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THE PURPOSE OF COMPUTING
IS INSIGHT, NOT NUMBERS

To study, and when the occasion arises to put what one has
learned into practice\342\200\224is that not deeply satisfying ?

Confucius, Analects 1.1.1
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PREFACE

There has been much progress in the 10 years since the first edition was written,

but of the many books that have appeared on the topic none has put the emphasis

on the frequency approach and its use in the solution of problems. For these

reasons, a second edition seems necessary.
The material has been extensively rearranged, rewritten, and added to,

so that in some respects it is a new book; however, the main aims, style, and

motto have not changed.

As always, the author is greatly indebted to others for much that is in the
book. Most important are his management and colleagues at the Bell Telephone
Laboratories. Professor Roger Pinkham has over the years been a constant
source of stimulation and inspiration. It would take a list of at least 100

names to thank all who have contributed to some extent, and at the top of this

list would be M. P. Epstein. My thanks also go to all the unmentioned people

on the list and to A. Ralston for many helpful suggestions. Thanks also to

Mrs. Jeannie Waddel for typing and helping to organize the manuscript.

R. W. HAMMING





PART I

Fundamentals and

Algorithms





1

AN ESSAY ON NUMERICAL METHODS

1.1 THE FIVE MAIN IDEAS

Numerical methods use numbers to simulate mathematical processes, which in

turn usually simulate real-world situations. This implies that there is a purpose
behind the computing. To cite the motto of the book, The Purpose of

ComputingIs Insight, Not Numbers. This motto is often thought to mean that the

numbers from a computing machine should be read and used, but there is much

more to the motto. The choice of the particular formula, or algorithm, influences

not only the computing but also how we are to understand the results when they
are obtained. The way the computing progresses, the number of iterations it

requires, or the spacing used by a formula, often sheds light on the problem.

Finally, the same computation can be viewed as coming from different models, and

these different views often shed further light on the problem. Thus computing is,

or at least should be, intimately bound up with both the source of the problem and

the use that is going to be made of the answers\342\200\224itis not a step to be taken in

isolationfrom reality.

Much of the knowledge necessary to meet this goal comes from the field of

application and therefore lies outside a general treatment of numerical methods.

About all that can be done is to supply a rich assortment of methods and to
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comment on their relevance in general situations. This art of connecting the

specific problem withthecomputingisimportant,but it is best taught in connection
with a field of application.

The second main idea is a consequence of the first. If the purpose of

computing is insight, not numbers, as the motto states, then it is necessary to study

families and to relate one family to another when possible, and to avoid isolated

formulas and isolated algorithms. In this way a sensible choice can be made

among the alternate ways of doing the problem, and once the computation is done,
alternate ways of viewing the results can be developed. Thus, hopefully, the

insight can arise. For these reasons we tend to concentrate on systematic methods

for finding formulas and avoid the isolated, cute result. It is somewhat more

difficult to systematize algorithms, but a unifying principle has been found.

This is perhaps the place to discuss some of the differences between

numericalmethods and numerical analysis (as judged by the corresponding textbooks).

Numerical analysis seems to be the study in depth of a few, somewhat arbitrarily

selected, topics and is carried out in a formal mathematical way devoid of relevance

to the real world. Numerical methods, on the other hand, try to meet the need

for methods to cope with the potentially infinite variety of problems that can

arise in practice. The methods given are generally chosen for their wide

applicability in creating formulas and algorithms as well as for the particular result being

found at that point.

The third major idea is roundoff error. This effect arises from the finite

nature of the computing machine which can only deal with finitely represented

numbers. But the machine is used to simulate the mathematician's number

system which uses infinitely long representations. In the machine the fraction \342\200\242\302\243

becomes the terminated decimal 0.333.. .3 with the obvious roundoff effect. At

first this approximation does not seem to be very severe since usually a minimum

of eight decimal places are carried at every step, but the incredible number of
arithmetic operations that can occur in a problem lasting only a few seconds is the

reason that roundoff plays an important role. The greatest loss of significance in

the numbers occurs when two numbers of about the same size are subtracted so that

most of the leading digits cancel out, and unless care is taken in advance, this can

happen almost any place in a long computation.
Most books on computing stress the estimation of roundoff, especially the

bounding of roundoff, but we shall concentrate on the avoidance of roundoff. It

seems better to avoid roundoff than to estimate what did not have to occur if

common sense and a few simple rules had been followed before the problem was put on

the machine.

The fourth main idea is again connected with the finite nature of the machine,

namely that many of the processes of mathematics, such as differentiation and in-
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tegration, imply the use of a limit which is an infinite process. The machine has
finite speed and can only do a finite number of operations in a finite length of time.

This effect gives rise to the truncation error of a process.
We shall generally first give an exact expression for the truncation error and

deduce from it various bounds. A moment's thought should reveal that if we

had an exact expression, then it would be practically useless because to know the

exact error is to know the exact answer. However, the exact-error expression is

very useful in studying families of formulas, and it provides a starting point for a

variety of error bounds.

The fifth main idea isfeedback, which means, as its name implies, that

numbersproduced at one stage are fed back into the computer to be processed again

and again; the program has a loop which uses the output of one cycle as the input
for the next cycle. This feedback situation is very common in computing, as it is

a very powerful tool for solving many problems.
Feedback leads immediately to the associated idea ofstability of the feedback

loop\342\200\224willa small error grow or decay through the successive iterations? The
answer may be given loosely in two equivalent ways: first, if the feedback of the
error is too strong and is in the direction to eliminate the error (technically,
negativefeedback), then the system will break into an oscillation that grows with time;

second and equivalcntly, if the feedback is delayed too long, the same thing will

happen.

A simple example that illustrates feedback instability is the common home
shower. Typically the shower begins with the water being too cold, and the user

turns up the hot water to get the temperature he wants. If the adjustment is too

strong (he turns the knob too far), he will soon find that the shower is too hot,
whereupon he rapidly turns back to cold and soon finds it is too cold. If the
reactions are too strong, or alternately the total system (pipes, valve, and human)
is too slow, there will result a

\"
hunting

\"
that grows more and more violent as time

goes on. Another familiar example is the beginning automobile driver who

overreacts while steering and swings from side to side of the street. This same kind of
behavior can happen for the same reasons in feedback computing situations, and
therefore the stability of a feedback system needs to be studied before it is put on
the computer.

1.2 SECOND-LEVEL IDEAS

Belowthe main ideas in Sec. 1.1 are about 50 second-level ideas which are involved

in both theoretical and practical work. Some of these are now discussed.

At the foundation of all numerical computing are the actual numbers
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themselves. The floating-point number system used in most scientific and

engineering computations is significantly different from the mathematician's usual
number system. The floating-point numbers are not equally spaced, and the

numbers do not occur with equal frequency. For example, it is well known that
a table of physical constants will have about 60 percent of the numbers with a

leading digit of 1,2, or 3, and the other digits\342\200\2244,5, 6, 7, 8, and 9\342\200\224comprise only

40 percent.

Although this number system lies at the foundation of most of computing,
it is rarely investigated with any care. People tend to start computing, and only

after having frequent trouble do they begin to look at the system that is causing it.

Immediately above the number system is the apparently simple matter of

evaluating functions accurately. Again people tend to think that they know how
to do it, and it takes a lot of painful experience to teach them to examine the

processes they use before putting them on a computer.

These two mundane, pedestrian topics need to be examined with the care

they deserve before going on to more advanced matters; otherwise they will

continually intrude in later developments.
Perhaps the simplest problem in computing is that of finding the zeros of a

function. In the evaluation of a function near a zero there is almost exact

cancellation of the positive and negative parts, and the two topics we just discussed,
roundoff of the numbers and function evaluation, are basic, since if we do not

compute the function accurately, there can be little meaning to the zeros we find.

Because of the discrete structure of the computer's number system it is very unlikely

that there will be a number x which will make the function y =f(x) exactly zero.

Instead,we generally find a small interval in which the function changes sign. The

size of the interval we can use is related to the size of the argument x, since for large

x the number system has a coarse spacing and for x small (in size) it has a fine

spacing. This is one of the reasons that the idea of the relative error

1 true \342\200\224calculated I
Relative error =

true

plays such a leading role in scientific and engineering computations. Classical

mathematics uses the absolute error

Absolute error = | true \342\200\224calculated |

most of the time, and it requires a positive effort to unlearn the habits acquired in

the conventional mathematics courses. The relative error has trouble near places

where the true value is approximately zero, and in such cases it is customary to use

as the denominator

max{|x|,|/(x)|}

where/(x) is the function computed at x.
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The problem of finding the complex zeros of an analytic function occurs so

often in practice that it cannot be ignored in a course on numerical methods,

though it is almost never mentioned in numerical analysis. A simple method

resembling one used to find the real zeros is very effective in practice.
In the special case of finding all the zeros of a polynomial the fact that the

number of zeros (as well as other special characteristics) is known in advance makes
the problem easier than for the general analytic function. One of the best methods

for finding them is an adaptation of the usual Newton's method for finding real

zeros, and this discussion is used to extend, as well as to analyse further, Newton's

method. It is only in situations in which a careful analysis can be made that

Newton's method is useful in practice; otherwise its well-known defects outweigh
its virtues.

What makes the problem of finding the zeros of a polynomial especially

important, besides its frequency, is the use made of the zeros found. The method

is a good example of the difference between the mathematical approach and the

engineering approach. The first merely tries to find some numbers which make
the function close to zero, while the second recognizes that a pair of\" close \"

zeros

will give rise to severe roundofftroubles when used at a later stage. In isolation

the problem of finding the zeros is not a realistic problem since the zeros are to
be used, not merely admired in a vacuum. Thus what is wanted in most practice
is the finding of the multiple zeros as multiple zeros, not as close, separate ones.

Similarly, zeros which are purely imaginary are to be preferred to ones with a small

real part and a large imaginary part, provided the difference can reasonably be

attributed to uncertainties in the underlying model.

Another standard algorithmic problem both in mathematics and in the use

of computation to solve problems is the solution of simultaneous linear equations.

Unfortunately much of what is commonly taught is usually not relevant to the

problem as it occurs in practice; nor is any completely satisfactory method of
solution known at present. Because the solution of simultaneous linear equations is

so often a standard library package supplied by the computing center and because

the corresponding description is so often misleading, it is necessary to discuss the

limitations (and often the plain foolishness) of the method used by the package.
Thus it is necessary to examine carefully the obvious flaws and limitations, rather

than pretending they do not exist.

The various algorithms for finding zeros, solving simultaneous linear

equations, and inverting matrices are the classic algorithms of numerical analysis.
Each is usually developed as a special trick, with no effort to show any underlying
principles. The idea of an invariant algorithm provides one common idea linking,

or excluding, various methods. An invariant algorithm is one that in a very real

sense attacks the problem rather than the particular representation supplied to the
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computer. The idea of an invariant algorithm is actually fairly simple and

obvious once understood. In many kinds of problems there are one or more classes

of transformations that will transform one representation of the equations into
another of the same form. For example, given a polynomial

P(x) =
anxn + a,,-!*\"-1 + \342\200\242\342\200\242\342\200\242

+ a0 = 0

the transformation of multiplying the equation by any nonzero constant does not

really change the problem. Similarly, when a0 ^ 0, replacing x by 1fx while also

multiplying the equation by xw merely reverses coefficients. These
transformationsform a group (provided we recognize the finite limitations of computing),
and it is natural to ask for algorithms that are invariant with respect to this group,
where invariant means that if the problem is transformed to some equivalent form,

then the algorithm uses, at all stages, the equivalent numbers (within roundoff, of

course). In a sense the invariance is like dimensional analysis\342\200\224the scaling of the

problem should scale the algorithm in exactly the same way. It is more than
dimensional analysis since, as in the example of the polynomial, some of the
transformations to be used in the problem may involve more than simple scaling.

It is surprising how many common algorithms do not satisfy this criterion.

The principle does more than merely reject some methods; it also, like dimensional

analysis, points the way to proper ones by indicating possible forms that might be

tried.

1.3 THE FINITE DIFFERENCE CALCULUS

After examining the simpler algorithms, it is necessary to develop more general

tools if we are to go further. The finite difference calculus provides both the
notation and the framework of ideas for many computations. The finite

difference calculus is analogous to the usual infinitesimal calculus. There are the
difference calculus, the summation calculus, and difference equations. Each has

slight variations from the corresponding infinitesimal calculus because instead of

going to the limit, the finite calculus stops at a fixed step size. This reveals why

the finite calculus is relevant to many applications of computing: in a sense it

undoes the limiting process of the usual calculus. It should be evident that if a limit

process cannot be undone, then there is a very real question as to the soundness of

the original derivation, because it is usually based on constructing a believable

finite approximation and then going to the limit.

The finite difference calculus provides a tool for estimating the roundoff

effects that appear in a table of numbers regardless of how the table was computed.

This tool is of broad and useful application because instead of carefully studying
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each particular computation, we can apply this general method without regard to

the details of the computation. Of course, such a general method is not as

powerfulas special methods hand-tailored to the problem, but for much of computation

it saves both trouble and time.
The summation calculus provides a natural tool for approaching the very

common (and often neglected) problem of the summation of infinite series, which is

the simplest of the limiting processes (since the index n of the number of terms

taken runs through the integers only).
The solution of finite difference equations is analogous to the solution of

differential equations, especially the very common case of linear difference

equations with constant coefficients, which is a valuable tool for the study of feedback

loops and their stability. Thus finite difference equations have both a practical
and a theoretical value in computing.

1.4 ON FINDING FORMULAS

Once past the easier algorithms and tools for doing simple things in computing,

it is natural to attack one of the central problems of numerical methods, namely,

the approximation of infinite operations (operators) by finite methods.

Interpolation is the simplest case. In interpolation we are given some samples of the

function, say, y(\342\200\224l),y(Q), and y(l), and we are asked to guess at the missing

values\342\200\224toread between the lines of a table. While it is true that because of the

finite nature of the number system used there are only a finite number of values to

be found, nevertheless this number is so high that it might as well be infinite. Thus

interpolation is an infinite operator to be approximated.
There is no sense to the question of interpolation unless some additional

assumptions are made. The classical assumption is that given n + 1 samples of the

function, these samples determine a unique polynomial of degree \302\253,and this

polynomial is to be used to give the interpolated values. With the above data

consistingof three points, the quadratic through these points is

P(x) =
^^X-i) + (i -*2M0) +

^f^(i)

We are to use this polynomial P(x) as if it were the function. This method is

known as the exact matching of the function to the data.
The error of this interpolation can be expressed as the (n + l)st derivative

(of the original function) evaluated at some generally unknown point 0 in the

interval. Unfortunately in practice it is rare to have any idea of the size of this

derivative.
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For samples of the function we may use not only function values y{x) but also
values of the derivatives y'(x), y\"(x), etc., at various points. For example, the

cubic exactly matching the data y(0), y(l), /(0), and /(l) is

P(x) = (1 - 3x2 + 2x3)y(0) + (3x2 -
2x*)y(\\) + (x - 2x2 + x2)y'(0)

+ (^3-xV(i)

It is important to use analytically found derivatives when possible. Then we can

usually get a higher order of approximation at little extra cost since generally once

the function values are computed, the derivatives are relatively easy to compute.
No new radicals, logs, exponentials, etc., arise, and these are the time-consuming

parts of most function evaluation. Of course a sine goes into a cosine when

differentiated, but this is about the only new term needed for the higher derivatives.

Even the higher transcendental functions, like the Bessel functions, satisfy a

second-order linear differential equation, and once both the function and the first

derivative are found, the higher derivatives can be computed from the differential

equation and its derivatives (which are easy to compute). Thus we shall

emphasizethe use of derivatives as well as function values for our samples.

Although a wide variety of function and derivative values may be used to

determine the interpolating polynomial, there are some sets, rather naturally

occurring, for which n + 1data samples do not determine an wth-degree polynomial.

Perhaps the best example is the data y(-1), y(0), y(\\), /(-1), /(0), and /(l)
which do not determine a fifth-degree polynomial\342\200\224the positions and

accelerationsat three equally spaced points do not determine a quintic in general.

The classic method for finding formulas for other infinite operators, such

as integration and differentiation, is to use the interpolating polynomial as if it

were the function and then to apply the infinite operator to the polynomial. For

example, if we wish to find the integral of a function from -1 to +1, given the

values y(\342\200\2241), y(0), and y(l), we find the interpolating quadratic as above and

integrate it to get the classical Simpson's formula:

f y(x)dx = iy(-D + iy(0) + iyO)

This process is called analytic substitution; in place of the function we could

not handle we take some samples, exactly match a polynomial to the data, and

finally analytically operate on this polynomial. This is the classical method for

finding formulas. It is a two-step method: find the interpolating function and

then apply the operator to this function.

There is another direct method that is almost equivalent to the analytic-

substitution method. In this method we make the formula true for a sequence of
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functions y(x) = 1,x, x2, x3,..., x1\". For example, to derive Simpson's formula

by this method we assume the form

f y(x)dx = a-iy(-l) + a0y(Q) + aLy(l)

and substitute the sequence of functions 1, x, and x2. The three resulting
equations determine the three unknown coefficients at, and the resulting formula is

exactly the same (in this case). The two methods differ in the case where there is

no interpolating polynomial; it may be that there is a formula even if there is no

interpolating polynomial. For example, we have the formula

fl X*) dx - Vt[5X- 1)+ 32X0) + 5X0] - yfr[>>\"(-1) - 32/(0) + y\\\\)]
J-i

which is exact for sixth-degree polynomials when, as we have noted above, there

is in general no interpolating polynomial of fifth degree.
It would seem as if the two methods were equivalent, for if there were an

interpolating polynomial, then the formula would surely be true for the

corresponding powers of x; and conversely, if it were true for the individual powers,
then it would be true for any linear combination, namely a polynomial. The
difference lies in the words if there is an interpolating polynomial, then It can

happen that the two-stage process fails on the first step, but the one-step direct

method will work.

There are two main advantages of the direct method. First the derivations
are much easier, and second the direct method provides a basis for extensive

generalizations. The importance of this method is hard to overestimate. It
means that we can find a very wide range of formulas, all within a common
frameworkof ideas and methods, and that we will therefore be able to compare one

formula to another and then decide which one to use. Perhaps more important,

it means that we can decide the kind of formula we want and then with this single

method and its generalizations find almost any formula we want\342\200\224wecan fit the

formula to the problem rather than fit the problem to the formula. Thus we can

try to achieve the insight that is the main goal of the book, as stated in our motto,
The Purpose of Computing Is Insight, Not Numbers.

With a general method for finding polynomial approximation formulas it is

necessary to have a corresponding method for finding the error of the formula.

The general method of finding the error is somewhat difficult to understand the

first time. It is based on the use of a Taylor series with the integral remainder,

and by substituting this into the formula for which we want the error (and
manipulatingthe results a bit) we get the desired error formula. Once we have the exact-
error term, it can be transformed in various ways to get suitable practical-error
estimates.
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The method for finding the truncation error term for polynomial
approximationunfortunately gives it in the form of a derivative, much as the interpolation

method did. This, as noted before, is unfortunate because the high-order

derivativesare seldom available.

This brings up a central dilemma. Should one use a high-order formula

(error term has a high-order derivative) or use the repetition of a low-order

formula\342\200\224thecomposite formula? The answer is simple in principle. It depends
on the size of the high-order derivative as compared to the other lower-order
derivative. This is, of course, almost no answer at all, because we seldom can
decide which is better, and the basis of the choice depends on the location in the

complex plane of the singularities of the function being integrated\342\200\224something we

seldom know.

1.5 CLASSICAL NUMERICAL ANALYSIS

Much of classical numerical analysis, as we have indicated, is based on polynomial

approximation for the infinite operations of differentiation, integration, and

interpolation. The polynomial approximation is also used in the numerical

integrationof ordinary differential equations. The most widely used methods for this
are the predictor-corrector methods. A polynomial is fitted to some of the data

at past points and is used to extrapolate to the next point\342\200\224topredict. The

predicted value is used in the differential equation to get the predicted slope. This

slope along with past data is used to find another polynomial which produces the
corrected value, and the corrected value of the slope is found. If the predicted and

corrected values are sufficiently close, then the step is accepted as accurate enough,

and if not, the step size of integration may be halved (doubled if the two values are

too close).
There are so many possible predictor-corrector methods of the same order

of accuracy that it is necessary to have a general theory to compare the various

formulas within a common framework. Otherwise chaos and prejudice would

reign.

So far we have discussed the exact-matching interpolating polynomial, and
this is the more usual method. There are other methods, more or less classical,

for the selection of the approximating polynomial. One method is the minimum
sum of squares of the residuals between the formula and the data given. Another

more modern method picks the polynomial with the minimum maximum error\342\200\224

the minimax, or Chebyshev, approximation. Still other criteria could be used if

desired, though the labor of finding the polynomial may be fairly high in some
cases.
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1.6 MODERN NUMERICAL METHODS-
FOURIER APPROXIMATION

The difficulty with polynomial approximation in practice is that it is in the nature

of polynomials to \"wiggle'' and to go to infinity for large absolute values of the

argument x. Physically occurring functions tend to wiggle much less than

polynomials and to remain bounded for large values of the argument. Thus

polynomials are a poor basis for approximation, even though they are easy to compute
and to think about. The fact that the Weierstrass approximation theorem states

that any continuous function can be uniformly approximated in a closed interval

by a polynomial is irrelevant for two reasons. First, the degree of the Weierstrass

polynomial is generally very high for even a low degree of approximation; second,

we are not finding the polynomial the way the theorem states it can be found.

Indeed, it is \"well known\"1 that for the simple function y{x) = 1/(1+ x2) in the

interval | x | < 3.63 ... the sequence of polynomials that exactly matches the
functionat a set of equally spaced points does not approach the function uniformly as
the number of points increases indefinitely\342\200\224the function and the polynomial
differ by arbitrarily large amounts, and the sequence of approximating

polynomials fails to converge.
Since polynomials are rather poor functions to use for approximating many

functions that occur in practice, it is natural to look for other sets of functions.

Among the many sets that are known to be complete (meaning that they can

approximate any continuous function in a closed interval) the functions sin nx and

cos nx (n = 0, 1,...) have been the most studied and are the most useful.

Approximation in terms of them is usually called Fourier approximation because

J. B. J. Fourier (1768-1830)used them extensively in his work.

In the simplest case of approximating a function in an interval we are given
a periodic function of period, say 2n, and are asked to approximate the function

y(x) by a form

y(x) = --- + X (afc cos kx + bk sm kx)2 jt=i

It is easy to show that since the functions are orthogonal, that is,

m (0 k*m
cos kx cos mx dx =

| n k = m ^0
0

{2n k = m = Q

f2\302\253
sin kx cos mx dx = 0

Jo

f2n
sin kx sin mx dx = 0 k\302\261m

n k = m 7*0

Meaning that it can be found in the literature.
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the coefficients in the expansion are given by

1 r2\302\253 1 r2n
ak = - y(x) cos kxdx bk

= - y(x) sin fcx dx
It Jq 7C \342\200\242'o

The Fourier functions have a number of interesting properties beyond
merely remaining bounded for all values. The error of an approximation that

uses only a finite number of terms can be expressed in terms of the function rather

than, as in the polynomial case, some high-order derivative. Furthermore, the
rate of convergence, that is, how fast the finite series approaches the function as
we take more and more terms, can be estimated easily from the discontinuities of

the function and its derivatives.

Perhaps most important is the simple fact that the effect of taking equally

spaced samples of the continuous function can be easily understood. The higher
frequencies (speeds of rotation) appear as if they were lower frequencies. This

effect, called aliasing because one frequency goes under the name of another, is a

familiar phenomenon to the watchers of TV and movie westerns. As the stage
coach starts up, the wheels start going faster and faster, but then they gradually

slow down, stop, go backwards, slow down, stop, go forward, etc. This effect is

due solely to the sampling the picture makes of the real scene. Figures 1.6.1 and
1.6.2should make the effect clear. Once we know the sampling rate, we know

exactly what frequencies will go into what frequencies. The highest frequency

that is correct is called the Nyquist, or folding, frequency. In the polynomial
situation we have no such simple understanding of the effect of sampling.

It might appear that to calculate all the coefficients of a Fourier expansion

would involve a great deal of computing, but the recently discovered fast Fourier

transform (FFT) method requires about N log N operations to fit N data points.
This discovery has greatly increased the importance of Fourier approximation.

FIGURE 1.6.1 motion
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FIGURE 1.6.2

Most of our functions are not periodic, and so the Fourier series is of limited

importance. For the general nonperiodic function there is a corresponding

Fourier integral

f{t) = f F{cy*l9tdo

F{o)= C f(t)e~2ni<Tt dt
\342\200\242'-00

The two functions/(f) and the transform F{o) have the same information: one

describes the function in the space of the variable t, while the other describes it in

the space of frequencies a. These two equivalent views are part of the reason that

the Fourier integral gives such a useful approach to many problems.

When we resort to using a finite number of sample points, we again facs

aliasing, exactly the same effect as before. The folding frequency now provides a

more natural barrier and leads to the concept of a \"band-limited function,\"

meaning that the frequencies in the function are confined to a band.

The idea of a band-limited function is mirrored very closely in real problems.
A hi-fi system handles all the frequencies in a band and cuts off above and below

rather sharply; the better the hi-fi system, the wider the band. The idea of a band
of frequencies applies to most information transmission systems, servomecha-

nisms, and feedback control situations. This means, among other things, that

from the physics of the problem we can estimate the spacing we will need for our

samples, and vice versa, that from the spacing we can estimate the frequency

content of the solution.
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With the aid of the Fourier integral, which closely parallels the Fourier

series with its nice mathematical properties, we can show the effect of taking a
finite slice of a function from a potentially infinitely long function. For example,

the light from a pulsar or Cepheid variable star shines for many years; yet we

observe it for a night or two and from that limited record try to estimate what the
star is doing. It is often important to know the effect of the length of the

observationon what we can hope to learn about the star. Similarly in other control

problems, the length of the observation affects what we can see, and the Fourier

integral enables us to understand this limitation.

Using this new tool of Fourier approximation, we can then look back at the

polynomial approximation methods and see them in a new way. Once this new

way becomes familiar, we can understand much more clearly what we were doing

before. Exactly the same computations can be viewed in a new, more revealing

light. This is especially true for the communications and control problems that

tend to dominate our technological age.

Once this new way of looking at computing becomes familiar, it is natural
to begin designing formulas to meet new criteria. In place of the discrete set of

integers that were the exponents of the variable x in polynomial approximation, we

now have a continuous band of frequencies to use and examine. We can pick the

formula that minimizes some property of this continuous error curve (in the

frequency space to be sure). One popular method is to make the error curve have

a minimax (Chebyshev) property.

This new approach is relevant to many design problems. For example, in

designing a simulator for humans to use while training for airplane or space travel,

we are interested in building the simulator so that it\" feels right\" to the human who

is being trained. This to a first approximation means that the Fourier transform

(more generally, the Laplace transform) of the simulator should be close to the
transform of the real thing. It is less important that the simulator and real

vehicle go exactly the same place than it is to
\"

feel right.\" Thus we are no longer

to judge the method of integrating a system of differential equations that describe

the simulator by how well the solutions agree, but rather by how well the

transforms agree\342\200\224which is not the same thing! This new method of design is known
as the method of zeros and poles, and unfortunately it involves classical network

theory.

The role of digital communications systems is steadily increasing; more

and more we are sampling the continuous analog signal that occurs naturally in

the real world and converting it to a sequence of discrete digits. Thus we face

not only sampling but quantization effects of the digitizing of the analog signal.
This effect is like that of roundoff in many ways, but it is usually much more

severe, and because it occurs at the beginning, it again limits us to what we can
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hope to see of the original underlying physical phenomena. Without a good

understanding of these limitations we are not likely to understand what the
numberscoming out of the computer mean and do not mean.

This leads gradually to the design of digital filters, which filter digital signals

much as the old analog filters were used in processing analog signals, with radio

and television being a couple of familiar examples. The differences from the

continuous signals are significant in the digital case, and it is the digital case
that digital computers must use.

1.7 OTHER CLASSES OF FUNCTIONS

USED IN APPROXIMATIONS

After polynomial and Fourier approximations, the exponential set of functions is

most used. The three sets, polynomials, Fourier, and exponentials (together

with combinations of the three), are invariant under a translation of the origin.

This is an important property because in many situations there is no natural origin,
and without this property the choice of the origin would affect the answer. For
these three classes the answer is independent of the origin, though the particular

set of coefficients used in the approximation will differ as the origin is chosen

differently.

For the exponential functions there is the Laplace transform corresponding

to the Fourier transform, but it has much more difficult properties from the

computing point of view.

1.8 MISCELLANEOUS

When a problem has a singularity, as many practical problems do (often because

of the mathematical idealization), then the structure of the singularity indicates

the class of approximating functions to use, and the position gives the natural

origin. The methods used in this case are similar to those of the three usual cases.

Sometimes the problem has a natural set of functions to use, and again the
methods we have developed can be applied, though the details may get a bit messy
in many cases.

Optimization occurs frequently in practice, and the person practicing

numerical methods needs to know something about this rapidly growing field.

Most simulations imply an optimization in the background\342\200\224the simulation is

being done to optimize some aspect of the situation.

A central idea of mathematics is linear independence. In computing it is
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natural that this idea, which involves a yes no situation, becomes more vague.

Clearly in computing there will be some degree of linear independence, and various

forms for representing the same information will have varying degrees of linear

independence. The idea is still in its infancy and needs a great deal more

development, but it is clearly a central idea in computing.

One of the more difficult problems requiring an algorithm is Hading the

eigenvalues and eigenvectors of a matrix. Unfortunately, there is a great lack of

understanding of what the problem actually is and of what the answers are to be

used for, and there are no widely accepted methods for the general case. For the

particular case of a symmetric (also for a Hermitian) matrix reasonably effective

methods are known.

1.9 REFERENCES

The problem of supplying further references is a vexing one. The literature
is rapidly changing when compared to the lifetime of a book, and as a result most

references would soon be out of date and misleading. Furthermore, in a text like

this where most chapters can, and some have, been expanded into whole books,

there is little point in giving a lot of isolated references which will probably be

ignored by most readers. We shall assume that a few standard textbooks are

available and usually refer the reader to them for further information. The

occasional reference to the literature is to amplify a point that is not in standard

textbooks.



NUMBERS

2.1 INTRODUCTION

Numbers are the basis of numerical methods. Thus logically they belong at the

beginning of a course on numerical methods. On the other hand, psychologically

they occur rather late in the development.
The situation in numerical methods is very like that in the calculus course

where the real number system is basic to the limit process. The calculus course,
therefore, often begins with a detailed, fairly rigorous discussion of the real number

system. Unfortunately, at this point in his education the student has little reason

to care about the topic, and it always turns out to be the most difficult part of the

entire course. Furthermore, the topic generally repels the student, and this

attitude carries over to the rest of the course.

The history of mathematics further shows that the real number system was

very late in developing. The discoverers and developers of the calculus ignored

the niceties of the number system for many years. The biological principle
\"

ontogeny recapitulates phylogeny
\"

means that\" the development of the
individualtends to repeat the development of the species.\" This is very relevant to

teaching; the history of a subject gives important clues as to the ordering and

relative difficulties of the material being taught.
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History likewise shows that for a long time the number system used in

computing was essentially ignored and taken for granted. Putting the topic first,

therefore, requires justification, because we are asking the beginner to learn

material whose importance he is not psychologically prepared to accept. The

justification is the same as that for the calculus course. If we are to make rapid

progress and not to have to repeat some material several times, then it is necessary

to start with a firm foundation. The author's own experience was that only after

many years of computing did he come to understand how the number system used

by the machines affected what was obtained and how at times it led him astray.

Thus we are asking the beginner to accept on faith that the material in this

chapter is basic and to put aside his natural psychological prejudices in favor of the

logical approach. Of course he wants to get on to solving real problems and not
to fuss with apparently trivial, irrelevant details of the number system used by

machines, which he thinks he understands anyway. In compensation we will try
to makethe material a bit more dramatic than usual in order to sustain his interest

through this desert of logical presentation. Probably he should plan to review

this chapter later several times until he becomes thoroughly familiar with many of
the various peculiar features of the number system used by the machine. In a
sense it is the real number system, since they are the only numbers that can occur in

the computation; there are no other numbers, and the mathematician's \"real\"

number system is purely fictitious.

2.2 THE THREE SYSTEMS OF NUMBERS

There are three systems of numbers in the usual computing machine. First there

are the counting numbers 0, 1, 2,... , 32,767 (or some other finite, rather small

number). Note that this system begins with 0 rather than 1. Unless this fact is

thoroughly learned, when a loop is written in a program, the loop will not be able

to be done no times (meaning that it cannot be skipped). This number system is

usually intimately connected with the index registers of the machine, and the

range of the numbers is thereby determined. This is the familiar counting system,

and little more need be said beyond the fact that it is definitely bounded and does

not extend to infinity.

The second system of numbers is the familiar fixed-point number system.

Typical numbers are:

3.141592654

0.012345678

-123.4567890

These numbers all have a fixed length, usually the word length of the machine (or
some simple multiple of it), and the differences between successive numbers are the
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same. They are the familiar numbers of hand computing. Almost all the tables

of numbers that the beginner has used (trigonometric, logarithmic, etc.) are in

fixed-point notation. The chief difference between the machine's system and
hand calculation is that the human often changes the number of digits he carries as

circumstances seem to warrant, while the machine generally keeps the same

numberof digits (it may occasionally shift from single to double or even multiple

precision).

The third system of numbers is the floating-point number system, which is

closely related to the so-called \"
scientific notation

\"
used in many parts of science.

The system is designed to handle both very large and very small numbers. Typical
numbers are:

.31415927 x 101

.12345678 x 10\"1

-.1^345678
x 104\\cxponcnt

mantissa

The first block of eight digits in these above numbers is called the mantissa (in

analogy with logarithms), and the last digit is called the exponent (often ranging

from at least -38 to +38).
Usually the mantissa and the exponent are stored in the same word of the

machine, and as a result the mantissa of a floating-point number is usually shorter

than the corresponding fixed-point number.

For convenience we shall use in the examples in the book a three-digit
mantissa and a one-digit exponent for our floating-point number system. Not

only does this save space, but it also makes the examples much easier to follow.

Occasionally we will use a three-digit fixed-point number system. Examples of
our floating-point numbers are:

7T= .314 X 101

707 x 10\302\260

314 x 1(T2

000 x 10\"9

2.3 FLOATING-POINT NUMBERS

The floating-point number system has a number of unfamiliar properties, and the

rest of this chapter is devoted to examining some of them.

First, the zero

0 = .000x 10\"9

\342\200\224n
__

1,000\"

0 =
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is relatively isolated from the adjacent numbers since the next two positive numbers

.100 xlO\"9 and .101x 10\"9

are 10\"12 apart. No other number has a mantissa beginning with a zero digit.

Second, each decade has exactly the same number of numbers, 900 in all,

running

from.100 x 10\302\260to .999 x 10* a = -9, -8,..., 0, ...,9

Within a decade the numbers are equally spaced, but the spacing increases each

decade. Thus the spacing is a fixed, arithmetic spacing for 900 numbers, followed

by a \"geometric spacing jump\" and then another block of 900 arithmetically

spaced numbers, etc.

The number 0 and the number \342\200\2240 (namely, \342\200\224.000x 10\" 9) are logically the

same, and some machines make them the same, but some do not. Usually there

is no infinity corresponding to zero.

In mathematics there is a single, unique zero, while in computing there are

two kinds of zeros. The first, as in mathematics, occurs in expressions like

0\302\253O= O

and behaves like a proper zero. But the zero that occurs in expressions like

a-a = 0

can come from a form like

1 - (1 - a)(l + e)
= 0

whenever e2 is less than \\ 10~3 (3 being the number of decimal places carried

in the mantissa). Clearly this zero differs from the mathematical zero. It is

this zero that arises in the subtraction of two apparently equal-sized numbers

which causes so much trouble when the finite arithmetic of the machine is

equated to the infinite arithmetic of mathematics.

All these remarks appear to be obvious, but their consequences continually
affect how we compute and the results we get from the machine.

It is natural in a floating-point number system to measure the error of a

number by the size of the difference relative to the correct number, and thus

Relative error =
true \342\200\224calculated

true

This is distinctly different from the conventional absolute error used in much of

mathematics, where

Absolute error = | true \342\200\224calculated |
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The idea of relative error fits most physical situations very well, since it is scale-

free, that is, a change in the size of the units of measurement does not change the
size of the relative error, while it does change the absolute error.

The use of relative error fails, however, when the true value is zero, or close

to it. For example, in computing sin it we would have

I sin 7c \342\200\224
sin(.314 x 101) I

Relative error =
Sill 7T

and since sin(.314 x 101)is not likely to be exactly zero, the relative error would be

infinite. For this reason it is often better in computing the relative error to use

max{|A-|, \\f{x)\\}

as the denominator rather than/(x).
As a result of the discrete spacing of the numbers, there are numbers that

cannot come out of some calculations. For example, consider evaluating tan x.
The slope of the function is always greater than 1; therefore as we go through

adjacent numbers in x, the corresponding values of tan x (see Fig. 2.3.1) musi

FIGURE 2.3.1

Graph of y = tan x.

Ay

k~\\\342\200\224i\342\200\224i\342\200\224i\342\200\224i\342\200\224r
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'
y = tan x
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occasionally skip over some of the possible numbers (since both x and y start at the

origin and y has gotten further in its range than has x in its range).

When searching for gaps in the function values for consecutive values of the

argument, a somewhat crude rule to use is that the spacing is (roughly)
proportional to the size of the number. This produces the spacing in the y values

(roughly) proportional to x(dyjdx)y and if the spacing in the number system
around y is finer, then there will be gaps, that is, if

\\y\\<
dx

or \\y\\x\\ <

This can be translated into words as follows: when the slope of the line from the

origin to the current point on the curve is less than the derivative at that point,
there are likely to be gaps between consecutive function values.

It might be thought that if the slope is less than 1, as for the sine function in

the first quadrant, then there would be no missed values, but this neglects the fine

structure of the number system. Consider the table (in radians)

X

1.00
1.01
1.02
1.03
1.04

sin*

.841

.847

.852

.857

.862

We see that x has shifted to a new decade and hence to a coarser spacing than that

of the function values, thus producing the gaps in the sequence of function values.

PROBLEMS

2.3.1 Show that our number system has exactly 34,201 different numbers.

2.3.2 Discuss the gaps in the y values of y = Vx.
2.3.3 Discuss the gaps in the y values of y = x2.
2.3.4 Discuss the gaps in y = cos x for the first quadrant.

2.4 HOW NUMBERS COMBINE

Having looked at the individual numbers, let us now look very briefly at how

numbers combine in the four arithmetic operations. We assume familiarity with

conventional arithmetical practice.
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The product of two three-digit numbers in conventional arithmetic is a five-

or six-digit number, but in our number system there are only three-digit numbers!

Which number shall we take as the product ? Common sense suggests taking the

three-digit number closest to the product. The following is a mechanism for

doing this. If the leading digit of the full six-digit product is a zero, then shift the

mantissa one position to the left and at the same time decrease the exponent (which
is the sum of the exponents of the two factors) by 1 to compensate for the shift.

Neglecting the sign of the product, add a 5 in the fourth position. Provided an

overflow on the left does not occur, the first three digits of what remains are taken

as the product. If an overflow does occur, then further shifting and adjusting of

the exponent are required.

.512 x 101
x .106 x 102

3072

0000

0512

.054272 x 103

.542720 xlO2 shifllcft
\"\342\200\242\"^ round product

.543 X 10 =
product

This process of rounding produces a very slight bias because the ambiguous

case of 500 in the last three places of the mantissa should be rounded up half the
time and rounded down half the time, but the mechanism just described always
rounds up. The effect is too slight to worry about in practice; it is chiefly of

theoretical interest.
Division is somewhat more complicated, but the effect of rounding is much

the same:we select the three-digit number closest to the mathematically correct

quotient, again with a slight bias.

Addition and subtraction require first comparing the exponents of the two

numbers and, if necessary, shifting one mantissa with respect to the other before

combining. The final shifting for roundoff is much the same as for multiplication.

Subtraction can produce many leading zeros (or even all zeros, in which case the
machine produces .000 x 10~9), and these need to be shifted off before the

roundingoccurs. (Beware of using .000 x 10\302\260as zero.)
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Compute .314 x 101 + .419 x 10\" K

.314 x 101

+ .00419 x 101

.31819 x 101
+ 5 round

.318 x 101 = sum

Compute .315 x 102 - .314 x 102.

.315 x 102
- .314 x 102

.001 x 102

.10000 x 10\302\260

+ 5
shift left

round

'
difference

Compute .749 x 102 + .436 x 102.

.749 x 102
+ .436 x 102

1.185 x 102
.1185 X 10 ,hift right

+ 5 round

.119 xl03=$um

This briefly describes what ideally happens in roundoff. In practice there
are many minor variations and some not so minor. For example, since this
process of rounding is expensive in both hardware and machine speed, some machines

merely chop off or drop the last digits once the initial shifting has lined up the

leading digits. At first glance chopping may seem to be only moderately more

severe than rounding, but unfortunately in some problems chopping can produce

an \"
epidemic

\" in the sense that in cycle after cycle of computing the effect will be

in the same direction and the cumulative effect will grow almost linearly. (See

Sec. 23.4.)

PROBLEMS

2.4.1 Show that a shift due to roundoff can occur.
2.4.2 Discuss using .000 x 10a as zero.
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2.5 THE RELATIONSHIP TO MATHEMATICS
AND STATISTICS

By now it should be clear that the mathematician's number system is significantly
different from the floating-point number system of the machine, and the latter one

is used in most scientific and engineering calculations. What relationship have

they to each other?

Up to now we have adopted the harsh view that the numbers in the machine

are the only numbers there are and that the mathematician's numbers are purely

artificial. This is very useful for many purposes, especially when trying to debug

a program by accounting for every last digit. It is also necessary if we are to
understand the limitations of what can be done on the machine.

On the other hand, usually the machine is used to simulate the
mathematician's system, and the machine's number system is sometimes a poor

approximationof what is needed. The approximations in the initial numbers plus the

continual roundoffs in almost every arithmetic operation produce differences that

can be serious. This is especially true when a subtraction produces a large number
of leading zeros which are then shifted off (and the exponent is

correspondinglyadjusted).

To understand roundoff in the large, it is customary to regard it as a random

processin spite of the obvious fact that the same program run repeatedly will

produce the same\342\200\224notrandom\342\200\224results (assuming that the machine is not defective).
This assumption of random behavior is not essentially different from what is done
in many real-world applications of statistics. In the statistical mechanics of gas
molecules we simply do not want to know the detailed behavior of the 6.02 x 1023

molecules in a mole of gas; we merely want the effects of the average behavior.

Similarly in practice we do not want to know the exact roundoff at all stages of a

computation, rather we want to know their average effect.

Thus statistics continually enters into numerical methods because of the
random roundoff effects. Furthermore, we usually deal only with samples of the
functions and not with the functions themselves. As a result, statistics lies in the

background of much of what we do, and occasionally it steps up into the

foreground. It is necessary, therefore, whether we like the topic or not, to give serious

attention to the statistical effects in computing.

2.6 THE STATISTICS OF ROUNDOFF

Let us look first at the distribution of the roundoff of a single number. In the
mathematician's number system all numbers in a short interval occur with equal

frequency. All numbers in the interval x0
\342\200\224i \302\243x0 < x0 + \\ (measured in units
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of the last digit) go into the number x0 (where x0 > 0 is a number in the machine).

Thus the roundoff has a uniform probability distribution in the last digit (Fig.

2.6.1).

fl (*o-i.*o + i)
otherwise

/>(*> =
0

r00

p(x) dx -
1

J -en

The two most commonly used measures of a distribution are the mean

(average)and the variance. The mean is the first moment of the distribution p(x),

xp(x) dx = x dx =
xo-l/2 Jx0-l/2

= *0

FIGURE 2.6.1

Distribution of roundoff.

while the variance is the second moment about the mean (measures the square of the

\"spread\
rx0+l/2 rl/2

Var{p(x)}
= g2 = I (x

- x0)2p(x) dx = I t2 dt =
TV

Jjc0-1/2 J-l/2

Experimental tests of the uniform distribution of roundoff seem to show that

it is a reasonable model.

How shall we represent this roundoff? It is conventional to let x be the true

(mathematician's) number and x + s be the computer number, where s is the

additive roundoff. This notation is suitable for the fixed-point number system, but

for floating-point numbers it is better to use

x(\\+\302\243) |\302\243|<ixl(T2 (2.6.1)

We have chosen to let x be the mathematician's number rather than the

computer's number because in this book we are concerned with computing more from

the user's point of view than from the machine's. The difference in notation be-
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tween the two approaches is minor in principle, but it has the effect of focusing the

attention on one aspect or another in every formula in which the roundoff occurs.

Roundoff, once started, propagates through subsequent operations. For

example, in the multiplication of two numbers

*i(l + \302\243i)*20+ \302\2432)
= xlx2(l + \302\2431+ \302\2432+ M2)

Usually \302\243x\302\2432can be neglected, but we need to add the roundoff \302\243from the present

operation to get the total roundoff

*30 + e3>
= *i*20 + \302\243i+ \302\2432+ \302\243) I \302\243|< i X 10~2

\302\2433
=

\302\243x+ \302\2432+ \302\243

Similarly for the other operations.

PROBLEMS

2.6.1 Calculate the mean and variance for chopping (see Sec. 2.4).

2.6.2 Examine the propagation of roundoff through division.

2.6.3 Show that for roundoff the third moment about the mean is 0 and the fourth is

1/80.

2.7 THE BINARY REPRESENTATION OF NUMBERS

The various features of the floating-point number system have been discussed in

terms of the familiar decimal representation. However, most computing is done

on machines that use the binary form for representing numbers. The binary

representation system is increasingly familiar these days, and so only a few details will

be given. As a general rule, if you have trouble with the binary system, then

probably it is because you do not really understand the decimal system, and the

way out of your trouble is to think about the similar situation in decimals. For

example, a decimal number means

1,414.214=

1 x 103 + 4 x 102 + 1 x 101 + 4 x 10\302\260+ 2 x 10\"1 + 1 x 10\"2 + 4 x 10\"3

Similarly the binary number

1011.101=

1 x 23 + 0 x 22 + 1 x 21 + 1 x 2\302\260+ 1 x 2\"1 + 0 x 2~2 + 1 x 2\"3

It is important to recognize the difference between the kind of number system
used (counting, fixed, or floating) and the/orw of the representation of the number
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(binary, octal, decimal, hexadecimal, etc.). Regardless of the form of the

representation, the number is the same; thus 3 in decimal and 11in binary are the same
number. It is conventional to speak of the binary number or the decimal number

to save words, but in careful thinking it is necessary to differentiate between the
number system and the form of the representation.

Perhaps the main stumbling block with the binary system is converting from

decimal to binary and back. For example, consider writing the number 417 in the

binary representation. That is, we wish to write 417 as a sum of powers of 2 with

coefficients of either 0 or 1

417 = 1 \342\200\2422\" + ^.12\"-1 + a\342\200\236_22n~2 + \342\200\242\342\200\242\342\200\242+ a02\302\260

If we divide both sides by 2, the remainder is a0. If we divide the quotient by 2,
the remainder is ax, and so on.

2|417
2

|208
+ 1 = a0

2 |1Q4 + 0 =
^j

2 | 52 + 0 =
a2

2
|_26

+ 0 =
a3

2 | 13 + 0 =
a4

2
| 6 + 1 = as

2|__3 + O = 06

2 | l + l=a7
2 0 + 1 =

aQ

417 = 110 100 001

To convert back we reverse the process. Multiply aQ by 2 and add a7;
multiply the sum by 2 and add a6; etc.

1
2

2 + 1=3
x2

6 + 0 = 6
x2

12 + 1 = 13
x2

26 + 0 = 26
etc.
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The above process works for integers. For the fractional part we use a
similar trick of doubling and using the overflow on the left. For example,

.762 =
fl_12\"1 + a>22\"'2 + a_32~3 + ...

double

1.524 = 0-! +a-22~1 + a_32~2 + ...

andsotf-! = 1.

In full

.762

2

JJ524
2

JJ048
2

J0JO96

2

_0]192
2

_0_|384
2

J0J768
2

Jj 536

Hence

.762 = .110 0001...

Reversing the process gets from the binary representation to the decimal.

Previously prepared tables for conversion purposes are another way of

converting from one form of representing a given number to another form of

representing the same number.

The conversions are customarily done by the computing machine, and since

the machine works in binary arithmetic and since the above discussion has used

decimal arithmetic, there are differences in exactly what happens in the machine.

It is not hard to take the machine's point of view and to deduce how to convert its

way.
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Some words of caution are needed however. The terminating decimal

.1 =-jL = .0001 1001 1001 1 ...

does not terminate in binary, and as a result adding 1/10 to itself 10 times will not

produce exactly 1 (just as in conventional decimals 1/3 + 1/3 + 1/3= .333 + .333

+ .333 = .999 t* 1). Thus using the floating-point representation of numbers

for counting or for logical control is inviting trouble.

Another point of warning is needed. The conversion routines cannot

always read in a decimal number, convert it to binary and back, and give the result
that is the same as the original number\342\200\224at least not when the number of digits in

the two forms is reasonably balanced. Take, for example, a three decimal to ten

binary digit (binary digit is usually abbreviated bit) conversion. The 100 decimal

numbers

(9.00->
1001.000000

\\9M->\\00\\.xxxxxx
100 numbers/ 9.02 -\342\226\2721001 .XXXXXXT

1^9.99 -> 1001. xxxxxx

64 distinct numbers

must go into 64 binary representations, so that some distinct decimals must go into

the same binary representation and cannot be distinguished in the reconversion

process. Thus in spite ofthe fact that 103 < 210 = 1,024, therewill betimes when

a decimal number is read in and comes back slightly, and annoyingly, different.

PROBLEMS

Convert to binary:
2.7.1 1,728

2.7.2 1,972
2.7.3 1,066
2.7.4 0,345

2.7.5 0.592

2.7.6 1/12
2.7.7 1/16
Convert to decimal:

2.7.8 101 001

2.7.9 111 111
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2.7.10 100 001
2.7.11 .111111
2.7.12 .100 001

2.7.13 Show that the above argument for the nonunique conversion also applies to the
conversionfrom 8 decimals to 27 binary digits.

2.7.14 Describe the terminating decimals that also terminate in binary.

2.8 THE FREQUENCY DISTRIBUTION OF MANTISSAS

Although the mantissas of floating-point numbers are equally spaced, and hence
occur equally frequently in the form of representation, they are not equally frequent

in practice. Instead, the probability of getting the leading digit 1,2, or 3 in a
decimalnumber is about 60 percent. For example, consider the 50 physical constants

whose leading digits are given in Table 2.8.1. In Sec. 2.9 we shall show why we

care about this phenomenon beyond mere curiosity.
This effect can be explained in terms of the mathematician's smooth number

system since it is a characteristic of the numbers themselves and not peculiar to the
finite representation that the machine necessarily uses. We shall show that it is

Table 2.8.1 THE DISTRIBUTION OF THE LEADING
DIGITS OF 50 PHYSICAL CONSTANTS*

Number Theoretical
Leading of cases number
digit N observed Eq. (2.8.3) Difference

1 16 15 1
2 11 9 2
3 2 6-4
4 5 5 0
5 6 4 2
6 4 3 1
7 2 3-1
8 13-2
9 3 2 1

50 50

*From Handbook of Mathematical Functions, AMS 55, National

Bureau of Standards, 1964 and Dover Publications, Inc.
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reasonable to adopt the model for the distribution that the probability density for

observing the number x in the base b is

1 l
r(x) = \342\200\224\342\200\224t <> x < 1

x\\nb b

This is called the reciprocal distribution (Fig. 2.8.1) for obvious reasons.

The cumulative probability distribution is defined as

In x + In b

, W at =
JUb

(2.8.1)

R(x) =
f r(t)dtJ

\"W\"
and

ln\302\243

(2.8.2)

FIGURE 2.8.1

Reciprocal distribution.

Thus the probability of observing the leading digit Wis

(N + l\\ JN\\ In (AT+ 1)-In N

\302\253m-*\302\256='
(2.8.3)

b J \\b) \\x\\b

which is what the table confirms.

We examine first the way multiplication transforms various distributions.

Let x come from the probability (density) distribution/(x), let y come from g(y),
and let the product z have the distribution h(z). Further, let their cumulative

distributions be, respectively, F(x), G(y)> and H(z), the measure of the set of points

for which xy < z.
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A study of Fig. 2.8.2 shows that

H(z)-J j f(x)g(y)dydx + j j f(x)g(y)dydx
JllbJilh J 1 lb J1 l(hx\\* lib J lib UbJll(bx)

+ ff'X mg(y)dydx
Jz Jll(bx)

-
0\302\273H\302\243)-\302\253\302\251\342\231\246<'\302\273-O]

*

FIGURE 2.8.2

The cumulative probability distribution

for the product z = xy.

1

= z/bx

Mb

<y \\

\\

k

y-z/x

Is*
^^ y^Mb

Mb

(2.8.4)

Differentiating H(z) with respect to z gives the density distribution

*W
-Ax)[cg)

-
Cg)

+ 0(1)
-

C(l)
- G(l) +

C(l)]

This is the basic formula which describes how the process of multiplication

combines the distributions of mantissas of two numbers x and y to give the

distribution h(z) of the mantissa of the product.

Suppose, now, that one of the two factors, say 7, has the reciprocal

distribution;that is,
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Putting this in Eq. (2.8.4),we get

b J lib x zlnb Jz x zltib

Obviously the same applies if we assume/(jc) is the reciprocal distribution. Thus

we have shown that if one of the factors of a product comes from the reciprocal

distribution, then regardless of the distribution of the other factor, the product
has the reciprocal distribution. This may be called the persistence of the

reciprocaldistribution once it is established. In a long sequence of multiplications if at

leaut one factor has the reciprocal distribution, then the result has the reciprocal

distribution.

Next we show how the reciprocal distribution can arise. We need a measure

of how close a distribution is to the reciprocal distribution. After some tries we

measure the distance of h(z) from the reciprocal distribution r(z) by

= D{h(z)}=
D{h) (2.8.6

This measures the maximum relative error (which is natural for floating-point

numbers).

We just showed that

Subtract this from Eq. (2.8.4) and divide by r(z) to get the form for the distance

function

h(z) -
r(z)

=
1 ,' f(x) (g[zl(bx)] -

r[zl(bx)]\\
^

r(z) bhib x \\ r{z) J

J* x I r{z) J

But

bxr(z)=^h=r{\302\243j

xr{z)=ih,=r\302\247

max
Kz)-r{z)\\
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and we have

h(z) -
r(z) f\302\273tl Ag\\z\\{bx)\\ - r[zl(bx)1

Z) Jilb \\

dx
Hz) Jur 'l r[zl(bx)]

u/(x)[ **!*) \\dx

Since f(x) > 0 in the two intervals

I Hz)
- r(z)

Hz)

for all z, it follows that

sf f(x)D{g}dx + j f(x)D{g}dx
Jl/b Jz

ZD{g}

D{h} <L D{g} (2.8.7)

How fast does the distribution approach the limiting distribution ?

Remembering that for any distribution g{x)

T [g(x)-r(x)]dx = 0

Jl/b

we form a guess at the increase that must occur in replacing the square brackets by

their maximum D{g). We can also calculate how the distance decreases for a

continued product of a sequence of numbers taken from a flat (uniform)

distribution. See Table 2.8.2

Similar results can be obtained for division. For example, Eq. (2.8.4)
becomes

Kz)=? 0^**\302\251dx
+ h J//(x)*fe)dx

and the rest follows to produce the corresponding results for division.1

Table 2.8.2 DISTANCE FROM THE FLAT

DISTRIBUTION TO THE LIMITING
DISTRIBUTION

Number Percentage of
of factors Distance original distance

1 1.558 100.0
2 0.3454 22.2
3 0.0980 6.29
4 0.0289 1.85

1 For further results see R. W. Hamming, On the Distribution of Numbers, Bell Systems
Technical Journal, vol. 49, no. 8, pp. 1609-1625, October, 1970.
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PROBLEMS

2.8.1 Derive the corresponding results for division.

2.8.2 lff(x) =f(y) = blip
- 1), show that for multiplication

\302\253*)-03l)aDn&-(A-l)ln*]

2.8.3 If f(x) =
g(y)

= bl(b - 1),show that for division

*>-2^('
+

?)

2.9 THE IMPORTANCE OF THE
RECIPROCAL DISTRIBUTION

The reciprocal distribution has many applications. For example, consider the

placing of the decimal or binary point before rather than after the first nonzero

digit. Scientific convention places it after, while computing convention places it

before, the digit. The difference first arose in the earliest electronic computers
where the choice in fixed-point notation meant that the product would not produce
an overflow on the left. What justification can we now give ? If it is placed

before, we run the risk in floating point of having a leading zero and of requiring time
to shift this off and adjust the exponent accordingly. On the other hand if it is

after the digit, we run the risk of getting two digits before the point and of requiring
an exponent adjustment to get to standard form. What are the probabilities of

these two (complementary) events? If xy ^ l[b, then the probability of a shift

when both factors are from the reciprocal distribution is (Fig. 2.9.1)

Ji/bJi/b xlnbymb

1 / ln2x\\V
=1

~~\\n2b\\ 2 jji,\302\273~2

And so it is a matter of indifference where the point is placed in this model. For

numbers from the flat uniform distribution the probability depends on the base b

and for b = 2tp& 0.38.
In the design of optimal library routines it is necessary to know the

distributionof the input data. In the cases of square root and exponential routines it is

the distribution of the mantissa that is most important, but for other routines such

as the sine it is necessary to know something about the distribution of the ex-
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\\/o

FIGURE 2.9.1

Probability of a shift. lib l

ponents. Unfortunately almost nothing at this time is actually known, nor are

there any theories available to suggest what might be found under some suitable
conditions.

We will later give some other applications of the reciprocal distribution.

PROBLEMS

2.9.1 In a base 16 system written as groups of four binary digits, show that the numbers

of the form

.lxxx...

.Olxx...

.OOlx...

.0001 ...

are equilikely for the reciprocal distribution.

2.9.2 In information theory the information measure of a distribution is

1--C p{x)Hp{x)]dx
J \342\200\224CO

Apply this to the reciprocal distribution and compute the information loss from

the uniform distribution for base b.

2.10 HAND CALCULATION

Hand calculations are used to see how a computation might go before

programmingit for a machine and to check the results after a machine run. We no longer

need to do extensive hand calculations, and as a result it is a dying art\342\200\224onethat is

f

fk -1



40 2 NUMBERS

best left to die quietly. A whole book could be devoted to the topic, and the

knowledge of its contents would be of some use sometimes, but it is simply not

worth the effort to learn in detail when there are so many other things more worth

knowing. Besides, the topic is dull and disorganized.

The main thing to note is the types of error that are most common in hand

calculation. The two most prominent errors are both in copying numbers. The
first is to reverse a pair of digits\342\200\22487becomes 78\342\200\224andthe second is to double

the wrong number in a triple of numbers\342\200\224776 becomes 766. They are the same
errors that are common in dialing phone numbers.



FUNCTION EVALUATION

3.1 INTRODUCTION

Once we understand the number system, we can examine how numbers combine

when we evaluate functions. Mathematically equivalent formulas can have very

different roundoff characteristics. If the way we evaluate a function produces a
great deal of roundoff, then we cannot use it for practical computing. We need,
therefore, to see how to avoid roundoff when evaluating functions; we need to learn

how to evaluate functions for machine computation.

3.2 THE EXAMPLE OF THE QUADRATIC EQUATION

The formula for rinding the zeros of the quadratic equation

ax2 + bx + c = 0

is given in textbooks as
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An examination of the formula suggests that when Aac is small with respect
to b2, that is,

then

\\4ac\\<b2

-b + Jb2-4ac (otb>0

-b- yjb2
- Aac for\302\243<0

will result in severe cancellation for one root. Consider, for example, the

particular case:

x2 - 80* + 1 = 0

x =

(a = 0.100 x 101

b = -0.800 x 102

[c
= 0.100 xl0l

0.800 x 102 \302\261./0.640 x 10* - 0.400 x 101

0.200 x 10l

0.800 x 102 \302\2610.800 x 102

0.200 x 10'

10.800 x 102 = 80

0.000 x 10~9=0

How can we avoid this cancellation?

Approximate true values

80-*-g0(l\"BI)

^ +
803

=

M1+807

Since

a(x -
xt)(x

- x2) = ax2 -
a(xx + x2)x + axtx2

it follows that the product of the two zeros is c/a. If we use the case without the

cancellation to find xx and then find x2 from

x2 = -

axt

we will get

xx
= 0.800 x 102
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We need, therefore, to rearrange the formula for the zeros to pick out the
one without the cancellation. One way is

Use opposite sign of bxl

*2

-*\302\261

_
C

axt

f*.
2a

-Aac

How good are these answers ? One way of answering is to try to reconstruct

the polynomial from the zeros.

(jc
- 0.800 x 102)(x

- 0.125 x 10\"1)
= x2 - *(0.800 x 102) + 0.100 x 101

The reconstruction is exact; therefore, in some sense, the answers must be

exact since we appear to have lost no information around the whole loop.
This is not the complete answer on how to evaluate the formula; we still need

to worry about (1) underflow, (2) overflow, and (3) b2 \342\200\224Aac < 0, but these are not

relevant here.

PROBLEM

3,2,1 Find the formula for the roots of ax2 + 2bx + c = 0 and note the savings in
arithmetic.

3.3 REARRANGEMENT OF FORMULAS

It would appear that there are an unlimited number of tricks for rearranging

formulas to avoid severe cancellation (in some region of the argument x), but they
are often the same tricks that were used in the calculus course to rearrange the

expressions that arose in the delta process of formally taking the derivative of a

function.

EXAMPLE 3.1 Evaluate y/x+\\-y/x for large x. As in the calculus we

rationalize the numerator by

which has no cancellation. ////
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EXAMPLE 3.2 Evaluate ^^ for small x.
x

In floating point there is no trouble except for x = 0. As a special case, if
x= 10\"2, then

sin*=l(T2

and

sin*

x
as it should. In general since for small x

x3
sin x = x \342\200\224\342\200\224H

0

then

sin * *2 *4~~
\342\226\240\"\"6\"

+
l20~\"\"'

is accurately evaluated by the sin x routine followed by division by x. The
trouble occurs in the fixed-point number system (which we do not use). ////

EXAMPLE 3.3 Evaluate sin(x + fi)
\342\200\224sin x for small \302\243.

Using the trigonometric identity

. , . a + b . a-b
sin a \342\200\224sin b = 2 cos \342\200\224^\342\200\224sin \342\200\224\342\200\224-

2 2

we have

\302\243

(^+1)sir

as a suitable form. ////

= 2 cos \\x + -) sin -

1 \342\200\224cos x
EXAMPLE 3.4 Evaluate \342\200\224: for small x.

sin*
We have the identities

1 \342\200\224cosx sin* x
\342\200\224: = \342\226\240: = tan - ////sin* 1+cosx 2

EXAMPLE 3.5 Evaluate

rN+i dx
1 =

arctan(iV + 1) \342\200\224arctan N
Jn 1 + *

for large N.
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In Fig. 3.3.1 for large JVthe area is the shaded region and is expressed as the
difference between two large areas. We use the identity

a-b
arctan a \342\200\224arctan b = arctan

1 + ab

to get

arctan \342\200\242
1

l+N(N+\\)

as a suitable form. Note we also have avoided one arctan evaluation which is the

time-consuming part of the computation. ////

FIGURE 3.3.1 N N+\\

EXAMPLE 3.6 For large * evaluate

We write it as

JX + 1 -
y/jC 1

1 1

y/x y/x+1

Gv/xT~l)( y/x) JX + I y/x(y/x + 1 + y/x) (X + 1) y/x + Xy/X + 1
////

PROBLEMS

For large x} or e small with respect to x, rearrange for evaluation:

3.3.1 -L--1
x + 1 x

3.3.2 tan(* + e) \342\200\224tan x Arts.
cos x cos(x + e)
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3*3.3 \342\200\224\342\200\224
1 Ans. -\342\200\224:\342\200\224-

X + 1 X X-l X(X2
- 1)

3.3.4 ^i+T-^c
J.5.5 cos(x + e) \342\200\224cos x

3.5.5 f \342\200\224= ln(W+l)-lnJV N large

3.3.7 e'-l + e-* Ans. 4sinh2(\302\253/2)

3.4 SERIES EXPANSIONS

Sometimes rearrangements cannot be found to remove the cancellation, and some
other device must be used. One of the more effective tricks from the calculus
course is the expansion of the functions into a Taylor series about some suitable

point.

EXAMPLE 3.7 Evaluate ex - 1 for small jc.

Expanding ex about x = 0, we get

ex-l = l+x + -- + -- + 1
2 o

-<>*$+\342\226\240\342\226\240)
////

N+l

N

EXAMPLE 3.8 Evaluate for large N

cN+1 I
In x dx = (x In x \342\200\224

x)\\
JN |

= (AT+l)ln(AT+l) -N\\nN-l

which has severe roundoff trouble in this form. See Fig. 3.4.1.
There are many ways of going about this problem. One way is to write it as

N[\\n(N + 1) - In N] + \\n(N + 1)
- 1 = Nlnll + jj) + ln(tf+ 1) - 1

and use

ln(l +*) = x-~ + Y-~Z- +
,\"

'*' sma11
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Alnx

FIGURE 3.4.1

to get

1 /XT ,X 1 1 1
////

EXAMPLE 3.9 Evaluate - - ctn x for small x.
x

We have

1 1 cos x
\342\200\224ctn x = :\342\200\224
x x sin x

sin x \342\200\224x cos x

xsinx

/ x3 x5 \\ / x2 x4 \\

(X-3i+5!\342\200\224,)-X(1\"2i+4i \342\200\224V

/ x3 x5 \\

T\"3!+5!--j

4-?H
-1KH

////
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EXAMPLE 3.10 For small x evaluate

/ x2 x3 x4 \\

In (1 - x)

ln(l + x)~~ x2 x3 x4

2 3 4

Divide out the two series formally to get

i!=-(i+*+^^+-i
////

ln(l-x) /, x2 5x3

ln(l +x) \\ 2 12

If we are given an e that is small, then when we evaluate

ln(l + e)

by computing first 1 + \302\243,we lose most of the accuracy in this first addition. For
this reason many math package libraries include the function:

given e, compute ln(l + \302\243)directly

For large x, or e small with respect to x,

3.4.1 1^11

\302\243(e(a
+ b)c_

3 4 2 \342\200\224-

3.4.3
lnj\302\243

3.4.4 \\tl^l
V e'-l

3.4.5 i^\302\261e \342\200\224tan e

3.4.6 (x-H)1/B-

1)
-1)

.Xlln

compute:

Ans. -

a + b
One ans. \342\200\2247\342\200\224

ab

4+^+...)

3.5 USE OF MACHINE TO DECIDE

The beginner is inclined to believe that he must personally analyze each problem
and program the machine accordingly. Only after a while does it occur to him
that the machine can make the choices, provided the program is written properly.
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For example, consider evaluating

-1

for a range of x and a set of parameter values a. When \\ax | is small, we need to
use the series approximation; otherwise we can use the direct evaluation and
subtract. If we do not mind the loss of one bit in the direct evaluation, then we need

only use the series for \\ax \\ < tq. {Note: e0,1 = 1.105 )

To evaluate eax - 1, see Fig. 3.5.1.

Compute

eax-\\

FIGURE 3.5.1
T\"

Go on

Compute

Z3~

The term neglected is of relative size

{ax?

24
<10\"

so that even if ax < 0, the relative error is less than \\ x 10\"3, and there is no loss

in accuracy in the power series approximation.

3.6 THE MEAN VALUE THEOREM

The mean value theorem is the third item from the calculus course that is widely
used in computing, especially in the more theoretical parts of deriving errors of

formulas.



50 3 FUNCTION EVALUATION

The mean value theorem Let y =/(*) be continuous for a <, x <, b and

possess a derivative at each x for a < x < b. Then there is at least one
number 0 between a and b (see Fig. 3.6.1) such that

M -M -
(&

- WW) a<0<b (3.6.1)

This is equivalent to stating that at the position 0 the slope of the derivative is

parallelto the chord joining the two endpoints.

Equation (3.6.1) can sometimes be used to avoid roundoff (and sometimes a

lot of machine time). For example,

ln(Ar + a)-lntf=<4 0

FIGURE 3.6.1

and it is reasonable to pick 0 as the midvalue

ln(Ar + a)-lntf?
2a

2N + a
Let N = 100 and a = 1; then

In 101 - In 100 = 4.61512- 4.60517 = 0.00995

Again,

1

200 + 1 100.5

and no logs were evaluated in the computation.

= 0.00995
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PROBLEMS

Apply the mean value theorem and check the result if numbers are given.

3.6.1 V82-V81
3.6.2 sin(x + e) \342\200\224sin x

3.6.3 arctan(iv\"+l)-arctanAr AT= 10

3.6A ^Xtixdx N =10

3.7 SYNTHETIC DIVISION

Polynomials play a central role in computing. Not only do they occur naturally,

but everything that the four arithmetic operations (addition, subtraction,

multiplication, and division) can produce is the equivalent of one polynomial divided

by another. It is important, therefore, to examine with some care the problem of

evaluating a polynomial for a given value of the argument x.
The polynomial

P(x) = aNxN + aN-xx\"~l + aN-2xN~2 + \342\200\242-\342\200\242+ alx + a0

can be written in the \"
chain

\"
(nested) form

{\342\200\242''l(aNx + aN-t)x + aN_2]x + \342\200\242\342\200\242\342\200\242
ax}x + a0

which involves N additions and N multiplications.
The chain method is the same that occurs in the synthetic division process of

dividing a polynomial by a linear factor x \342\200\224a. For example, the particular

polynomial

P(x) = x+ + 6x2 - Ix + 8

divided by x - 2 leads to

X3 + 2X2 + 10* + 13 = quotient

*-2 x4 + 0x3+ 6x2 - lx+ 8

xA - 2x3

2x3+ 6x2

2*3- 4x2

10x2- Ix
10x2 - 20*

13* + 8

13*-26

+ 34 = remainder
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which can be written as

P(x) x* + 6x2-7x + 8 3 \342\200\2362 ^ \342\200\23634
\342\200\224^-= = x3 + 2x2 + \\0x + 13 + r
x-2 x-2 *-2

or as

P(x) = x* + 6x2 - Ix + 8 =
(x

- 2)(x3 + 2x2 + 10* + 13) + 34
\342\200\242 . | *\342\200\224. ^ .\342\200\224-t

polynomial divisor quotient remainder

When x = 2, we get

P(2) = 34 = remainder

This is a special case of the remainder theorem.

The remainder theorem If a polynomial P(x) is divided by x \342\200\224
a, we get

P(x) = (x-a)e(*) + K

where Q(x) is the quotient and R is the remainder, and we have

P(a) = R

If R = 0, then a is a zero of P(x).

The division process can be simplified by noting that the powers of x are

place holders and need not be writtenprovidedzero coefficients are supplied for the

missing terms. Furthermore, the quotient need not be written on the top line

since it is given by the numbers at the bottom of each column. Finally, we need

write not x \342\200\224a, but a, and then add, instead of subtract, in the body of the form.

As a result of all these changes we get

dWsor ->2jl
0 6-7 8
2 4 20 26

\\
1 10

1? ^
=

remainder

quotient

In this form it is clearly the chain method of evaluating a polynomial P(a).
If the quotient is again divided by the same linear factor, we will get another

quotient and another remainder rx. Dividing this new quotient again by the same

factor, etc., we find that we are performing exactly the same process that was used

to represent a number as a sum of powers of a number base (Sec. 2.7 where we used
the base 2), and correspondingly we are representing a polynomial as a sum of

powers of the linear factor we were dividing by. Thus we will get

P(x) = r0 + rt(x -a) + r2(x -a)2 + '-+ rN(x
-

a)N
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Using the Taylor-series expansion of a function

N2/\302\273

we see that

Using our earlier example,

and we have

P\"(a)

2!

P\"\\a)

r2

^3 =
3!

j2Jl 0 6-7 8

2 4 20 26

jjl 2 10 13
[34

=
P(2)

2 8 36

_2J1 4 18\"

12

2

49 = P'(2)

(2)

P(x) = 34 + 49(x
- 2) + 30(x -

2)2 + 8(x
- 2)3 + (x -

2)4

3.8 ROUNDOFF EFFECTS

The preceding is a purely mathematical result. How does it work out in the
machine's floating-point number system with its ever-present roundoff? In

particular, how large a remainder R can be considered as being zero?

We start by assuming that the coefficients at of the polynomial have roundoff

errors in the floating-point form
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and we shall assume that the number a at which we want to evaluate the

polynomial is exactly known. Since double-precision arithmetic is very widely
availableand usually costs little more to use than single precision,1 it is widely used in

polynomial evaluation. In this case the roundoff of the evaluation process
contributes almost nothing to the error in the result\342\200\224almost all the error arises from

the initial coefficients. Since the coefficients occur linearly in the division

process, the result is the sum of two divisions, one on the true coefficients at and the

other on the errors at st. If we assume that the et are bounded,

l\302\253i|\302\243\302\253

then carrying out the following division process

Mpgwl l%-il ~'\\<*o\\

7%l
[\302\243_

gives Re as the error bound on the remainder. This is an error bound due to the
error in the initial coefficients.

If single-precision arithmetic is used in the evaluation process, then we must
also consider the effects of the rounding of the individual products and sums.

Each arithmetic operation will include a factor

1 +\302\243*

If we examine the process of synthetic division, we observe that the first coefficient

aN goes through IN arithmetic operations and so picks up IN factors of this form.

The next coefficient aN-t will have 2N \342\200\2241 operations done on it, the next aN\342\200\2362

will have 2N \342\200\2243 operations, etc., down to an a0 which will have 1 operation.

We are going to use the method of\" backward analysis,\" meaning that the
roundoff errors will be regarded as equivalent to small changes in the initial

coefficients\342\200\224wewill answer the question \"what problem has exactly the calculated

answer?
\" The multiplication produces a factor 1 + e on each of the terms that

enter into the multiplicand. But the addition process may shift one number with

respect to the other before the addition and roundoff take place. We are

supplyinga term 1 + e to both numbers, thus putting in more roundoffthan there should

be, but the more the relative shift done, the less this excess. The typical term is of
the form

\302\253*(i+ \302\253Mi+ **)\342\200\242\342\200\242\342\200\242(! + \302\253**+1)

and the error in the polynomial evaluation from this term will be

\302\253*\302\253*[(!+4X1 + \302\253?)\342\200\242\342\200\242\342\200\242(!+ \302\253\302\273\342\231\246i)-U

1 This is not true for the special-function evaluation of ex, In xt sin *, etc.
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which is, neglecting products of e/s in comparison to e^s

For the purpose of bounding the ultimate error, all the e* are

i\302\253;is(i)2-*

for a fc-bit machine. Thus if in place of ak in the polynomial we wrote

4-+-+(^H

we would have more than allowed for all the roundoffof the single-precision

arithmetic done in the evaluation process, and we could proceed as before, using these

modified coefficients to obtain a bound.

3.9 COMPLEX NUMBERS\342\200\224QUADRATIC FACTORS

It frequently happens that a function with real coefficients is to be evaluated for a

complex argument x + iy. For example, given

\302\273=/(*)
=

\342\200\2242~

evaluate this for z = x + iy. We have

ex cosy + e~x cosy iex siny \342\200\224e~x s'my
f(z) = + \342\226\240

2 2

ex + e -x
cos y + i \\

\342\200\224
)sin y

It is also very common to be asked to find

where the bar means the conjugate x \342\200\224
iy. In the above example we will have

f(z)+f(z) =
(ex + e-*)cosy

The particular case of a polynomial is of importance, both because it occurs

frequently and because it has special properties. The direct evaluation using

complex arithmetic is unnecessarily expensive in machine time. We use the fact

that evaluating the polynomial at a point a + ib is the same as finding the

remainderwhen dividing by the corresponding linear factor. Noting that corresponding
to the linear factor we can construct the real quadratic factor

[z -
(a + ib)][z - (a -

ib)]
= z2 - 2az + a2 + b2
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we divide the polynomial by this quadratic factor (using the obvious extension of

synthetic division to quadratic factors) to get the remainder rxz + r0.
Consider the special case of computing P(2

- 3/) where, as before,

P(z) = z* + 6z2-7z + S

The quadratic factor is

[z -
(2

- 3i)][z -
(2 + 3/)] = z2 - Az + 13

109 =
remainder

quotient

Thus

P(z) =
(z2

- 4z + 13)(z2 + 4z + 9) + (-23z -
109)

At z = 2 - 3/ we have z2 - Az + 13 = 0

so that

P(2
- 3i) = -

23(2
- 3/) - 109

= -155 + 69/

Note how much complex arithmetic we have avoided in this process. This is a

very useful trick: we replace the evaluation of a polynomial at a complex number

by a division process using only real numbers and at the last moment let the

complex number enter (only linearly).
Error bounds follow along the lines of the linear-factor theory, and need not

be developed here in detail.

PROBLEMS

Evaluate the given polynomial for the argument value given.

3.9.1 P(x) = x6 + 6x5 + 15x4 + 20x3 + 15x2 + 6x + 1; for x =

-1 + /V3

-1 + /.

3.9.2 P(x) = x*-2x* + 5x2 + 4x+7;forx =

3.9.3 P(x) = x4 - 2x2 + 5x2 + Ax + 7;forx =

2

1 + V5

3.9.4 Discuss the evaluation of P \\x + iy).
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3.10 REPEATED EVALUATIONS

Often we want to evaluate a function not once, but at a series of equally spaced

points (arguments). If machine time and costs are important, then significant

savings can be made by taking advantage of various features of the function.

EXAMPLES

ea
+ (n+l)h = ea

+ nheh

(sin[a + (n + l)h] =
sin(a + nh) cos h + cos(a + nh) sin h

\\cos[a + (n + l)h] =
cos(a + nh)cos h \342\200\224

sin(a + nh) sin h

ln[a + (n + l)h] =
ln(fl + nh) + \342\200\224%\342\200\224- -

( r) + \342\200\242\342\200\242\342\200\242h < a + nh
a + nh 2\\a + nh/

mi
For polynomials see Sec. 9.5.

The need for frequent evaluations of a polynomial even when the arguments
are not equally spaced is a common occurrence. For example, most library
routines for the special functions have some polynomial-evaluation steps. It

comes as a surprise to many people to learn that for polynomials of degree six or

higher there are arrangements that can save in the number of arithmetic operations
used versus those used by the obvious chain method (see Ralston [49], sec. 7.2, for

more details). Note that (1)often these shorter methods lead to severe roundoff

troubles, and (2) the conversion to the shorter form can be programmed on a

machine once and for all.

PROBLEMS

3.10.1 Discuss using the addition formula for tan x for finding successive, equally

spaced values of tan x. Include a discussion of the probable error trouble.

3.10.2 Note that the routine for successive values of the sine requires the corresponding
cosine values; develop a method that uses only the last two sine values.

3.10.3 Examine the roundoff error propagation in the sine routine and the effect of

writing cos h as 1 \342\200\224
<j>{h) for h small.

3.11 OVERFLOW AND UNDERFLOW

We have ignored one of the realities of computing, namely that not only are the

mantissas limited, but so also are the exponents. This limitation gives rise to
both overflow and underflow. It may seem strange at first that with the usual
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wide range of at least 10~38tol038 there should be trouble with exponents. But

this ignores a number of facts. First, it is quite common to have adequate
theories, with analytical results, at both ends of some range, and the computation

is to cover the ground between where certain effects (terms) are completely

negligible to where certain other effects are similarly to be ignored. Thus it is

natural that in some cases being run there will be terms that are very small or very

large.
Secondly, even for modest ranges some very common functions such as the

exponential will have very large (small) values. For example, e25 = 0.720 x 101 *.

Thirdly, many mathematical theories about the real world include

singularities,and it is sometimes necessary to compute very close to the singularity in order

to discover the nature of it. (See Chap. 42.)
When underflow occurs, it is almost always satisfactory to replace the

numberby the machine zero, 0.000 x 10\"9. Usually there is no comparable infinity
to use when overflow occurs, and at best the overflow number is replaced by some

very large number such as 0.900 x 109 (to leave room for some further increase

without again tripping the overflow alarm).
Because of the lack of symmetry in the machine hardware and corresponding

number system, it is preferable to arrange computations to have an underflow

rather than an overflow. Usually this is not hard to do. For example, to

compute

ex
-\342\200\224r for 1 <\302\243x \302\24310
e* \342\200\2241

we write

ex 1

ex - 1

\"
1 - e\"x

It should be obvious how to do this in many cases; what is necessary is to think
about it before programming the details for a machine.



REAL ZEROS

4.1 INTRODUCTION

The problem of finding the real zeros of a continuous function occurs frequently

in science and engineering and has therefore received extensive treatment. We
shall give only a few of the simpler methods that are easy to understand and use.

We will look at the problem of finding complex zeros in Chap. 5, and in Chap. 6 we

will examine the important special case of polynomials.
It is in the nature of the problem of finding the real zeros of a function that

the positive and negative terms of the function almost exactly cancel. We

thereforeface roundoff, and all that was said in Chap. 3 about how to evaluate a

function to avoid unnecessary roundoff clearly applies to the problem of finding real

zeros of a function.
The floating-point number system puts further restraints on what can be

expected. We can at best hope to keep the relative error under control, and we

cannot expect to find zeros far from the origin with great absolute accuracy. The
roundoff also means that we cannot expect to find a number that makes the
functionexactly zero. It is for this reason that generally we do not try to find a zero;
rather we try to find an interval in which the function changes sign. We then
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measure the accuracy by the length of the interval relative to the maximum of the
function value and the argument. But even worse, we can expect in practice to

find a sequence of values, some with plus and some with minus signs!

4.2 GRAPHICAL SOLUTION

One of the easiest methods for humans to use is the graphical method of drawing a
curve and noting where it crosses the axis, or sometimes a pair of curves whose

mutual crossings indicate the zeros. Unfortunately this method is particularly
bad for unaided machines, and so we will look at it only briefly to set the stage for

further methods that are more suitable for machines. For machines with

graphicaloutput and with a human examining the output, it can be very useful and easy
to use.

EXAMPLE 4.1 Consider the problem of finding the real zeros of the function

y = eax - x2

We picture in our minds the plot of y
\342\200\224eax (see Fig. 4.2.1) and the plot of y = x2

and look for their crossings. If a were small and positive, it is clear that the x2

curve will rise quickly enough to cross the exponential curve at least once, and
since ultimately the exponential grows faster than any power of x, there will be a

second positive crossing.

When we plot the curves, we get a picture that confirms what we expected.
It is natural to ask for the value of a beyond which there is only the negative zero

and no crossing on the positive side. To find this we note that as a increases, the

two positive crossings will approach each other and finally merge into a double

zero. At this point both the function and the derivative will have a zero at the
same place.

y = eax - x2 = 0

/ = aeax - 2x = 0

Eliminate eax to get

ax2 - 2x = 0

or

1x

= 0 (spurious solution)

*-!
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FIGURE 4.2.1

Putting this in the second equation, we get

ae2-- = 0
a

or for a > 0,

( 2
\\a = -

e
J
\\x = e

U = 0 ////



62 4 REAL ZEROS

PROBLEMS

4.2.1 Find graphically the first two positive zeros of tan x \342\200\224x = 0 to one decimal

place.

4.2.2 Find graphically the maximum of y = \342\200\224x In x(Q <. x < 1). Check analytically.

4.2.3 Find the value of a for which sin x \342\200\224ax = 0 has a double zero.

4.2.4 Show that there are no real zeros for y = ex \342\200\224In x \342\200\2241.

4.3 THE BISECTION METHOD

One of the best, most effective methods for finding the real zeros of a continuous
function is the bisection method. The bisection method begins with an interval

(*i, *2) m which the function changes sign, which is measured in the machine by

/(*i)/(*2)<0

We then pick the midpoint x3 (bisect the interval) and evaluate the function

there. If

(<

0 then there is a sign change in (xt, x3)
> 0 then there is a sign change in (x3, x2)

= 0 then x3 is a zero

Repeated bisections reduce the interval containing the sign change to an

arbitrarily small length\342\200\224oruntil we meet the granularity of the number system
around x and the machine computes the midpoint as one of the two end values.

Ten bisections reduce the interval length by more than a factor of 77^0 \342\200\224three

decimal place improvement! Thus in practice it is rare that the bisection method

will be used for 20 steps.

The method is robust in the sense that small roundoff errors will not prevent

the method from giving an interval with a sign change, and if roundoff is

misleading you, it is not the fault of the method but of the program that evaluates the

function. There is one danger, namely that what you implicitly thought was a
continuous function had a pole and that you end up straddling an odd-order pole,

but this can be checked for easily.
The bisection method supposed that an interval had been found which had a

sign change in it, and the problem is usually stated as that of finding all the real

zeros in some given interval. This requires a search for intervals of sign change.
If we search with a large step size h, then we run the risk of stepping over a pair of
zeros or of getting an interval with an odd number of zeros and finding only one
of them in the end. If we use a small step size h, then we will spend most of the
time looking where there are no zeros. It is an engineeringjudgment to resolve this

dilemma.
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The problem of multiple zeros can be troublesome. One way to cope with
it is to search for sign changes in both the function (which indicates all odd-order

zeros) and the first derivative (which indicates all even-order zeros), but without a
lot of elaborate analysis the machine cannot be expected to solve the general

problem of the multiplicity of the zeros it isolates.

EXAMPLE 4.2 Find y/l.
This is a zero of y = x2 \342\200\2242. Try h = i, starting at x = 0,

X0) =

Xi) =

XD
=

Xi) =

We have the interval

1 <x<\\.5

Bisect and try x = 1.25; y{\\ .25) = - 0.4375. We have the interval

1.25 <x< 1.5

Bisect and try x = 1.37; y(\\ .37) = - 0.1231. We have the interval

1.37 <x< 1.5

Bisect and try jc = 1.43; 7(1.43) = 0.0449 ... > 0. And so forth. ////

As a practical matter, given the original interval, it is usually best to decide

on the number of subintervals to try in the search method and on the number of

bisections to use in case a sign change is found, rather than on interval sizes.

PROBLEMS

Find to one decimal place the real zero of:
4.3.1 heh=\\
4.3.2 cos x = x
4.3.3 xlnx=l
Using the bisection method, compute:

1 + V5
4.3.4 \342\200\224-\342\200\224Hint: Find a quadratic of which it is a zero.

4.3.5 Vl
4.3.6 Elaborate on the last paragraph of this section.

for the search.

: -2

__7.
4

-1

i
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4.4 THE METHOD OF FALSE POSITION

The method of false position (regula falsi) is a very ancient method, and it attempts

to do better than the obviously slow bisection method. The method of false

position again starts with two points at which the function has opposite signs; that

is, we have an interval in which there is a zero, and we wish to decrease the interval.

The straight line through the two points is used in place of the function, and the
zero of the straight line is used in place of the midpoint of the bisection method.

The main weakness of the method\342\200\224its slow approach from one side\342\200\224isapparent

from the picture. Further obvious faults tend to exclude the method from

practical use on machines.

FIGURE 4.4.1

In more detail, given the two points (xi yfixj) and (x2 ,f(x2)) (see Fig. 4.4.1),
the line through them is

whose zero is given by

yix)=y{Xl)+y^Li2^>{x.Xl)
X2

~
Xjl

* = *i -X*i).
x2-x1

X*2)-X*i)

^xly(x2)-x2y(x1)

y(x2)
- X*i)

Note (1) the symmetry of the formula and (2) that y(x2) \342\200\224
y(xt) is in fact an

addition because we assumed y(xi)y(x2) < 0.
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4.5 MODIFIED FALSE POSITION

A simple modification of the false-position method eliminates its worst feature,

the one-sided approach to the zero with the resulting large interval. The

modification of the false-position method consists in dividing by 2 during each cycle of

the computation the function value at the end that is kept. Figure 4.5.1 shows
how this modification improves the method.

*y

FIGURE 4.5.1

The method is usually (but not always) faster than the bisection method and

has the defect that we cannot tell in advance how many steps will be required to
obtain an interval length less than the preassigned accuracy needed.

In more detail the algorithm is the following. Given a continuous function

f(x) for an interval a <> x < b with/(tf)/(6) < 0,

afib)
-

bf(a)
Compute x \342\226\240\342\226\240

Compute/(x).

fib) -f(a)

3 Computtf(a)f(x). Iff(a)f(x)

<0

>0

ix becomes new b

I fix) becomes new/(6)
then'

\342\200\224-becomes new/(a)

then you are done

fx becomes new a

f(x) becomes new/(a)
then/

J
-\342\200\224becomes new/(6)
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EXAMPLE 4.3 Find the zero of y = heh \342\200\2241 (using two-decimal arithmetic to
make it easily followed).

It is easy to see that

hence

next step

next step

/(0)=-l<0

/(1) = \302\243>-1>0

a = 0 /(a)=-l

b = 1 f(b) = 1.72

_ af(b)
-

bf(a) _
Ox 1.72-U-l) _ J_*~

f(b)-f(a)
\"

1.72-(-1) \"2.72:

f(x) = 0.37 x 1.45 - 1 = 0.54 - 1 = -0.46

^0.37

0 = 0.37 /(a) =-0.46

*-l ^ = 0.86
2

_ 0.37(0.86) - K-0.46) _
0778 _*~~

0.86 + 0.46

\"
1.32

\"

/(*) = 0.59x 1.80-1=0.06

a = 0.37
^=-0.23

b = 0.59 f(b) = 0.06

0.37(0.06)-0.59(-0.23) 0.16
0.06 + 0.23 0.25

/(x) = 0.55x 1.73-1 = -0.05

= 0.55
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next step

a = 0.55 /(a) =-0.05

b = 0.59 ^ = 0.03
2

0.55(0.03) -
0.59(0.05) 0.046

x \342\200\224\342\200\224\342\200\224\342\200\224\342\200\224

f{x) = 0.038

a = 0.55

b = 0.58

0.03 + 0.05 0.08

^=-0.0252

\342\200\242^
= 0.038

2

= 0.58

* \302\2530.565

End. ////

An alternate version of the modified false-position method halves the
ordinate kept only when it stays on the same side of the zeros as on the previous step.

This modification is believed to speed up the convergence at the cost of a slight

amount of extra programming and testing. Unfortunately the method has not
been adequately analyzed, and experimental tests of selected functions are not

completely convincing.

PROBLEMS

Using the modified false-position method for three steps, find the zero of:

1 it
4.5.1 ;> = tan x -

j-j-p 0^x<-

4.5.2 y = x2-2 0^x<\302\2432

4.5.3 y = x\\nx-l l^x^2

4.5.4 y = cosx \342\200\224x O^x^-r

4.5.5 y = x*-2 O^x^l
4.5.6 The choice of halving the kept function value was arbitrary. Discuss other

possible choices and when to use them.
4.5.7 Draw a flow diagram of the modified false-position method.
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4.6 NEWTON'S METHOD

Newton's method for finding the real zeros of a function^ =f(x) is usually taught
in the calculus course. The idea behind the method is the

\"
analytic substitution \"

of the local tangent line for the function and then the use of the zero of this line as

the next approximation to the zero of the function.

In mathematical notation the tangent line at xk (Fig. 4.6.1) is

and hence solving for x =
xk+l, the next approximation is

xk + l \342\200\224xk
~\"

/'(**)

FIGURE 4.6.1

When it works, Newton's method is fine, but it has three obvious faults as

can be seen in Fig. 4.6.2. Thus, unless the local structure of the function is known

in some detail, the unmodified Newton's method is to be avoided.

The worst features of the method can be partially compensated for by a

simple device. Let us introduce a metric, or distance, to measure how well we are

doing. We will use |/(x) | as this metric. The beginning of the next step in the

iteration process involves the evaluation off(x) at the new point. If this new
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Inflection point

xn*l xn *n-l

Multiple zero 'Local minimum

Can cycle and never
converge

Slow approach with /'-\302\2730
and trouble in division step

Risks being sent very far

away for next approximation

FIGURE 4.6.2

value is not smaller in size than the previous value, we will not accept the step, but
instead we will go back and halve the step

using instead

xk+i
xk-Axk-ff(Xk)

Ax*

2

If this does not decrease the distance, we repeat the halving process until it does,
because we know that the local slope of the curve is in the direction to decrease the

distance and that a sufficiently small step will work (until the granularity of the
number system gets in the way). If this modification is used, it is well to add

another, namely that no new step is more than twice the preceding step (to prevent the

tedious shortening-up of the step size cycle after cycle). In this way the troubles

from inflection points are eliminated, and the method will creep up on multiple

zeros. Local minima, which are not always easily recognized, can cause trouble

in a machine.

How shall we end the iteration in Newton's method ? The approach to the

zero becomes one-sided, and we do not have an interval in which the zero lies. If

we use the size of the function at the point as the criterion, we will get different

answers depending on whether we use/(x) = 0 or kf(x) = 0 as our original

equation. If we use the step size Ax =
xfc+1

\342\200\224
xk as a measure, then when we quit, we

may be far from the zero and be only slowly creeping up on it. There is no

completely satisfactory answer, and we will suggest using the size of the step relative to
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the zero being found as a measure. As will be shown in the Sec. 4.7, the error

tends to be squared each step when we are finally close (in some sense), and this

fact can be used by comparing three consecutive step sizes,

Axft+i _ &xk _ -f\"(xk+l)

(Axk)2^(Axk^)2^ 2/*(W

4.7 THE CONVERGENCE OF NEWTON'S METHOD

Newton's method is highly favored theoretically because when it finally starts to

converge, the convergence is quite rapid. To show this we need a couple of

important mathematical results.

The first result we need is the Taylor series with an integral remainder. For

our immediate use this can be found by integrating by parts the obvious identity

Setting

we have

y(x)=y(a) + f y'(s)ds

u = y'(s) du = y\"(s) ds

dv = ds v = \342\200\224(x
\342\200\224

s)

J<*) = J<a)-[(*-*)/(*)] r+fV(s)(x-s)<fe
a Ja

= y(a) + (x -
a)y'(a) + fy\"(s)(x

- s) ds

The second mathematical result we need is that if/(x) and#(x) are continuous

and if/(x) > 0 {a< x < b), then

rb rb

f(x)g(x) dx = g(0) f(x) dx for some 0 a<0<b

To prove this, write g as the minimum of g{x) and write G as the maximum (in the

interval). Thus

g<*g(x)<>G

Multiply this inequality by the nonnegative quantity/(x)

gf(x) \302\243f(x)g(x) < Gf(x)

and then integrate (sum) to get

g ff(x) dx \302\243\\hf{x)g{x) dx^G (f(x) dx
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Now consider the quantity, as a function of /,

At the point where

g(t)=g, then 0(rt < 0

#(/)
= <7, then <\302\243(0> 0

Hence, since (j>(t) is continuous, there is a value t = 0 such that

or

f*/(xto(x)rfx
= fl(fl)f*/(x)rfx

We use these results as follows: write f(x) in the Taylor-series form where a

is the current guess xk and x is the zero of the function.

/(*) = 0 =/(**) + (pc
-

*fc)/'(*k) + f (x -
*)/\"(*) A

The next guess xk+1 is given by Newton's formula

Subtracting, we get

(* -
xk+i)f(xk) +f(x- s)f\"(s) ds = 0

Jxk

Using the second theorem, since x \342\200\224s is of constant sign,

(*
- xk+1)f(xk) +f'(0) f (x-s)ds = 0

Jxk

(x \342\200\224x )2
(x - xk+1)f(xk) +ne)

K\342\200\224Y\302\261

= o

But

x \342\200\224
xk+l = ek+1 = next error

x \342\200\224
xk = ek = current error

hence

S*+1\"
2f(xk)

**
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is an exact formula for the new error in terms of the current error; we square

the error each step (almost). This is often described by the remark that with

Newton's method you double the number of correct digits each step (assuming

that/\"(0)/[2/'(x*)] is around 1 in size).

But let us not be deceived by this result. Normally it is not the final rate of

convergence that controls the number of iterations; it is the initial rate of

convergence. Here the bisection method shines\342\200\224itstarts out well in comparison with

many other methods.

PROBLEMS

Apply Newton's method, using the starting value given to:

4.7.1 y = xex-\\ x=l/2
4.7.2 j>

= arctan x - 1 x=l
4.7.3 y = \\nx-3 x=\\0
4.7.4 Using y = xn \342\200\224

1, show how for some values of xk the local convergence of
Newton's method can be very slow.

4.8 INVARIANT ALGORITHMS

The idea of an invariant algorithm is simple but important. The importance

arises from being one of the few ideas that provide some unity in the field of

algorithms with its many varied methods and tricks.

The idea is easily illustrated by applying it to Newton's method. We

instinctively feel that it is the same problem whether we find the zeros of y =/(x) or
of y =

cf(x). A moment's examination of Newton's method shows that at the

step where we computef{x)jf'(x) the multiplicative factor c is automatically
removed. We also feel that if in place of x we were to use cxx as the argument of the

function, then we still have essentially the same problem. If we scale the starting
value by the corresponding amount, then we again see that the successive values

of the estimates xk also scale properly; the iteration equation is homogeneous in

Cj. Due to the nature of the floating-point number system a translation of the

origin does not leave the problem unchanged.

What about the stopping rule ? Should it not also be invariant under these
two classes of transformations ? The use of the change in the estimate xk+l

\342\200\224
xk

relative to the estimate xk clearly scales properly. The use of the step size, the use

of the size of the function, and many other possible stopping rules do not scale

properly and are not appropriate for an invariant algorithm.
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In general, an algorithm is invariant with respect to some class of

transformations. The class is found by considering the source of the problem, the

mathematical structure of the problem, and the use that is going to be made of the results.
The class usually forms a group, provided the finite limitations of the machine

are recognized. The importance of invariance with respect to a group of
transformations has long been recognized in mathematics. That which is invariant is

usually recognized as being more fundamental than the chance form of the
particular representation of the problem; in Euclideangeometry only things invariant
with respect to translation and rotation are regarded as geometric entities.

Similarly,an algorithm which transforms properly with respect to a class of
transformationsis more basic than one that does not. In a sense the invariant algorithm
attacks the problem and not the particular representation used (though clearly it

uses a particular representation in the computation done). The slight differences

in roundoffthat can occur are not basic to the idea, but come from the nature of the
finite structure of the number system used. On the other hand, the roundoff

differences from different representations will usually not be large, except for ill-

posed problems.
Invariance is something like dimensional analysis. We realize instinctively

that invariance should apply to proper equations and proper algorithms, and if it
does not, then this is a warning sign to look a good deal closer before going on.
And like dimensional analysis, invariance in an algorithm can point to forms that

are suitable and ones that are not, and often delimit the acceptable forms so as to

practically give the proper one (see, for example, the stopping rule for Newton's

method). But invariance may include transformations that are more than mere

linear scaling, and so the idea of invariant algorithms includes more than

dimensionalanalysis.

The larger the class of transformations under which the algorithm is to be

invariant, the more restricted the algorithm and (like much of mathematics) the
more simple and powerful the result when finally found. In the search for an

algorithm the invariance requirement will block off many fruitless paths.
It is easy to see that two classes of transformations, multiplying the function

by a constant and stretching the x axis, are reasonable to be used on the problem of

finding zeros of functions. Applying this invariance to the bisection method, we

see that if the initial interval is properly scaled, then it is a matter of scaling the

stopping rule; and if the stopping rule is not so scaled, then there is probably
somethingwrong.

Similarly the false-position and modified false-position methods are
invariant provided the stopping rules are picked properly. In particular, the method
of iterating the bisection method a fixed number of times, as well as the interval

length relative to the size of the zero being found, is invariant. Stopping rules,
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like the size of the function or the length of the interval, do not scale properly and
should be avoided in practice.

In the future we will use this idea of invariance as a tool for finding and

examining algorithms, and we will find that some of the classic methods are not

invariant.

4.9 REMARKS ON COMPARING ALGORITHMS

Having given a number of algorithms for finding real zeros, how are we to compare
them and others yet to be discovered so that we can pick one in a reasonable fashion

when necessary to do a particular problem?
Evidently the bisection method is powerful, but slow in the final steps when

compared to Newton's method. But it is quite likely that the bisection method is

much faster in the early stages. And in practice it is usually the initial rates of

convergence, not the final ones, that matter because we rarely want high accuracy
in the zeros we find\342\200\224inmathematical problems yes, but in engineering and science

usually we don't know the other parts sufficiently well to justify a many-digit

answer.

The modified false position is so much better than the simple false position

that it is the second choice to consider. When and in what respects does it

compare favorably with the bisection method ? Evidently it is likely to be faster on

reasonable functions, but it can be slower on some functions. Nothing is really
known at this time about the distribution of functions that occur in practice whose
zeros we want to find, and so little can be said.

Newton's method is the classic one for finding zeros. It requires finding

and coding the derivative. Some methods of rating algorithms count the effort

to evaluate the derivative the same as to evaluate the function\342\200\224thus counting one

step as the equal of two in other methods\342\200\224but this is not reasonable. For most

functions, once the parts of the function have been found, there are very few new

parts that are expensive to compute when the derivative is found. No new
radicals, logs, or exponentials can arise; at worst a sine can go into a cosine (or the

reverse), and the special functions are the time-consuming parts of most function
evaluations. All the straight arithmetic is usually small in time when compared

to the special-function-evaluation routines-
Two methods which are sometimes discussed, but which we have so far

ignored, should be mentioned. The secant method resembles the false-position
method, except that it uses the plausible argument that the last two values, rather

than a pair that lies one on each side, should be kept. The danger in the method
is especially clear when roundoffis considered, since by chance a locally horizontal

tangent can cause great trouble.
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The other method is called successive substitutions. Given one or more

equations, they are each solved explicitly for a different variable, even if it also

appears on the other side, and the old values are substituted into one side to find

updated new values of the unknowns. This method is powerful when done

by hand, but it is hard to use on machines in situations that have not been

preanalyzed. Evidently its success depends on arranging matters so that large

errors in an unknown tend to produce smaller ones in the next cycle of iteration.

This technique is related to the idea of stability which will be discussed in more
detail in later chapters.

EXAMPLE 4.4 Consider again the example in Sec. 4.2 of finding the zeros of

e*l2 - x2 = 0

this time using a = J.
We have the two curves (Fig. 4.9.1)

Solving the second equation for *, we have

y = x2

y = ex/2

y = x

x = 2 In y

FIGURE 4.9.1

Rough Sketch.

= cx/2

->x
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If we start with x = 5, we get in turn (using two decimals)

x = 5

y = x2=25
x = 2 In y = 6.4

7 = 41

x = 7.4

7 = 55

x = 8.0

7 = 64

* = 8.3

7 = 69

x = 8.5

7 = 72

x = 8.5

(which is a poor answer), and we approach the upper zero from below. If we were

to reverse the substitution loop, we would approach the lower zero from above.

////

It is easy to draw sketches to show what will happen in particular cases, but

this is exactly the kind of thing that machines have a lot of trouble doing. Thus
the successive-substitution method is suitable only for carefully analyzed

situations (of which there are many), but the details are easily worked out in any

particular situation, and nothing more need be said here.

PROBLEMS

4.9.1 Make sketches showing the dangers of the secant method.

4.9.2 Show that the proposed modification of Newton's method is invariant.

4.10 TRACKING ZEROS

The problem is often not just to find the real zeros of a function, but rather to find

the zeros as a function of some parameter in the equation. In this situation it is

clearly foolish to solve each parameter value as if it were a new problem. Instead,
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from the values of the zeros for the previous parameter value(s) we can form a

good guess at where those for the current parameter value probably lie. Methods

for tracking the zeros as functions of the parameter can be developed from the

predictor-corrector methods discussed in Chap. 23. It is a complex, difficult task
to design a foolproof method of tracking zeros since sooner or later almost every

possible trouble will occur.

In tracking zeros one should use a local coordinate system (like the moving
trihedral in differential geometry) to avoid artifacts of the problem's coordinate

system such as vertical and horizontal tangents. This remark applies to almost
all graphical work.

For this chapter probably the best, easily available references are Ralston

[49] and Traub [59] (see References in the back of this book).



COMPLEX ZEROS

5.1 INTRODUCTION

The problem of finding the complex zeros of a function in some region occurs

frequently in practice, though not as frequently as finding real zeros. It is

curious that the real-zero problem has been extensively investigated while the

complex-zero problem has generally been ignored. Evidently it is a field ripe for

further research. We shall give only two simple methods which are based to a

great extent on the bisection method.
The functions we shall consider are called

\"
analytic in the region of

investigation,\" meaning that at every point in the region the function has a convergent

Taylor series. For convenience only, we shall assume the region is a rectangle in

the complex plane.
While finding real zeros, we used the notation y =f{x)\\ in the complex

plane it is customary to use the notation z = x + iy as the independent variable
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and w(z)
= u(x> y) + iv(x, y) as the dependent variable. Thus the single

conditionthat w(z) = 0 is equivalent to the two simultaneous conditions

u(x,y) = 0

where u(x, y) is called the real part and v(x, y) is called the imaginary part of w(z).

Very frequently the function we are examining has only real values for w(z)
when z takes on real values; that is, w(x + iO) has only real values. In this

important case we have the well-known result that if x + iy is a zero of w(z), then

x \342\200\224
iy is also a zero.

The theorem is important because it means that in this very common case we

need to examine only the upper (or lower) half of the complex plane for zeros.

As an exercise in dealing with complex numbers we shall prove this theorem.
The letter /can occur in the function definition as well as in the argument z = x +

iy; for example,

and we need to distinguish these two appearances. Given w = /(z), we shall use a

long bar over both the function and the argument to mean the conjugate values,

that is, when i is replaced by \342\200\224/. A short bar over the function means that only

the i's in the function are changed, while the bar over the argument means that only

in the argument are the i's changed to \342\200\224z's.The assumption that the function

takes on real values for real arguments means that, as in the above case of sin x,

w = w(x) =
vv(x)

The statement that x + iy is a zero means that

w(x + iy) = 0

We need to show also that w(x
- iy) = 0. We have in turn

w(x + iy) = 0 = w(x + iy) =
vv(x

- iy) =
w(x

- iy)

and we have proved the theorem.

PROBLEMS

For practice in handling complex functions, find u and v

5.1.1 If>v = z3

5.1.2 If>v*=tanz
5.1.3 If>v = lnz

5.1.4 Ifw=Vz
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5.2 THE CRUDE METHOD

The bisection method for finding real zeros is both very easy to understand and

very robust, and it is natural to try to extend the method to finding complex zeros.
This extension depends on finding the right way of looking at the bisection method

in order to generalize it to complex zeros (keeping in mind the invariance

principle).

One approach is to regard the search method for locating the zero as

recording plus or minus at each point along the real axis according to the sign of
the function at the point. In the complex plane for each point x + iy we record

+ + + ---- +

the quadrant number in which the function value falls. Thus at each point, we

record 1,2, 3, or 4, and we record a 0 whenever either u(x> y) = 0 or v(x, y) = 0
or both. This produces a picture of a region with numbers attached to each

mesh point (see Fig. 5.2.1).
We can now take colored pencils and color in each quadrant. We will find

that typically four quadrants meet at a point, each having an angle of about 90\302\260at

the point. At this point there is evidently a zero, since it corresponds to a point

in the w plane where both u(x, y) and v(x, y) are zero.

The u(xy y) = 0 curves divide quadrants 1 and 2, and 3 and 4, while the

v(x, y) = 0 curves divide quadrants 1 and 4, and 2 and 3.
As we shall later show (Sec. 5.4), where four quadrants meet at a point, it is

a simple zero; where eight quadrants meet (each having an angle of about 45\302\260),it is

a double zero; etc.

Having located the general region of the zero, we may clearly enlarge the

region as much as we please by plotting our mesh points at finer and finer spacing
to get further accuracy until we run into either roundoff or the granularity of the

number system.
This crude method is easy to understand, reliable, and accurate, but its

fault is that it requires unnecessary computing (and also implies human

interventionin the process of finding the zeros). We will later refine the method, but even

in the crude form it is very useful and effective.

PROBLEMS

5.2.1 Prove that for functions such that w = w, the x axis of the plot is a line of zeros

corresponding to v = 0.
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FIGURE 5.2.1

5.3 AN EXAMPLE USING THE CRUDE METHOD

As an example of how the crude method works, consider the problem of finding the

complex zeros of the function

w = w(z) = ez \342\200\224z2

which lie near the origin. For this function we have w(x)
= vv(x), and so we need

only explore the upper half-plane. We try the rectangular region

\342\200\224n ^ x ^ In

0\302\243y\302\2432n

The quadrant numbers are easily computed on a machine and are plotted in

Fig. 5.3.1. The x axis is a line of Os, as it should be (there is one other number

which is almost zero which we have marked as a 0). In drawing the curves u = 0
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Real zero
'

Complex zero

FIGURE 5.3.1

and v = 0, we remember that the curves in the lower half-plane are the mirror

images (in the x axis) of those in the upper half, but that the quadrant designations

interchange 1 and 4 as well as 2 and 3.

Does this picture seem to be reasonable ? The real zero on the negative real

axis seems to be about right because we know that as x goes from 0 through

negative values, ex decreases from 1 toward 0, whereas z2 goes from 0 to large

positive values. Thus, ex and z2 must be equal at some place (and we easily see

that this happens before we reach \342\200\224
1).

The complex zero we found is likely to be one of a family of zeros with the

next one appearing in the band

2n\302\243y^4n

An examination of the picture shows that it is a reasonably convincing

display of the approximate location of the complex zero. We could easily refine

the particular region if we wished by simply placing our points in a closer mesh.

5.4 THE CURVES u = 0 AND v = 0 AT A ZERO

At any point z =
z0 (Fig. 5.4.1) the Taylor expansion of a function has the form

/(*) =/(*o) +/'(*\342\200\236)^
+ A*o)^~-

+/'\"(*<>)
^p\302\243

+ \342\200\242\342\200\242\342\200\242
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iy iy

FIGURE 5.4.1

or

/(z) = a0 + a^z -
z0) + a2{z -

z0)2 + a3{z
- z0)3 + \342\200\242\342\200\242\342\200\242

For each k we set

ak
=

Akei4>k ,4* real

and we also set

z -
z0

= pew

Therefore, the Taylor expansion has the form

/(z) =
^o^\302\260 + Atf^* + A2p2ei^+26^ + \342\200\242\342\200\242\342\200\242

At a simple zero/(z0) = 0, then ^40 = 0, and for small p the immediate

neighborhoodof z0 /(z)
\"

looks like
\"

AlPe*\302\253+9>

or

/(z) \302\253^pfcosO^ + 0) + i sin(& + 0)]

The t/ = 0 curves (Fig. 5.4.2) are approximately given by

A:p cos(<\302\243x+ 0) = 0
or

0=-^+^
+ fc7c A: = 0,1

and the v = 0 curves are approximately given by

^iPsinO^ + 0)
= O

or

0=-01+&tc A: = 0,1
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*iy

w = 0

v = Q

FIGURE 5.4.2

We see that the u = 0 and v = 0 curves intersect at right angles, and hence the

quadrants we plan to color each have an angle of approximately 90\302\260at the zero.

The picture we color is therefore easy to interpret at a simple zero. Note that

this happened at both zeros of the example in Sec. 5.3.

At a double zero both/(z0) and/'(z0) are 0, so that the Taylor series looks
like

We have for small p

f(z) =
A2p2e\302\253*>+2<\302\273+ A3p3e^+^ + \342\226\240

u&A2p2cos((l)2 + 20)

v^A2p2sin((t>2 + 2e)

~ 4>i n kit

2 4 2

^ 4>2 kn

and the angles of the colored quadrants are approximately 45\302\260(see Fig. 5.4.3). It
is easy to see that for a triple zero the colored quadrant angles will be

approximately30\302\260,and in general for a multiplicity of m, we shall have the u = 0 and

v = 0 curves meeting at approximately 7c/(2w) radians (or 90\302\260/w).
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A iy

FIGURE 5.4.3

v=0 u=0

v = 0

w = 0

As an example of a double zero, consider Example 4.1 in Sec. 4.2 where we

asked for a double zero of

w(z)
= eaz - z2

and found that a =
2/e. What does the picture of this look like? We should

have the u and vcurves crossing at 45\302\260angles for this transcendental function. We

have plotted the quadrant numbers only where quadrant changes occur, which is

all that is needed. (See Fig. 5.4.4.)

\302\253= o

2.0

1.5

1.6

1.7

1.0

.8

.6

.4

.2

a,y = o

-1.0 0.2 0.6 1.0
0.4 0.8

FIGURE 5.4.4
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PROBLEMS

5.4.1 Sketch the u = 0 and v = 0 curves for w = z2 \342\200\224x + i using the lattice points

k
x = - fc = 0,1,2, 3,4

^ =
^ w = 0,l, 2,3,4

and check by using the quadratic equation formula.

5.4.2 Prove that for a zero of order m, the quadrant angles are 7r/(2m) radians.

5.5 A PAIR OF EXAMPLES OF u = 0 AND 0 = 0 CURVES

The following pair of simple polynomials illustrate how the u = 0 and v = 0

curves behave at zeros and elsewhere in the plane.

The first example is a simple cubic with zeros at \342\200\2241,0,and 1. The

polynomial is

w = w(z) = (z + l)z(z
- 1) = z3 \342\200\224z

= (x + iyf -(x + iy)

= (*3 -
3xy2 -x) + i(3x2y -y3 -y)

The real curves are defined by

u = x3 \342\200\224
3xy2

\342\200\224x = 0

or

*(x2 -
3j>2

- 1) = 0

This is equivalent to two equations

x = 0

x2 -
3y2

- 1 = 0

The latter is a hyperbola whose asymptotes are

The imaginary curves are defined by

v =
3x2y

\342\200\224
y3

\342\200\224
y = 0

This again is equivalent to two equations

7 = 0

3x2-^2 = l
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The latter is again a hyperbola, but this time with asymptotes

The figure we have drawn (Fig. 5.5.1) looks reasonable. In the first place,

at each simple zero the real and imaginary curves cross at right angles as they

should according to theory. Secondly, far out, that is, going around a circle of

large radius, the curves look as if they were from a triple zero; and the farther out

we go ,the more the local effects of the exact location of the zeros tend to fade out.

t = 0

w = 0 \\

/}.

u = 0 v = \302\260

/ \302\253= 0

1 v = 0
1 \302\273 >

2 I x= 1 *

2 \\

FIGURE 5.5.1

For the second example, we move the zero from z = \342\200\2241 to z = 0, which

makes a double zero at z = 0. The polynomial is

w = z\\z - 1)= z3 - z2

= (* + *\302\2733
- (* + iy)2

= x3 - 3xy2 -x2 +y2 + i(3x2y
- y3 -

2xy)

The real curve is

u = x3 - 3xy2 - *2 + / = 0
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Solving for y2, we have

y2 = x2(x - 1)
3x -1

which is easily plotted as it has a pole at x = J, zeros at 0 and 1, and symmetry

about the x axis. As we expect, the asymptotes are parallel to

The imaginary curve is

which is

or

v =
3x2y

\342\200\224
y3

\342\200\224
2xy = 0

y(3x2-y2-2x) = 0

y = 0

FIGURE 5.5.2



5.6 GENERAL RULES FOR THE U = 0 AND V = 0 CURVES 89

and

The last curve has asymptotes

which is what we expect.

Sketching these curves (Fig. 5.5.2), we see that far out in the complex plane

they are the same as in the previous example. At the double zero there are two

real curves and two imaginary curves alternating and crossing at 45\302\260angles. The

rest of the curves look as if the real and imaginary lines were being forced together

by the movement of the zero from z = \342\200\2241 to z = 0, and as if they tend to repel each
other strongly.

Note that in the example in Sec. 5.3 the infinite sequence of zeros must be

considered in judging the reasonableness of the shapes of the curves.

5.6 GENERAL RULES FOR THE
u = 0 AND v = 0 CURVES

We cite without proof the principle of the argument which comes from complex-

variable theory. This principle states that as you go around any contour,

rectangular or not, in a counterclockwise direction, you will get a progression of

quadrant numbers like

1,1,1,2,2,2,3,3,4,4,1,...

with as many complete cycles 1, 2, 3, 4 as there are zeros inside (we are assuming

that there are no poles in the region in which we are searching). There may at
times be retrogressions in the sequence of quadrant numbers such as

1,1,1,2,2,3,3,2,3,3,4,4,4,1,...

for some suitably shaped contour, but the total number of cycles completed is

exactly the number of zeros inside.

We have glossed over the instances of jumping over a quadrant number (say

a 1 to a 3), and we will take that up later. We have assumed that the 0s that may

occur are simply neglected, as they do not influence the total number of complete

cycles.

To understand this principle of the argument, the reader can try drawing
various closed contours in the previous examples. No matter how involved he
draws them, he will find that he will have the correct number of zeros inside when
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he counts either +1 if he circles the zero in the counterclockwise direction or \342\200\2241

if he circles the zero in the clockwise direction. Double zeros count twice, of
course.

In the general analytic function, the u \342\200\2240 and v = 0 curves can be tilted at
an angle to the coordinate system. They can be somewhat distorted and involved,
but they must obey the three following restraints:

1 At a zero the curves must cross alternately and be spaced according to
the multiplicity of the zero.

2 Far away from any zeros, the local placement of the zeros must tend to

fade out and present the pattern of an isolated multiple zero having the
number of all the zeros inside (with their multiplicities).

3 The number of cycles of 1, 2, 3, 4 going counterclockwise along any
closed contour must equal the number of zeros inside that contour

(when counted properly).

These three conditions so restrict the behavior of the curves we are

followingthat many pathological situations are eliminated and the problem is thus made
tractable.

PROBLEMS

5.6.1 Sketch the curves for the polynomial having zeros at

z = i z = i z = 0

5.6.2 Sketch the curves for

w = zA + 1

5.6.3 Sketch the curves for

>v = z4 + 2z2+l

5.7 THE PLAN FOR AN IMPROVED SEARCH METHOD

One of the main faults of the crude method is that it wastes a great deal of machine

time in calculating the function values (and corresponding quadrant numbers) at

points which lie far from the u = 0 and v = 0 curves and hence give relatively little

information.
Instead of filling in the whole area of points as we did, we propose to

trace out only the u = 0 curves and to mark where they cross the v = 0 curves
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which gives, of course, the desired zeros. See the example at the end of Sec. 5.3
for how this might appear if we track both the u = 0 and the v = 0 curves.

The basic search pattern is to go counterclockwise around the area we are

examining and look for a u = 0 curve, which will be indicated by a change from

quadrant number 1 to 2 (or 2 to 1) or else from 3 to 4 (or 4 to 3). See Figs. 5.7.1

and 5.7.2.
When we find such a curve, we will track it until we meet a v = 0 curve,

which is indicated by the appearance of a new quadrant number other than the
two we were using to track the u = 0 curve.

K = 0

f(y

FIGURE 5.7.1

->u = 0

FIGURE 5.7.2

Having fourtd the general location of a zero, we will pause to refine it, but

we will need to pass over the zero finally to continue tracking our u = 0 curve
until it goes outside the area where we are searching for zeros.

We need to know if this plan will probably locate all the zeros (\" probably
\"

depending on the step size we are using and not on the basic theory behind the

plan). By the principle of the argument, the number of cycles we find is the

number of zeros inside the region. Thus, the u = 0 and v = 0 curves we care
about must cross the boundary of the region\342\200\224they cannot be confined within the

region\342\200\224and our search along the boundary will indeed locate all the curves we

are looking for (unless the step size of the search is too large) (Fig. 5.7.3).

*iy

t = 0

GO
w = 0

FIGURE 5.7.3 Impossible
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It may happen that occasionally there is a jump in the quadrant numbers,

say from 1 to 3. We can easily see that we have in one step crossed both a u = 0
and a v = 0 curve. Just where these two curves cross is, of course, not known,

though probably it is near the edge (Fig. 5.7.4). If we want to find this zero, then

we assume that it is a 1,2,3; whereas, if we wish to ignore it, we assume that it is a

1,4,3. We have to modify our search plan accordingly, but this is a small detail

that is not worth going into at this point.

Outside Inside
Find zero

FIGURE 5.7.4

5.8 TRACKING A\302\253= 0 CURVE

How shall we track a u = 0 curve ? For convenience we start at the lower left-hand

corner of the rectangular region we are examining for zeros and go

counterclockwise,step by step, looking for a change in quadrant numbers that will indicate

that we have crossed a u = 0 curve (Fig. 5.8.1). When we find such a change, we

construct a square1 inside our region, using the search interval as one side.
The u = 0 curve must exit from the square so that a second side of the square

will have the same change in quadrant numbers. We continue in this manner,

w = 0

/ 2
r

\"f-V f

if rb A

I /1
2

-i 1 / 1 i-
1 1/2

FIGURE 5.8.1 Start

1
Squares only if x and y are comparable in size or importance (or both); otherwise,

suitablyshaped rectangles to maintain relative accuracy.
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each time erecting a square on the side that has the quadrant number change,

until we find that a different quadrant number appears.

When this occurs, we know that we have crossed a v = 0 curve (Fig. 5.8.2)
and that we are therefore near a complex zero of the function we are examining.

By eye it is easy to make the new square, but it is more difficulty to write

the details of a program that properly chooses the two points of the next square to

be examined. It is also necessary at each stage to check whether the curve we

are tracking has led us out of the region we are searching, and if so, we must mark
the exit (Fig. 5.8.3) so that when we come to it at a later time (while we are going

around the contour), we do not track this same u = 0 curve again, this time in
the reverse direction of course.

FIGURE 5.8.2 FIGURE 5.8.3

PROBLEMS

5.8.1 In the example of Sec. 5.3, apply the tracking method to the complex zero in the
first quadrant.

5.8.2 Find the complex zeros as in the example in Sec. 5.3, except in the region 0 ^ x ^
27r, 2n ^ y <[ 4n.

5.9 THE REFINEMENT PROCESS

Having located a square during our tracking of a u = 0 curve which has three

distinct quadrant numbers, we have the clue that we are near a zero. We need,
therefore, to refine our search pattern and locate the zero more accurately. The



94 5 COMPLEX ZEROS

simplest way to do this is to bisect the starting side of the square that first produced

the three different quadrant numbers.

If we use this smaller size, the u = 0 curve crosses one of the two halves, and

selecting this half, we erect a square (of the new size). We may or may not find

a third quadrant number. If we do not, then we continue the search with the
new step size.

Usually within three steps (Fig. 5.9.1) we again have a square with three

distinct quadrant numbers. We again halve and repeat the process, continuing
until we have as small a square as we please (or run into either roundoff or the

quantum size of the machine's number system).

<?1

Bisect
again

\\

Step 1

/Bis

.Step 3 N

/Step 2

ect

Qa

03

Qi

FIGURE 5.9.1

Evidently when we stop, we know that the zero is either in the square we have

isolated or, at worst, in an adjacent square (again assuming that our step sizes

are so small that the curves we are dealing with are reasonably smooth and well

behaved).
What to do when you meet a zero value while tracking one of the curves is a

small coding nuisance and is not a basic difficulty.

PROBLEMS

5.9.1 Discuss how to handle a zero value in the refinement process.

5.9.2 Discuss the use of other methods than bisection for the refinement process.
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5.10 MULTIPLE ZEROS IN TRACKING

So far we have tacitly assumed that while we were tracking a u = 0 curve, we

would come to a simple, isolated zero. But what happens when there is a
double (or two very close\342\200\224closefor the step size we are using at the moment) or

higher-order zero ?

At a double zero we may find that the two quadrant numbers on the far side

from the initial side of the square have the same quadrant numbers but are

reversed (see Fig. 5.10.1). Thus we need, in fact, not only to check whether we

have found a new quadrant number but also to check at each step that the same

numbers are not in diagonally opposite corners, indicating two zeros or a double

zero.

u = 0

M = 0

44 u = 0

FIGURE 5.10.1

Once we sense that we are near a multiple zero, we are reasonably well off,

because we can then afford relatively elaborate computing to clarify the matter.

In principle it is only necessary to go around the suspected location with a

sufficiently fine mesh of points to find the change in the argument and hence the

-X X\342\200\224K\342\200\224X\342\200\224XXX

Fine mesh
of points

FIGURE 5.10.2
-X X\342\200\224XX X X X
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number of zeros inside (Fig. 5.10.2). Once we know this, we can proceed as the

situation suggests. One way is to regard it as a new problem with a much finer

search size and make an \"
enlargement\" of the region.

Another method, which somewhat simplifies the problem of multiple zeros,

is not to search one curve at a time but to go across the bottom side and find all the

intervals that contain a u = 0 curve (Fig. 5.10.3). Then we push the calculations

FIGURE 5.10.3

1

1
2

2

2
< 3

4

4

up one square, regardless of how many squares sidewise they go (and watch the

sides for new u = 0 curves).

It is only when two or more u = 0 curves meet that we need to worry about a

multiple zero. Thus, unless the second u = 0 curve is parallel to the bottom side

of the rectangle, or so nearly so as to come as a total surprise, we have a very
simple clue as to when to suspect a multiple zero. It may be that the two are

meeting head on and are the ends of a single curve, which is not hard to detect;
otherwise, we are reasonably well off in making an estimate of the number of
u = 0 curves that are coming into the local region and hence of the multiplicity

of the zero.

This method of pushing up one row at a time has the added advantage that
it eliminates a lot of testing to see if the curve we are pursuing is leading us out of
the region we are searching.

But let us be clear about one thing: We are vulnerable to being fooled by

having chosen too large a search step, just as in the bisection method, and so the

method cannot be made absolutely foolproof. What we want is a reasonably
economical and safe method. All we need is a warning that there is a

complicatedsituation at or near the location, and then we can simply apply our

microscopevia the enlarging process to isolate what is going on; we can repeat this

enlargement process until we run into the granularity of the number system of the

computing machine.
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5.11 FUNCTIONS OF TWO VARIABLES

The problem of rinding the real simultaneous solutions of

h(xty) = 0

can be partially mapped onto the problem of finding the complex zeros of

f{x + iy) = 0 by assigning the quadrant numbers in the obvious way:

If Quadrant

g>0,h>0 1

g>0Ji<0 2
g<0Ji<0 3

g < 0, // > 0 4

The crude method will work, though we are not sure that the zero curves will

meet at right angles at a simple zero. If we try the tracking method, we are not

sure (since the principle of the argument need not apply) that we shall find all the

curves as we trace the boundary. Still, the method will sometimes give useful

results. Fig. 5.7.3 is now possible.

PROBLEM

5.11.1 Discuss the motion of the zeros of w = e'x-- x2 = 0 as functions of the

parameter a.



*ZEROS OF POLYNOMIALS

6.1 WHY STUDY THIS SPECIAL CASE?

We have just discussed the location of both real and complex zeros of a function,

and it is natural to ask why we should examine the special case of polynomials,

w = P(z) =
aNzN + tftf-.^-1 + \342\200\242\342\200\242\342\200\242+ a0

This can be answered in a number of different ways.

1 The problem occurs frequently, and special methods can save a great deal

of machine time and trouble.

2 For polynomials we can apply the invariance principle very effectively

because we have a large class of transformations that leave the problem

essentially unchanged.

3 A polynomial of degree N has exactly N zeros, and we therefore know

when we have found all the zeros.

4 The factor theorem shows that in the polynomial case, zeros and factors
are equivalent, and we can use the divisibility as a tool in finding the

zeros.
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5 When we find a zero, we can \"
deflate

\"
the polynomial by dividing out

this factor and thus obtain a simpler problem to solve.

6 In applications it is often of crucial importance to identify multiple zeros
as multiple zeros and not as close ones.

7 In applications it is often true that the zeros are known to be real and/or
pure imaginary and those that fall off the two axes were moved by

roundoff. Therefore, the polynomial routine can
\"

nudge
\"

such zeros

back onto their respective axes provided the difference is attributable to

roundoff effects.

8 In applications it appears that often the user is more interested in the

zeros as a self-consistent set rather than as a set of individually accurate,
but unrelated, zeros.

9 From the factors we find, we can reconstruct the polynomial

(approximately)and compare these coefficients with the original to form some

measure of the loss of information around the whole loop. Since the

reconstruction is fairly direct, presumably most of the loss occurs while

finding the factors. (Compare Sec. 3.2 where we discussed quadratics.)

The point about multiple zeros needs elaboration. If a double zero is

reported as a pair of close zeros, then when they are used it is highly likely that

there will be great trouble with roundoff. We have adopted the attitude that we

prefer to avoid roundoff rather than bound it by an elaborate rule, and this means

that we must make special efforts to identify multiple zeros so that later the
roundoffwill not cause trouble.

As an example of the effect of a double zero being reported as a pair of
close ones, consider the problem of solving the simple linear differential equation

y\" + 2y'+y = 0 y(0)
= 1 and /(0) = 0

The characteristic equation is

m2 + 2m + 1 = 0

(m + l)2
= 0

m= -1, -1

The solution is, therefore,

y = e\"x(C1+C2x)
=

e'x(\\ + x)

But if due to roundoff the roots were given as

77?1
= \342\200\2241 + \302\243

m2 = \342\200\2241 \342\200\224\302\243 \302\243small



100 6 ZEROS OF POLYNOMIALS

then the general solution would be

3; = C1c-(1-e)x + C2c-(1+e)x

Applying the initial conditions we get

Ct + C2
= l

-(1~\302\243)C1~(1+\302\243)C2
= 0

and

>4[K)e-(i-MHc~(1+i

Note the roundoff trouble, especially near x = 0.
As a second example of this important effect consider the integration of

rational functions. If the zeros of the denominator were multiple but were

reported as close, then instead of

r\302\260\302\260dx r*/2 asec21 , 1 r*/2 , , n

Jo (a2 + x2)2 J0 a sec41 a3 J0 4a3

we would have the integral (with b close to a)

r00 dx
1_

r00 / 1 1 \\

Jo (x2 + a2Xx2 + b2)~\302\245^?Jo WT72~x~r+T2)dX

1/1 x 1 x\\|\302\260\302\260= -= r - arctan - \342\200\224- arctan -)
b2 -a2 \\a a b b/\\0

7T 1 /l 1\\
\"

2 b2 - a2 [a b)

This expression can be reworked, using the methods of Chap. 3, to avoid the

obvious heavy cancellation. In this simple example the trouble is obvious and

typical of the general case of integration of rational functions when a multiple

zero occurs in the denominator.

PROBLEMS

6.1.1 Devise another example to demonstrate the effect of close zeros on subsequent

computations.

6.1.2 Discuss the case

ra dx 3

L(^Txy
=

^ a>0

Hint: use \342\200\224
a, \342\200\224(a

\342\200\224
e),

\342\200\224(a + e) as zeros.
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6.2 INVARIANCE PRINCIPLE

Polynomials provide a good example of the use of the invariance principle
because we have three different transformations that leave the polynomial

essentially unchanged:

/ The transformation of P(z) into cP{z)
2 The transformation of P(z) into P(cz)

3 The transformation of P(z) into zNP

The special case under (2), where c = \342\200\224
1, reverses the direction of the x axis and

can be used, if we wish, to confine the search to rinding positive zeros only.

The reciprocal transformation (3) has the effect of reversing the coefficients

of the polynomial. This is mirrored in the synthetic division process. We have

written the polynomial (a linear combination of successive powers of z) as if

| z | > 1 and have put the highest power of z first, much as we would when writing

numbers. But if we think of z as being less than 1 in size, then we would naturally

write it as

a0 + aLz + a2z2 + \342\200\242\342\200\242\342\200\242+ aNzN

and in the division process divide by (for a quadratic factor)

1 \342\200\224p'z
- q'z2

The remainder would be

r' 7*-1 4- r' 7NrN-lz +*NZ

If in the usual process the divisor were a factor of the polynomial, then the
remaindersri and r0 would both be zero; in the second case it would be /#_, and r'N that

would be zero. A little thought shows that these two are equivalent and that the
two quotients must be the same. Thus we have two alternate ways of using the

third transformation: either we can reverse the coefficients of the polynomial

(which carries the region 1 <* \\z\\ < oo into 1 > \\z\\ > 0) or else equivalently we

can do our synthetic division in the reverse way, from constant to higher powers
rather than the more conventional order of higher to constant powers.

We shall check regularly that the methods we propose to use obey the

invariance principle with respect to these three transformations.

PROBLEMS

6.2.1 The product of a number of factors (x \342\200\224cy)(x \342\200\224c2)
\342\200\242\342\200\242\342\200\242

(x \342\200\224
cN) leads to a

polynomial whose coefficients are the elementary symmetric functions

Ex
\342\200\224

^Ci, Ei =
\302\243c<Cj,..., EN = dc2 \342\200\242\342\200\242\342\200\242

cN

0
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Thus for

xN + aN-lxN-1 + -- + a0

with zeros clyc2,..., cN,

^-* = (-im

Discuss the roundoff errors in constructing this polynomial.

6.2.2 Devise a measure of closeness of two polynomials using only the coefficients.

Defend your choice.

6.3 THE PLAN

One of the consequences of the complex zeros of a real function occurring in pairs

is that by the fundamental theorem of algebra a polynomial with real coefficients

can be written as a product of real linear and real quadratic factors. This

approach has the advantage, as shown in Sec. 3.9, of working only with real

numbers and of avoiding special programming for complex numbers (also saving

machine time). The approach to the problem of finding the factors has the
further advantages of ease of thought and of finding what is most often needed in
the next step, namely, the factors rather than the actual zeros.

Therefore, after examining the given coefficients to see what kind of
polynomial we have and making the obvious possible simplifications, we will first

find all the real linear factors, watching carefully for multiple factors, and deflate

the polynomial each time we find one. Then we will search for the real quadratic
factors, again watching for multiple factors and deflating each time we find a

factor. Further, each time we find a quadratic factor, we will check to see if the
zeros of the factor might have been on one of the axes and had been moved off

due to roundoff.

The methods we use will be guided by the requirements of the invariance

principle.

6.4 PREPROCESSING THE POLYNOMIAL

Often the polynomial which we are given is said to be of degree N, but is not. For

example, the leading coefficient aN may be zero (perhaps for a particular value of a
parameter in the equation), which means that the polynomial has a zero at infinity.

Further it may be that the last coefficient a0 is zero, which means that there is a
zero at the origin. In both cases these zeros should be removed before starting.
To do this we can test for

a0 aN = 0
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and if the relation holds, we must find out which of the factors is zero and remove
the corresponding zero from the polynomial. This test applied recursively will

remove all these trivial zeros.
Next we need to find out if it is a polynomial in some power of z, say z1or

z3, and if it is, we should make the proper substitution to reduce the effective

degree of the polynomial. For example, the polynomial

x12 - 6x8 + 4x4 + 1 s (x4)3 -
6(x4)2 + 4(x4) + 1

is actually a cubic in x4 and should be treated as a cubic and not as a polynomial

of twelfth degree.
The factor k that we want is the common factor of all the exponents of

terms with nonzero coefficients. To find this factor we start with the constant

term a0 # 0 and look for the next higher term with a nonzero coefficient. If it
is al9 we are done\342\200\224k= 1; but if it is some higher power, we find the factors of the

exponent which are also factors of the degree N. Each factor that divides N is a

potential candidate for further search to see if all terms in the polynomial have

exponents that are multiples of it. In this way we can find the highest common

factor of the exponents those terms present in the polynomial.

Suppose we have found such a number k>\\. Making the obvious

substitution,

zk = z'

we have a polynomial in z' of much lower degree to solve, one having no common

factors of the exponents of the terms present.
This transformation must, of course, be undone when we finally produce

the answers. For the real linear factors

Write a in the polar form

1* u ii n (0 for a > 0
a =

pe where P =
\\a\\ 0 =

{ c Ar r i i
(7i for a < 0

zfc = pe.(0
+ 2nm) m = 0, 1,...,A:~1

Taking the fcth root, we have the k zeros

2m =
p./V(.\302\253\302\273,/\302\253

=

pl/*(cos *+|^
+1 sin

e +

i\342\204\242}

m = 0,1,..., k \342\200\2241






















































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































