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Abstract. It has been recently established that there exists a maximal red shift Zm~x for a homogeneous 
star of given mass M. The relationship Z m a x ( M )  is obtained for neutron stars in the mass range 
0.71 ~ M/M| ~ 12.06. 

1. Introduction 

In a recent paper (Kovetz, 1969) it has been shown that among all homogeneous 
isentropic configurations of given mass M there exists one with minimal entropy 

s~,in(M). Furthermore, the corresponding radius R(M, smln) is the lowest possible, 
and hence the red shift 

Zmax(M ) = [1 - 2 G M / c 2 R ( M ,  Smin)]  - 1  - -  1 (1) 

is the highest possible for this mass. 

The purpose of this paper is to obtain maximal red shifts Zm,x(M ) for neutron 
stars. For cold ( s=  T = 0 )  configurations results were obtained by Oppenheimer and 

Volkoff (1939). In Section 2 we present results for masses beginning with the limiting 

cold neutron star M = 0 . 7 1 M  o up to M = 1 2 M  o. It  will be seen that for higher 
masses the calculation can be carried out on the post-Newtonian approximation 
(Chandrasekhar, 1965). 

2. Calculation of Maximal Red Shifts 

For a neutron gas we have the formulae (Rakavy and Shaviv, 1967) 

o0 

(x2--1)3/2-d-x,  (2) 
P = Cmnc2F1 (O, fl) -= 1Cmn c2 j e ex-~ + 1 

1 

o o  

f x ( x 2 - 1 ) ' / Z _ d x  
n = CF2(O, fi) = C j  e ~ - 0  + 1 ' (3) 

1 

i X2(X -- 1) 1/2 dx 
e = Cm,c2F3(~,, 3) = Cm,c 2 ~ x ~ +  ~ , (4) 

1 

for the pressure, number density and energy density, respectively, where rn, denotes 
the neutron mass, C=(rn,  c/h)3/= 2, f i = m , c 2 / k T  and tp=~/kT,  with /1 the chemical 
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potential; while k, c and h are, respectively, Bolzmann's constant, the velocity of 
light and Planck's constant divided by 2r~. We note the definition 

0 = + fl (5) 

of the Fermi parameter (or degeneracy parameter) e:. 
The entropy per neutron s is given by 

S / k  = fl (V  1 q- Fa)/F2 - •. (6) 

To these we add the corresponding quantities for the radiation field 

7Z 4 
P, = Cmnc 2 ~ f l-4,  (7) 

er = 3pr, (8) 

4~4f1-3 
s,/k - (9) 

45F2 

To obtain an isentropic configuration we use the field equations in the form 

d m  
- - 4 ~ r 2 e / c  2 ' (10) 

dr 

d~r_(a~i~ dp (~s~ Gme(1 + p/e)( l  +4zrr3p/rnc 2) (11) 

d~ = ~pp s d~r = - Op s c2 / , 2  ] - ~ ? G m ~  " (12)  

The thermodynamic derivatives can be expressed in terms o f F  l, F2, F3 and the further 
functions (Rakavy and Shaviv, 1967) 

8F2 (13) 
r~(o ,  fl) = fl ~ ,  

F5 (0, fl) = - ~ (flF2), (14) 

1 O  2 
F6(0, f l ) -  fl~fl(fl Fa). (15) 

In the non-degenerate (eF < -4 ) ,  non-relativistic (fl > 32) and extremely degenerate 
(eF>20) regions the functions were calculated using the well-known asymptotic 
expressions* (e.g. Guess, 1966). Where these asymptotic expressions do not apply, 
the functions were evaluated numerically with the aid of a computer program 
published by Guess (1966). 

With given values for e: and fl at the center (r = 0), an isentropic configuration is 

* I a m  grateful  to Dr.  G. Shaviv for providing me  with suitable compute r  subrout ines .  


