqrt{a}.
- Fractions in the form $\frac{1}{a+\sqrt{b}}$, multiply the top and bottom by $a-\sqrt{b}$.
- Fractions in the form $\frac{1}{a-\sqrt{b}}$, multiply the top and bottom by $a+\sqrt{b}$.

Example 9

Rationalise the denominator of:
a $\frac{1}{\sqrt{3}}$
b $\frac{1}{3+\sqrt{2}}$
c $\frac{\sqrt{5}+\sqrt{2}}{\sqrt{5}-\sqrt{2}}$

$\text { a } \frac{1}{\sqrt{3}}$	
$=\frac{1 \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}} .$	Multiply the top and bottom by $\sqrt{3}$. $\sqrt{3} \times \sqrt{3}=(\sqrt{3})^{2}=3$
$=\frac{\sqrt{3}}{3}$	
b $\frac{1}{3+\sqrt{2}}$	Multiply top and bottom by $(3-\sqrt{2})$. $\sqrt{2} \times \sqrt{2}=2$
$=\frac{1 \times(3-\sqrt{2})}{(3+\sqrt{2})(3-\sqrt{2})}$	$9-2=7,-3 \sqrt{2}+3 \sqrt{2}=0$
$=\frac{3-\sqrt{2}}{9-3 \sqrt{2}+3 \sqrt{2}-2}$	
$=\frac{3-\sqrt{2}}{7}$	

$$
\begin{array}{ll|l}
\text { c } & \frac{\sqrt{5}+\sqrt{2}}{\sqrt{5}-\sqrt{2}} & \\
& =\frac{(\sqrt{5}+\sqrt{2})(\sqrt{5}+\sqrt{2})}{(\sqrt{5}-\sqrt{2})(\sqrt{5}+\sqrt{2})} & \begin{array}{l}
\text { Multiply top and bottom by } \sqrt{5}+\sqrt{2} . \\
\\
5+\sqrt{5} \sqrt{2}+\sqrt{2} \sqrt{5}+2
\end{array} \\
\begin{array}{l}
-\sqrt{2} \sqrt{5} \text { and } \sqrt{5} \sqrt{2} \text { cancel each other out. } \\
\sqrt{5} \sqrt{2}=\sqrt{10}
\end{array}
\end{array}
$$

$$
=\frac{5+\sqrt{5} \sqrt{2}+\sqrt{2} \sqrt{5}+2}{5-2}
$$

$$
=\frac{7+2 \sqrt{10}}{3}
$$

Exercise 1H

Rationalise the denominators and simplify:
(1) $\frac{1}{\sqrt{5}}$
$2 \frac{1}{\sqrt{11}}$
(3) $\frac{1}{\sqrt{2}}$
$4 \frac{\sqrt{3}}{\sqrt{15}}$
$5 \frac{\sqrt{12}}{\sqrt{48}}$
$6 \frac{\sqrt{5}}{\sqrt{80}}$
$7 \frac{\sqrt{12}}{\sqrt{156}}$
$8 \frac{\sqrt{7}}{\sqrt{63}}$
$9 \frac{1}{1+\sqrt{3}}$
$10 \frac{1}{2+\sqrt{5}}$
$11 \frac{1}{3-\sqrt{7}}$
$12 \frac{4}{3-\sqrt{5}}$
$13 \frac{1}{\sqrt{5}-\sqrt{3}}$
$14 \frac{3-\sqrt{2}}{4-\sqrt{5}}$
$15 \frac{5}{2+\sqrt{5}}$
$16 \frac{5 \sqrt{2}}{\sqrt{8}-\sqrt{7}}$
$17 \frac{11}{3+\sqrt{11}}$
$18 \frac{\sqrt{3}-\sqrt{7}}{\sqrt{3}+\sqrt{7}}$
$19 \frac{\sqrt{17}-\sqrt{11}}{\sqrt{17}+\sqrt{11}}$
$20 \frac{\sqrt{41}+\sqrt{29}}{\sqrt{41}-\sqrt{29}}$
$21 \frac{\sqrt{2}-\sqrt{3}}{\sqrt{3}-\sqrt{2}}$

Mixed exercise 11

1 Simplify:
a $y^{3} \times y^{5}$
b $3 x^{2} \times 2 x^{5}$
c $\left(4 x^{2}\right)^{3} \div 2 x^{5}$
d $4 b^{2} \times 3 b^{3} \times b^{4}$

2 Expand the brackets:
a $3(5 y+4)$
b $5 x^{2}\left(3-5 x+2 x^{2}\right)$
c $5 x(2 x+3)-2 x(1-3 x)$
d $3 x^{2}(1+3 x)-2 x(3 x-2)$

3 Factorise these expressions completely:
a $3 x^{2}+4 x$
b $4 y^{2}+10 y$
c $x^{2}+x y+x y^{2}$
d $8 x y^{2}+10 x^{2} y$

4 Factorise:
a $x^{2}+3 x+2$
b $3 x^{2}+6 x$
c $x^{2}-2 x-35$
d $2 x^{2}-x-3$
e $5 x^{2}-13 x-6$
f $6-5 x-x^{2}$

5 Simplify:
a $9 x^{3} \div 3 x^{-3}$
b $\left(4^{\frac{3}{2}}\right)^{\frac{1}{3}}$
c $3 x^{-2} \times 2 x^{4}$
d $3 x^{\frac{1}{3}} \div 6 x^{\frac{2}{3}}$

6 Evaluate:
a $\left(\frac{8}{27}\right)^{\frac{2}{3}}$
b $\left(\frac{225}{289}\right)^{\frac{3}{2}}$

7 Simplify:
a $\frac{3}{\sqrt{63}}$
b $\sqrt{20}+2 \sqrt{45}-\sqrt{80}$

8 Rationalise:
a $\frac{1}{\sqrt{3}}$
b $\frac{1}{\sqrt{2}-1}$
c $\frac{3}{\sqrt{3}-2}$
d $\frac{\sqrt{23}-\sqrt{37}}{\sqrt{23}+\sqrt{37}}$

Summary of key points

1 You can simplify expressions by collecting like terms.
2 You can simplify expressions by using rules of indices (powers).

$$
\begin{aligned}
& a^{m} \times a^{n}=a^{m+n} \\
& a^{m} \div a^{n}=a^{m-n} \\
& a^{-m}=\frac{1}{a^{m}} \\
& a^{\frac{1}{m}}=\sqrt[m]{a} \\
& a^{\frac{n}{m}}=\sqrt[m]{a^{n}} \\
& \left(a^{m}\right)^{n}=a^{m n} \\
& a^{0}=1
\end{aligned}
$$

3 You can expand an expression by multiplying each term inside the bracket by the term outside.

4 Factorising expressions is the opposite of expanding expressions.
5 A quadratic expression has the form $a x^{2}+b x+c$, where a, b, c are constants and $a \neq 0$.
$6 x^{2}-y^{2}=(x+y)(x-y)$
This is called a difference of squares.
7 You can write a number exactly using surds.
8 The square root of a prime number is a surd.
9 You can manipulate surds using the rules:

$$
\begin{aligned}
\sqrt{a b} & =\sqrt{a} \times \sqrt{b} \\
\sqrt{\frac{a}{b}} & =\frac{\sqrt{a}}{\sqrt{b}}
\end{aligned}
$$

10 The rules to rationalise surds are:

- Fractions in the form $\frac{1}{\sqrt{a}}$, multiply the top and bottom by \sqrt{a}.
- Fractions in the form $\frac{1}{a+\sqrt{b}}$, multiply the top and bottom by $a-\sqrt{b}$.
- Fractions in the form $\frac{1}{a-\sqrt{b}}$, multiply the top and bottom by $a+\sqrt{b}$.

After completing this chapter you should be able to
1 plot the graph of a quadratic function
2 solve a quadratic function using factorisation
3 complete the square of a quadratic function
4 solve a quadratic equation by using the quadratic formula

5 calculate the discriminant of a quadratic expression
6 sketch the graph of a quadratic function.
The above techniques will enable you to solve many types of equation and inequality. The ability to spot and solve
 a quadratic equation is extremely important in A level Mathematics.

Quadratic functions

Did you know?

...that the path of a golf ball can be modelled by a quadratic function?
graph showing height of a golf ball against time in seconds

2. You need to be able to plot graphs of quadratic equations.

The general form of a quadratic equation is

$$
y=a x^{2}+b x+c
$$

where a, b and c are constants and $a \neq 0$.
This could also be written as $\mathrm{f}(x)=a x^{2}+b x+c$.

Example 1

a Draw the graph with equation $y=x^{2}-3 x-4$ for values of x from -2 to +5 .
b Write down the minimum value of y and the value of x for this point.
c Label the line of symmetry.

a								
x	-2	-1	0	1	2	3	4	5
x^{2}	4	1	0	1	4	9	16	25
$-3 x$	+6	+3	0	-3	-6	-9	-12	-15
-4	-4	-4	-4	-4	-4	-4	-4	-4
y	6	0	-4	-6\|	-6	-4	0	6

(1) First draw a table of values.

Remember any number squared is positive.
(2) Look at the table to determine the extent of the y-axis. Use values of y from -6 to +6 .

(3) Plot the points and then join all the points together with a smooth curve.
The general shape of the curve is a V, it is called a parabola.
This is the line of symmetry. It is always half-way between the x-axis crossing points. It has equation $x=1.5$.
This is the minimum.

Exercise 2A

Draw graphs with the following equations, taking values of x from -4 to +4 .
For each graph write down the equation of the line of symmetry.
1 1 $y=x^{2}-3$
$2 y=x^{2}+5$
3 $y=\frac{1}{2} x^{2}$
$4 y=-x^{2}$
$5 y=(x-1)^{2}$
$6 y=x^{2}+3 x+2$
$7 y=2 x^{2}+3 x-5$
$8 y=x^{2}+2 x-6$

Hint: The general shape for question $\mathbf{4}$ is an upside down \cup-shape. i.e. \cap.
$9 y=(2 x+1)^{2}$

2.2 You can solve quadratic equations using factorisation.

Quadratic equations have two solutions or roots. (In some cases the two roots are equal.) To solve a quadratic equation, put it in the form $a x^{2}+b x+c=0$.

Example 2

Solve the equation $x^{2}=9 x$

$x^{2}=9 x$	Rearrange in the form $a x^{2}+b x+c=0$.
$x^{2}-9 x=0$	
$x(x-9)=0$	Factorise by x (factorising is in Chapter 1). Then either part of the product could be zero.
Then either $x=0$	

or $\quad x-9=0 \Rightarrow x=9$
So $x=0$ or $x=9$ are the two solutions
of the equation $x^{2}=9 x$.
A quadratic equation has two solutions (roots). In some cases the two roots are equal.

Example 3

Solve the equation $x^{2}-2 x-15=0$

$x^{2}-2 x-15=0$
$(x+3)(x-5)=0$.
Then either $x+3=0 \Rightarrow x=-3$
or $x-5=0 \Rightarrow x=5$
The solutions are $x=-3$ or $x=5$.

Example 4

Solve the equation $6 x^{2}+13 x-5=0$

$6 x^{2}+13 x-5$	$=0$
$(3 x-1)(2 x+5)$	$=0$
Then either $3 x-1$	$=0 \Rightarrow x=\frac{1}{3}$
or $2 x+5$	$=0 \Rightarrow x=-\frac{5}{2}$
The solutions are x	$=\frac{1}{3}$ or $x=-\frac{5}{2}$.

Factorise.

The solutions can be fractions or any other type of number.

Example 5

Solve the equation $x^{2}-5 x+18=2+3 x$

$x^{2}-5 x+18$	$=2+3 x$
$x^{2}-8 x+16$	$=0$
$(x-4)(x-4)$	$=0$
Then either $x-4$	$=0 \Rightarrow x=4$
or $\quad x-4$	$=0 \Rightarrow x=4$
$\Rightarrow \quad x$	$=4$

Rearrange in the form $a x^{2}+b x+c=0$.

Factorise.

Example 6

Solve the equation $(2 x-3)^{2}=25$

$(2 x-3)^{2}=25$ $2 x-3$$= \pm 5$
$2 x=3 \pm 5$
$2 x$
Then either $2 x=3+5 \Rightarrow x=4$
or $2 x=3-5 \Rightarrow x=-1$
The solutions are $x=4$ or $x=-1$.

Here $x=4$ is the only solution, i.e. the two roots are equal.

Example 7

Solve the equation $(x-3)^{2}=7$

$(x-3)^{2}$	$=7$
$x-3$	$= \pm \sqrt{7}$
x	$=+3 \pm \sqrt{7}$
Then either x	$=3+\sqrt{7}$
or $\quad x$	$=3-\sqrt{7}$
or solutions are $\mathrm{x}=3+\sqrt{7}$ or $\mathrm{x}=3-\sqrt{7}$.	

Exercise 2B

Solve the following equations:
1 ($x^{2}=4 x$
$33 x^{2}=6 x$
$5 x^{2}+3 x+2=0$
$7 x^{2}+7 x+10=0$
$9 x^{2}-8 x+15=0$
$11 x^{2}-5 x-6=0$
$132 x^{2}+7 x+3=0$
$156 x^{2}-5 x-6=0$
$173 x^{2}+5 x=2$
$2 x^{2}=25 x$
$45 x^{2}=30 x$
$6 x^{2}+5 x+4=0$
$8 x^{2}-x-6=0$
$10 x^{2}-9 x+20=0$
$12 x^{2}-4 x-12=0$
$19(x-7)^{2}=36$
$146 x^{2}-7 x-3=0$
$213 x^{2}=5$
$164 x^{2}-16 x+15=0$
$18(2 x-3)^{2}=9$
$23(3 x-1)^{2}=11$
$202 x^{2}=8$
$256 x^{2}-7=11 x$
$22(x-3)^{2}=13$
$245 x^{2}-10 x^{2}=-7+x+x^{2}$
$264 x^{2}+17 x=6 x-2 x^{2}$

2.3 You can write quadratic expressions in another form by completing the square.

$$
\begin{aligned}
& x^{2}+2 b x+b^{2}=(x+b)^{2} \\
& x^{2}-2 b x+b^{2}=(x-b)^{2}
\end{aligned}
$$

These are both perfect squares.

To complete the square of the function $x^{2}+2 b x$ you
need a further term b^{2}. So the completed square form is

$$
x^{2}+2 b x=(x+b)^{2}-b^{2}
$$

Similarly

$$
x^{2}-2 b x=(x-b)^{2}-b^{2}
$$

Example 8

Complete the square for the expression $x^{2}+8 x$

```
x}+8
=(x+4)2}-\mp@subsup{4}{}{2
=(x+4)2-16
```

$$
2 b=8, \text { so } b=4
$$

In general

- Completing the square: $x^{2}+b x=\left(x+\frac{b}{2}\right)^{2}-\left(\frac{b}{2}\right)^{2}$

Example 9

Complete the square for the expressions
a $x^{2}+12 x$
b $2 x^{2}-10 x$

a	$x^{2}+12 x$
	$=(x+6)^{2}-6^{2}$
	$=(x+6)^{2}-36$
$b \quad$	$2 x^{2}-10 x$
	$=2\left(x^{2}-5 x\right)$
	$=2\left[\left(x-\frac{5}{2}\right)^{2}-\left(\frac{5}{2}\right)^{2}\right]$
	$=2\left(x-\frac{5}{2}\right)^{2}-\frac{25}{2}$

Exercise 2C

Complete the square for the expressions:
$1 x^{2}+4 x$
$2 x^{2}-6 x$
$5 x^{2}-14 x$
$62 x^{2}+16 x$
$95 x^{2}+20 x$
$102 x^{2}-5 x$
$3 x^{2}-16 x$
$4 x^{2}+x$
$73 x^{2}-24 x$
$8 \quad 2 x^{2}-4 x$

Here the coefficient of x^{2} is 2 .
So take out the coefficient of x^{2}.
Complete the square on $\left(x^{2}-5 x\right)$.
Use $b=-5$.

2.4 You can solve quadratic equations by completing the square.

Example 10

Solve the equation $x^{2}+8 x+10=0$ by completing the square.

$x^{2}+8 x+10=0$	Check coefficient of $x^{2}=1$. Subtract 10 to get LHS in the form $a x^{2}+b$.
$x^{2}+8 x=-10$.	
$(x+4)^{2}-4^{2}=-10$	Complete the square for ($\left.x^{2}+8 x\right)$.
$(x+4)^{2}=-10+16$.	Add 4^{2} to both sides.
$(x+4)^{2}=6$	
$(x+4)= \pm \sqrt{6}$	Square root both sides.
$x=-4 \pm \sqrt{6}$.	Subtract 4 from both sides.
Then the solutions (roots) of	Leave your answer in surd form as this is a
$x^{2}+8 x+10=0$ are either	non-calculator question.

