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A John Wiley and Sons, Ltd., Publication



This edition first published 2009
 2009, John Wiley & Sons, Ltd

Registered office
John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission
to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright,
Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK
Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and
product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective
owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed
to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding
that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is
required, the services of a competent professional should be sought.

Library of Congress Cataloging-in-Publication Data

Koski, Timo.
Bayesian networks : an introduction / Timo Koski, John M. Noble.

p. cm. – (Wiley series in probability and statistics)
Includes bibliographical references and index.
ISBN 978-0-470-74304-1 (cloth)

1. Bayesian statistical decision theory. 2. Neural networks (Computer science) I. Noble, John M. II. Title.
QA279.5.K68 2009
519.5′42 – dc22

2009031404

A catalogue record for this book is available from the British Library.

ISBN: 978-0-470-74304-1

TypeSet in 10/12pt Times by Laserwords Private Limited, Chennai, India.
Printed and bound in Great Britain by TJ International Ltd, Padstow, Cornwall.

www.wiley.com


Contents

Preface ix

1 Graphical models and probabilistic reasoning 1
1.1 Introduction 1
1.2 Axioms of probability and basic notations 4
1.3 The Bayes update of probability 9
1.4 Inductive learning 11

1.4.1 Bayes’ rule 12
1.4.2 Jeffrey’s rule 13
1.4.3 Pearl’s method of virtual evidence 13

1.5 Interpretations of probability and Bayesian networks 14
1.6 Learning as inference about parameters 15
1.7 Bayesian statistical inference 17
1.8 Tossing a thumb-tack 20
1.9 Multinomial sampling and the Dirichlet integral 24
Notes 28
Exercises: Probabilistic theories of causality, Bayes’ rule, multinomial

sampling and the Dirichlet density 31

2 Conditional independence, graphs and d-separation 37
2.1 Joint probabilities 37
2.2 Conditional independence 38
2.3 Directed acyclic graphs and d-separation 41

2.3.1 Graphs 41
2.3.2 Directed acyclic graphs and probability distributions 45

2.4 The Bayes ball 50
2.4.1 Illustrations 51

2.5 Potentials 53
2.6 Bayesian networks 58
2.7 Object oriented Bayesian networks 63
2.8 d-Separation and conditional independence 66



vi CONTENTS

2.9 Markov models and Bayesian networks 67
2.10 I -maps and Markov equivalence 69

2.10.1 The trek and a distribution without a faithful graph 72
Notes 73
Exercises: Conditional independence and d-separation 75

3 Evidence, sufficiency and Monte Carlo methods 81
3.1 Hard evidence 82
3.2 Soft evidence and virtual evidence 85

3.2.1 Jeffrey’s rule 86
3.2.2 Pearl’s method of virtual evidence 87

3.3 Queries in probabilistic inference 88
3.3.1 The chest clinic problem 89

3.4 Bucket elimination 89
3.5 Bayesian sufficient statistics and prediction sufficiency 92

3.5.1 Bayesian sufficient statistics 92
3.5.2 Prediction sufficiency 95
3.5.3 Prediction sufficiency for a Bayesian network 97

3.6 Time variables 98
3.7 A brief introduction to Markov chain Monte Carlo methods 100

3.7.1 Simulating a Markov chain 103
3.7.2 Irreducibility, aperiodicity and time reversibility 104
3.7.3 The Metropolis-Hastings algorithm 108
3.7.4 The one-dimensional discrete Metropolis algorithm 111

Notes 112
Exercises: Evidence, sufficiency and Monte Carlo methods 113

4 Decomposable graphs and chain graphs 123
4.1 Definitions and notations 124
4.2 Decomposable graphs and triangulation of graphs 127
4.3 Junction trees 131
4.4 Markov equivalence 133
4.5 Markov equivalence, the essential graph and chain graphs 138
Notes 144
Exercises: Decomposable graphs and chain graphs 145

5 Learning the conditional probability potentials 149
5.1 Initial illustration: maximum likelihood estimate for a fork connection 149
5.2 The maximum likelihood estimator for multinomial sampling 151
5.3 MLE for the parameters in a DAG: the general setting 155
5.4 Updating, missing data, fractional updating 160
Notes 161
Exercises: Learning the conditional probability potentials 162

6 Learning the graph structure 167
6.1 Assigning a probability distribution to the graph structure 168



CONTENTS vii

6.2 Markov equivalence and consistency 171
6.2.1 Establishing the DAG isomorphic property 173

6.3 Reducing the size of the search 176
6.3.1 The Chow-Liu tree 177
6.3.2 The Chow-Liu tree: A predictive approach 179
6.3.3 The K2 structural learning algorithm 183
6.3.4 The MMHC algorithm 184

6.4 Monte Carlo methods for locating the graph structure 186
6.5 Women in mathematics 189
Notes 191
Exercises: Learning the graph structure 192

7 Parameters and sensitivity 197
7.1 Changing parameters in a network 198
7.2 Measures of divergence between probability distributions 201
7.3 The Chan-Darwiche distance measure 202

7.3.1 Comparison with the Kullback-Leibler divergence and
euclidean distance 209

7.3.2 Global bounds for queries 210
7.3.3 Applications to updating 212

7.4 Parameter changes to satisfy query constraints 216
7.4.1 Binary variables 218

7.5 The sensitivity of queries to parameter changes 220
Notes 224
Exercises: Parameters and sensitivity 225

8 Graphical models and exponential families 229
8.1 Introduction to exponential families 229
8.2 Standard examples of exponential families 231
8.3 Graphical models and exponential families 233
8.4 Noisy ‘or’ as an exponential family 234
8.5 Properties of the log partition function 237
8.6 Fenchel Legendre conjugate 239
8.7 Kullback-Leibler divergence 241
8.8 Mean field theory 243
8.9 Conditional Gaussian distributions 246

8.9.1 CG potentials 249
8.9.2 Some results on marginalization 249
8.9.3 CG regression 250

Notes 251
Exercises: Graphical models and exponential families 252

9 Causality and intervention calculus 255
9.1 Introduction 255
9.2 Conditioning by observation and by intervention 257
9.3 The intervention calculus for a Bayesian network 258



viii CONTENTS

9.3.1 Establishing the model via a controlled experiment 262
9.4 Properties of intervention calculus 262
9.5 Transformations of probability 265
9.6 A note on the order of ‘see’ and ‘do’ conditioning 267
9.7 The ‘Sure Thing’ principle 268
9.8 Back door criterion, confounding and identifiability 270
Notes 273
Exercises: Causality and intervention calculus 275

10 The junction tree and probability updating 279
10.1 Probability updating using a junction tree 279
10.2 Potentials and the distributive law 280

10.2.1 Marginalization and the distributive law 283
10.3 Elimination and domain graphs 284
10.4 Factorization along an undirected graph 288
10.5 Factorizing along a junction tree 290

10.5.1 Flow of messages initial illustration 292
10.6 Local computation on junction trees 294
10.7 Schedules 296
10.8 Local and global consistency 302
10.9 Message passing for conditional Gaussian distributions 305
10.10 Using a junction tree with virtual evidence and soft evidence 311
Notes 313
Exercises: The junction tree and probability updating 314

11 Factor graphs and the sum product algorithm 319
11.1 Factorization and local potentials 319

11.1.1 Examples of factor graphs 320
11.2 The sum product algorithm 323
11.3 Detailed illustration of the algorithm 329
Notes 332
Exercise: Factor graphs and the sum product algorithm 333

References 335

Index 343



Preface

This book evolved from courses developed at Linköping Institute of Technology and
KTH, given by the authors, starting with a graduate course given by Timo Koski in 2002,
who was the Professor of Mathematical Statistics at LiTH at the time and subsequently
developed by both authors. The book has been aimed at senior undergraduate, masters
and beginning Ph.D. students in computer engineering. The students are expected to have
a first course in probability and statistics, a first course in discrete mathematics and a
first course in algorithmics. The book provides an introduction to the theory of graphical
models.

A substantial list of references has been provided, which include the key works for
the reader who wants to advance further in the topic.

We have benefited over the years from discussions on Bayesian networks and Bayesian
statistics with Elja Arjas, Stefan Arnborg, and Jukka Corander. We would like to thank
colleagues from KTH, Jockum Aniansson, Gunnar Englund, Lars Holst and Bo Wahlberg
for participating in (or suffering through) a series of lectures during the third academic
quarter of 2007/2008 based on a preliminary version of the text and suggesting improve-
ments as well as raising issues that needed clarification. We would also like to thank
Mikael Skoglund for including the course in the ACCESS graduate school program at
KTH. We thank doctoral and undergraduate students Luca Furrer, Maksym Girnyk, Ali
Hamdi, Majid N. Khormuji, Mårten Marcus and Emil Rehnberg for pointing out several
errors, misprints and bad formulations in the text and in the exercises. We thank Anna
Talarczyk for invaluable help with the figures. All remaining errors and deficiencies are,
of course, wholly our responsibility.
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Graphical models and
probabilistic reasoning

1.1 Introduction

This text considers the subject of graphical models , which is an interaction between
probability theory and graph theory. The topic provides a natural tool for dealing with
a large class of problems containing uncertainty and complexity. These features occur
throughout applied mathematics and engineering and therefore the material has diverse
applications in the engineering sciences. A complex model is built by combining simpler
parts, an idea known as modularity . The uncertainty in the system is modelled using
probability theory; the graph helps to indicate independence structures that enable the
probability distribution to be decomposed into smaller pieces.

Bayesian networks represent joint probability models among given variables. Each
variable is represented by a node in a graph. The direct dependencies between the
variables are represented by directed edges between the corresponding nodes and the
conditional probabilities for each variable (that is the probabilities conditioned on the
various possible combinations of values for the immediate predecessors in the network)
are stored in potentials (or tables) attached to the dependent nodes. Information about the
observed value of a variable is propagated through the network to update the probability
distributions over other variables that are not observed directly. Using Bayes’ rule, these
influences may also be identified in a ‘backwards’ direction, from dependent variables to
their predecessors.

The Bayesian approach to uncertainty ensures that the system as a whole remains
consistent and provides a way to apply the model to data. Graph theory helps to illustrate

Bayesian Networks: An Introduction T. Koski, J. Noble
 2009 John Wiley & Sons, Ltd



2 GRAPHICAL MODELS AND PROBABILISTIC REASONING

and utilize independence structures within interacting sets of variables, hence facilitating
the design of efficient algorithms.

In many situations, the directed edges between variables in a Bayesian network
can have a simple and natural interpretation as graphical representations of causal
relationships. This occurs when a graph is used to model a situation where the values
of the immediate predecessors of a variable in a network are to be interpreted as the
immediate causes of the values taken by that variable. This representation of causal
relationships is probabilistic; the relation between the value taken by a variable and the
values taken by its predecessors is specified by a conditional probability distribution.
When a graph structure is given and the modelling assumptions permit a causal
interpretation, then the estimates of the conditional probability tables obtained from
data may be used to infer a system of causation from a set of conditional probability
distributions. A Bayesian network is essentially a directed acyclic graph, together with
the associated conditional probability distributions. When a Bayesian network represents
a causal structure between the variables, it may be used to assess the effects of an
intervention, where the manipulation of a cause will influence the effect.

The ability to infer causal relationships forms the basis for learning and acting in an
intelligent manner in the external world. Statistical and probabilistic techniques may be
used to assess direct associations between variables; some additional common sense and
modelling assumptions, when these are appropriate, enable these direct associations to
be understood as direct causal relations. It is the knowledge of causal relations, rather
than simply statistical associations, that gives a sense of genuine understanding, together
with a sense of potential control resulting from the ability to predict the consequences of
actions that have not been performed, as J. Pearl writes in [1].

K. Pearson, an early, pre-eminent statistician, argued that the only proper goal of
scientific investigation was to provide descriptions of experience in a mathematical form
(see [2] written by Pearson in 1892); for example, a coefficient of correlation. Any effort
to advance beyond a description of associations and to deduce causal relations meant,
according to this view, to evoke hidden or metaphysical ideas such as causes; he did not
consider such modelling assumptions to be scientific.

R.A. Fisher, possibly the most influential statistician, considered that causation could
be inferred from experimental data only when controlled, or randomized experiments were
employed. A majority of statistical studies follow the approach of Fisher and only infer
‘correlation’ or ‘association’ unless randomized experimental trials have been performed.

It is not within the scope of this treatment of Bayesian networks to review the sophis-
ticated attempts at characterizing causality and the ensuing controversies (starting with
David Hume [3]) amongst scholars; the reader is referred to the enlightening treatment
by J. Williamson [4]. This text attempts to take what seems to be a ‘common sense’
point of view. The human mind is capable of detecting and approving causes of events
in an intuitive manner. For example, the nineteenth century physician Ignaz Semmelweis
in Vienna investigated, without knowing about germs, the causes of child bed fever. He
instituted a policy that doctors should use a solution of chlorinated lime to wash their
hands between autopsy work and the examination of patients, with the effect that the
mortality rate at the maternity wards of hospitals dropped substantially. Such reasoning
about causes and effects is not as straightforward for computers and it is not clear that it
is valid in terms of philosophical analysis.
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Causality statements are often expressed in terms of large and often complicated
objects or populations: for example, ‘smoking causes lung cancer’. Causal connections
at finer levels of detail will have a different context: for example, the processes at the
cell level that cause lung cancer. Causal connections are also contingent on many other
conditions and causal laws than those explicitly under consideration. This introduces a
level of uncertainty and the causal connections are therefore probabilistic.

Correlations or statistical associations between two variables often imply causation,
even if there is not a direct causal relation between the two variables in question; one need
not be the cause of the other. A correlation may indicate the presence of hidden variables,
that are common causes for both the observed variables, so that the two observed variables
are statistically associated.

When there is a possibility that there may be such unknown hidden variables, it is
necessary to separate the ‘cause’ from the extraneous factors that may influence it in
order to conclude that there is a causal relationship and a randomized (or controlled)
experiment achieves this. For a randomized experiment, the groups for each level of
treatment, and a control group to which no treatment is applied, are chosen at random
so that the allocation of members to treatment groups is not affected by any hidden
variables. Unfortunately, there are situations where it may be unethical to carry out a
randomized experiment. For example, to prove that smoking causes lung cancer, it is
perhaps inappropriate to force a non-smoker to start smoking.

In the example of smoking and lung cancer, the model is unknown and has to be
inferred from data. The statistical analyst would like to establish whether smoking causes
lung cancer, or whether there are additional hidden variables that are causes for both
variables. Note that common sense plays a role here; the possibility that lung cancer may
cause smoking is not considered. In terms of graphical models, where the direction of
the pointed arrow indicates cause to effect, the analyst wants to determine which of the
models in Figure 1.1 are appropriate.

When he carries out a controlled experiment, randomly assigning people to ‘smokers’
and ‘non-smokers’ respectively, the association between the hidden variables and smoking
for this experiment are broken and the causal diagram is therefore given by Figure 1.2.

By carrying out a ‘controlled experiment’, an intervention is made whereby the causal
path from the hidden variable is removed, thus ensuring that only the causal connection
of interest is responsible for an observed association.

In many situations, a controlled experiment seems the only satisfactory way to demon-
strate conclusively that an association between variables is due to a causal link. Without
a controlled experiment, there may remain some doubt. For example, levels of smok-
ing dropped when the first announcements were made that smoking caused lung cancer

smoking

hidden

cancer smoking

hidden

cancer

Figure 1.1 Smoking and lung cancer.
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smoking

hidden

cancer

Figure 1.2 Controlled experiment: the control has removed the hidden causes of smok-
ing from consideration.

and levels of lung cancer also dropped substantially. A controlled experiment would have
demonstrated conclusively that the drop in lung cancer was not due to other environmental
factors, such as a decline in heavy polluting industry that occurred at the same time.

Bayesian networks provide a straightforward mathematical language to express rela-
tions between variables in a clear way. In many engineering examples, the variables that
should be present in the model are well defined. From an appropriate model that contains
the hidden (or non-observable) variables and the observable variables, and where it is
clear which variables may be intervened on, it will be possible to verify whether certain
‘identifiability’ conditions hold and hence to conclude whether or not there is a causal
relation from the data, without a controlled experiment.

Many of the classical probabilistic systems studied in fields such as systems engineer-
ing, information theory, pattern recognition and statistical mechanics are problems that
may be expressed as graphical models. Hidden Markov models may be considered as
graphical models. Engineers are also accustomed to using circuit diagrams, signal flow
graphs, and trellises, which may be treated using the framework of graphical models.

Examples of applied fields where Bayesian networks have recently been found to
provide a natural mathematical framework are reliability engineering [5], software testing
[6], cellular networks [7], and intrusion detection in computer systems [8]. In 1996,
William H. Gates III, a co-founder of Microsoft, stated that expertise in Bayesian networks
had enhanced the competitive advantage of Microsoft. Bayesian networks are used in
software for electrical, financial and medical engineering, artificial intelligence and many
other applications.

1.2 Axioms of probability and basic notations

The basic set notations that will be used will now be established.

Definition 1.1 (Notations) The following notations will be used throughout:

• The universal set will be denoted by �. This is the context of the experiment. In
Bayesian analysis, the unknown parameters are considered to be random. Therefore,
the context � consists of the set of all possible outcomes of an experiment, together
with all possible values of the unknown parameters.

• The notation X will be used to denote the sample space; the set of all possible
outcomes of the experiment.

• �̃ will be used to denote the parameter space, so that � = X× �̃.
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The following notations will be used when considering sets:

• If A and B are two sets, then A ∪ B or A ∨ B denotes their union. If A1, . . . , An

are a finite collection of sets, then ∪n
j=1Aj or

∨n
j=1 Aj denotes their union. Also,

A1 ∪ . . . ∪An or A1 ∨ . . . ∨ An may be used to denote their union.

• If A and B are two sets, then A ∩ B or AB or A ∧ B may be used to denote their
intersection. If A1, . . . , An are a finite collection of sets, then A1 . . . An, A1 ∩ . . . ∩
An, ∩n

j=1Aj or A1 ∧ . . . ∧ An all denote their intersection.

• A ⊂ B denotes that A is a strict subset of B. A ⊆ B denotes that A is a subset of
B, possibly equal to B.

• The empty set will be denoted by φ.

• Ac denotes the complement of A; namely, �\A, where � denotes the universal set.
The symbol \ denotes exclusion.

• Together with the universal set �, an event space F is required. This is a collection
of subsets of �. The event space F is an algebra of constructable sets . That is, F
satisfies the following:
1. φ ∈ F and � ∈ F.

2. Each A ∈ F may be constructed. That is, for each A ∈ F, let iA : �→ {0, 1}
denote the mapping such that iA(ω) = 1 if ω ∈ A and iA(ω) = 0 if ω ∈ Ac.
Then there is a procedure to determine the value of iA(ω) for each ω ∈ �.1

3. If for a finite collection of events (Aj )
n
j=1 each Aj satisfies Aj ∈ F, then

∪n
j=1Aj ∈ F.

4. If A ∈ F, then Ac ∈ F, where Ac = �\A denotes the complement of A.

5. Each A ∈ F satisfies A ⊆ �.

For �, F satisfying the above conditions, a probability distribution p over (�, F)

(or, in short, a probability distribution over �, when F is understood) is a function
p : F→ [0, 1] satisfying the following version of the Kolmogorov axioms:

1. p(φ) = 0 and p(�) = 1.

2. If (Aj )
n
j=1 is a finite collection such that each Aj ∈ F and the events satisfy

Aj ∩Ak = φ for all j 
= k, then

p
(
∪n

j=1Aj

)
=

n∑
j=1

p(Aj ).

3. 0 ≤ p(A) ≤ 1 for all A ∈ F.

1 A non-constructable set The following example illustrates what is intended by the term constructable
set. Let An,k = ( k

2n − 1
23(n+1) ,

k
2n + 1

23(n+1) ) and let A = ∪∞n=1 ∪2n+1
k=0 An,k . Then A is not constructable in the

sense given above. For any number x ∈ A ∩ [0, 1], there is a well defined algorithm that will show that it is in
A ∩ [0, 1] within a finite number of steps. Consider a number x ∈ [0, 1] and take its dyadic expansion. Then,
for each An,k it is clear whether or not x ∈ An,k . Therefore, if x ∈ A, this may be determined within a finite
number of steps. But if x ∈ Ac, there is no algorithm to determine this within a finite number of steps.
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This is a reduced version of the Kolmogorov axioms. The Kolmogorov axioms require
countable additivity rather than finite additivity. They invoke axiomatic set theory and
do not therefore require the constructive hypothesis. For the Kolmogorov axioms, the
event space F is taken to be a sigma-algebra and the second axiom requires countable
additivity.

• Let (θ, x) ∈ � = �̃× X. For each A ∈ F, let A� = {θ ∈ �̃|(θ, x) ∈ A} and let
AX = {x ∈ X|(θ, x) ∈ A}. Then F� will be used to denote the algebra {A�|A ∈ F}
and FX = {AX|A ∈ F}.

Definition 1.2 (Probability Distribution over X) If X contains a finite number of elements,
then FX contains a finite number of elements. In this setting, a probability distribution over
X satisfies:

• p({x}) ≥ 0 for all x ∈ X,

• For any A ∈ FX,
∑

x∈A p({x}) = p(A).

• In particular,
∑

x∈X p({x}) = 1

Definition 1.3 (Notation) Let X be a finite state space and let AX denote the set of all
subsets of X (including φ the empty set and X). For probability distribution p : AX →
[0, 1] defined above (Definition 1.2), p will also be used to denote the function p : X→
[0, 1] such that p(x) = p({x}). The meaning of p will be clear from the context.

The definitions and notations will now be established for random variables.

Definition 1.4 (Random Variables and Random Vectors) Discrete random variables, con-
tinuous random variables and random vectors satisfy the following properties:

• For this text, a discrete random variable Y is a function Y : �→ C where C is a
countable space, that satisfies the following conditions: for each x ∈ C, {ω|Y (ω) =
x} ∈ F, and there is a function pY : C→ R+, known as the probability function of
Y , such that for each x ∈ C,

pY (x) = p({ω|Y (ω) = x}).

This is said to be the ‘probability that Y is instantiated at x’. Therefore, for any
subset C ⊆ C, pY satisfies∑

x∈C

pY (x) = p({ω|Y (ω) ∈ C}).

In particular, taking C = C, ∑
x∈C

pY (x) = 1.
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• A continuous random variable � is defined as a function � : �→ R such that
for any set A ⊆ R such that the function 1A∩[−N,N ] is Riemann integrable for all
N ∈ Z+, the set {ω|�(ω) ∈ A} ∈ F, and for which there is a function π�, known
as the probability density function, or simply density function, such that for any
A ⊂ R with Riemann integrable indicator function,

p({ω|�(ω) ∈ A}) =
∫

A

π�(x)dx.

In particular,

p({ω|�(ω) ∈ R}) = p(�) =
∫

R
π�(x)dx = 1.

• A random vector Y is a vector of random variables. It will be taken as a row vector
if it represents different characteristics of a single observation; it will be taken as
a column vector if it represents a collection of independent identically distributed
random variables.
This convention is motivated by the way that data is presented in a data matrix.
Each column of a data matrix represents a different attribute, each row represents
a different observation.
A random row vector Y is a collection of random variables that satisfies the
following requirements: suppose Y = (Y1, . . . , Ym) and for each j = 1, . . . , m,
Yj is a discrete random variable that takes values in a countable space Cj and
let C = C1 × . . .× Cm, then Y is a random vector if for each (y1, . . . , ym) ∈ C,
{ω|(Y1(ω), . . . , Ym(ω))} ∈ F, and there is a joint probability function pY1,...,Ym :
C→ [0, 1] such that for any set C ⊆ C,∑

(y1,...,ym)∈C

pY1,...,Ym(y1, . . . , ym) = p({ω|(Y1(ω), . . . , Ym(ω)) ∈ C}).

In particular, ∑
(y1,...,ym)∈C

pY1,...,Ym(y1, . . . , ym) = 1.

If � := (�1, . . . , �n) is a collection of n random variables where for each j =
1, . . . , n �j is a continuous random variable, then � is a random vector if for each
set A ⊂ Rn such that 1A∩[N,N ]n is Riemann integrable for each N ∈ Z+,

{ω|(�1(ω), . . . , �n(ω)) ∈ A} ∈ F,

and there is a Riemann integrable function π�1,...,�n : Rn → R+, where R+ denotes
the non-negative real numbers such that for each set A ⊂ Rn such that 1A∩[N,N ]n

is Riemann integrable for each N ∈ Z+,

p({ω|(�1(ω), . . . , �n(ω)) ∈ A}) =
∫

A

π�1,...,�n(x1, . . . , xn)dx1 . . . dxn.
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In particular, ∫
Rn

π�1,...,�n(x1, . . . , xn)dx1 . . . dxn = 1.

A collection of random variables Y of length m+ n, containing m discrete variables
and n continuous variables, is a random vector if it satisfies the following: there
is an ordering σ of 1, . . . , m+ n such that (Yσ(1), . . . , Yσ(m)) is a discrete random
vector and (Yσ(m+1), . . . , Yσ(m+n)) is a continuous random vector. Furthermore, let
C̃ denote the state space for (Yσ(1), . . . , Yσ(m)), then for each (y1, . . . , ym) ∈ C̃, there
is a Riemann integrable function π

(σ)
Yσ(m+1),...Yσ(m+n)|y1,...,ym

: Rn → R+ such that for
any set A ∈ Rn such that 1A∩[N,N ]n is Riemann integrable for each N ∈ Z+,

p({ω|(Yσ(1), . . . , Yσ(m)) = (y1, . . . , ym), (Yσ(m+1), . . . , Yσ(m+n)) ∈ A})

= pYσ(1),...,Yσ(m)
(y1, . . . , ym)

∫
A

π
(σ)
Yσ(m+1),...Yσ(m+n)|y1,...,ym

(x1, . . . , xn)dx1 . . . dxn.

and such that∫
Rn

π
(σ)
Yσ(m+1),...Yσ(m+n)|y1,...,ym

(x1, . . . , xn)dx1 . . . dxn = 1.

Definition 1.5 (Marginal Distribution) Let X = (X1, . . . , Xn) be a discrete random
vector, with joint probability function pX1,...,Xn . The probability distribution for
(Xj1 , . . . , Xjm), where m ≤ n and 1 ≤ j1 < . . . < jm ≤ n is known as the marginal
distribution , and the marginal probability function is defined as

pXj1 ,...,Xjm
(x1, . . . , xm) =

∑
(y1,...,yn)|(yj1 ,...,yjm)=(xj1 ,...,xjm)

pX1,...,Xn(y1, . . . , yn).

In particular, for two discrete variables X and Y taking values in the spaces CX and CY

respectively, with joint probability function pX,Y , the marginal probability function for
the random variable X is defined as

pX(x) =
∑
y∈CY

pX,Y (x, y)

and the marginal probability function for the random variable Y is defined as

pY (y) =
∑
x∈CX

pX,Y (x, y).

If � = (�1, . . . , �n) is a continuous random vector, with joint probability density func-
tion π�1,...,�n , then the marginal density function for �j1, . . . , �jm , where {j1, . . . , jm} ⊂
{1, . . . , n} is defined as

π�j1 ,...,�jm
(x1, . . . , xm) =

∫
Rn−m

π�1,...,�n(y1, . . . , yn|(yj1 , . . . , yjm)

= (x1, . . . , xm))
∏

k 
∈(j1,...jm)

dyk. �
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Categorical random variables In this text, the sample space X will contain a finite, or
countably infinite, number of outcomes, while usually the parameter space �̃ ⊆ Rn, where
n is the number of parameters. Most of the discrete variables arising will be categorical ,
in the sense that the outcomes are classified in several categories. For example, suppose
an urn contains 16 balls, of which four are white, six are green, five are blue and one is
red. Pick a ball at random and let C denote the colour of the ball, then C is an example
of a discrete random variable. The probability distribution of a categorical variable C is
denoted by pC . Here, for example, p({C = green}) = pC(green) = 6

16 = 3
8 ;

pC =
white green blue red

1
4

3
8

5
16

1
16

The set-up described above is adequate for this text, where only two types of random vari-
ables are considered; continuous (which, by definition, have a Riemann integrable density
function) and discrete variables. Statements of uncertainty made within this framework
are consistent and coherent. Any probability function p over F that is to provide a
quantitative assessment of the probability of an event, which is also to be mathemat-
ically coherent over a constructive algebra of events, must satisfy the axioms listed
above. Any set function over an algebra of sets that satisfies these axioms will provide
a mathematically coherent measure of uncertainty.

1.3 The Bayes update of probability

The prior probability is the probability distribution p over F before any relevant data is
obtained. The prior probability is related to background information, modelling assump-
tions, or simply a function introduced for mathematical convenience, which is intended
to express a degree of vagueness. It could be written p(K)(.), where K designates what
could be called the context or a frame of knowledge [9]. The notation p(.|K) is often
employed, although this is a little misleading since, formally, conditional probability is
only defined in terms of an initial distribution. Here, the initial distribution is based on
K . Since the notation is now standard, it will be employed in this text, although caution
should be observed.

Consider a prior distribution, denoted by p(.). Suppose the experimenter, or agent,
has the information that B ∈ F holds and desires to update the probabilities based on
this piece of information. This update involves introducing a new probability distribution
p∗ on F. Suppose also that p(B) > 0. Since it is now known that B is a certainty, the
update requires

p∗(B) = 1

so that p∗(Bc) = 0, where Bc = �\B is the complement of B in �. The updated prob-
ability is constructed so that the ratio of probabilities for any B1 ⊂ B and B2 ⊂ B does
not change. That is, for Bi ⊂ B, i = 1, 2,

p∗(B1)

p∗(B2)
= p(B1)

p(B2)
.
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For arbitrary A ∈ F, the axioms yield

p∗(A) = p∗(A ∩ B)+ p∗(A ∩ Bc).

But since p∗(Bc) = 0, it follows that p∗(A ∩ Bc) ≤ p∗(Bc) = 0. In other words, it fol-
lows that for arbitrary A ∈ F, since p∗(B) = 1,

p∗(A) = p∗(A ∩ B)+ p∗(A ∩ Bc)

p∗(B)
= p∗(A ∩ B)

p∗(B)
= p(A ∩ B)

p(B)
.

The transformation p → p∗ is known as the Bayes update of probability . When the
evidence is obtained is precisely that an event B ∈ F within the algebra has happened,
Bayes’ rule may be used to update the probability distribution. It is customary to use the
notation p(A|B) to denote p∗(A). Hence

p(A|B)
def= p∗(A) = p(A ∩ B)

p(B)
. (1.1)

This is called the conditional probability of A given B. This characterization of the
conditional probability p(A|B) follows [10]. Further discussion may be found in [11].
This is the update used when the evidence is precisely that an event B ∈ F has occurred.
Different updates are required to incorporate knowledge that cannot be expressed in this
way. This is discussed in [12].

From the definition of p(A|B), the trivial but important identity

p(A|B)p(B) = p(A ∩ B) (1.2)

follows for any A, B ∈ F.

The Bayes factor Bayes’ rule simply states that for any two events A and C,

p(A|C) = p(C|A)p(A)

p(C)
.

If event C represents new evidence, and p∗(.) = p(.|C) represents the updated probability
distribution, then for any two events A and B, Bayes’ rule yields:

p∗(A)

p∗(B)
= p(C|A)

p(C|B)

p(A)

p(B)
.

The factor p(C|A)

p(C|B)
therefore updates the ratio p(A)

p(B)
to p∗(A)

p∗(B)
. Note that

p(C|A)

p(C|B)
= p∗(A)/p∗(B)

p(A)/p(B)
.

This leads to the following definition, which will be used later.

Definition 1.6 Let p and q denote two probability distributions over an algebra A. For
any two events A,B ∈ A, the Bayes factor Fq,p(A;B) is defined as

Fq,p(A, B) := q(A)/q(B)

p(A)/p(B)
. (1.3)
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Here p plays the role of a probability before updating and q plays the role of an updated
probability. The Bayes factor indicates whether or not the new information has increased
the odds of an event A relative to B.

Bayes’ rule applied to random variables Let X and Y be two discrete random vari-
ables. Let pX, pY , pX|Y and pY |X denote the probability mass functions of X, Y , X given
Y and Y given X respectively. It follows directly from Bayes’ rule that for all x, y

pX|Y (x|y) = pY |X(y|x)pX(x)

pY (y)
. (1.4)

If X and Y are continuous random variables with density functions πX and πY , then the
conditional probability density function of X, given Y = y is

πX|Y (x|y) = πY |X(y|x)πX(x)

πY (y)
.

If X is a discrete random variable and � is a continuous random variable with state space
�̃, where pX|�(.|θ) is the conditional probability function for X given � = θ and � has
density function π�, then Bayes’ rule in this context gives

π�|X(θ |x) = pX|�(x|θ)π�(θ)∫
�̃

pX|�(x|θ)π�(θ)dθ
= pX|�(x|θ)π�(θ)

pX(x)
. (1.5)

1.4 Inductive learning

The task of inductive learning is, roughly stated, to find a general law, based of a
finite number of particular examples. Without further information, a law established in
this way cannot be a certainty, but necessarily has a level of uncertainty attached to it.
The assessment uses the idea that future events similar to past events will cause similar
outcomes, so that outcomes from past events may be used to predict outcomes from
future events. There is a subjective component in the assessment of the uncertainty,
which enters through the prior distribution. This is the assessment made before any
particular examples are taken into consideration.

In any real situation within the engineering sciences, a mathematical model is only
ever at best a model and can never present a full description of the situation that is
being modelled. In many situations, the information is not presented in terms of absolute
certainties to which deductive logic may be applied and ‘inductive learning’, as described
above, is the only way to proceed.

For machine learning of situations arising in the engineering sciences, the machine
learns inductively from past examples, from which it makes predictions of future
behaviour and takes appropriate decisions; for example, deciding whether a paper mill
is running abnormally and, if it is, shutting it down and locating the error.

In the following discussion, the second person singular pronoun, ‘You’, will be used to
denote the person, or machine,2 with well defined instructions, analysing some uncertain
statements and making predictions based on this analysis.

2 A more precise description of the machine is the hypothetical artificial intelligence robot ‘Robbie’ in [13].
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The Bayes update rule is now applied to learning from experience. The update is
based on the definition of the conditional probability p(E|A) of an event E given an
event A. The rule for calculating the conditional probability of A given E (or, given that
E ‘occurs’) is known as Bayes’ rule and is given by

p(A|E) = p(E|A)p(A)

p(E)
. (1.6)

Equation (1.6) follows immediately from the definitions introduced in Equations (1.1)
and (1.2). Here E is a mnemonic notation for evidence.

The formula (1.6) was for a long time known more widely as ‘inverse probability’
rather than as ‘Bayes’ rule’. The quantity p(A|E) does not always need to be computed
using this formula; sometimes it is arrived at by other means. For example, the Jeffrey’s
update rule, as will be seen later, uses a particular set of conditional probabilities as
fundamental and derives the other probabilities from it.

1.4.1 Bayes’ rule

A more instructive form of Bayes’ rule is obtained by considering a finite exhaustive set
of mutually exclusive hypotheses {Hi}mi=1. The law of total probability gives for any E

p(E) =
m∑

i=1

p(Hi)p(E|Hi) (1.7)

and Equation (1.6) yields for any Hi

p(Hi |E) = p(E|Hi)p(Hi)∑m
i=1 p(Hi)p(E|Hi)

. (1.8)

Here p(Hi) is the initial or prior probability for a hypothesis, before any evidence E is
obtained. The prior probability will have a subjective element, depending on background
information and how You interpret this information. As discussed earlier, this background
information is often denoted by the letter K . In computer science, this is often referred to
as domain knowledge [14]. The prior is therefore often denoted p(Hi |K). As discussed
earlier, this is misleading, because no application of the formula given in Equation (1.1)
has been made. The notation is simplified by dropping K .

The quantity in p(Hi |E) in Equation (1.8) denotes how p(Hi) is updated to a new
probability, called the posterior probability , based on this new evidence. This update is
the key concept of Bayesian learning from experience.

There is a basic question: why should probability calculus be used when performing
the inductive logic in the presence of uncertainty described above? This is connected
with the notion of coherence. The probability calculus outlined above ensures that the
uncertainty statements ‘fit together’ or ‘cohere’ and it is the only way to ensure that
mathematical statements of uncertainty are consistent. To ensure coherence, inductive
logic should therefore be expressed through probability. Inference about uncertain events
Hi from an observed event E will be mathematically coherent if and only if they are
made by computing p(Hi |E) in the way described above. All calculations, in order
to achieve coherence, must be made within this probability calculus. Hence, to make
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coherent statements about different events, Your calculations for learning by experience
have to satisfy Bayes’ rule.

The introduction of an arbitrary prior distribution may appear, at first sight, to be
ad hoc. The important point here is that all modelling contains some ad hoc element in
the choice of the model. The strength of the Bayesian approach is that once the prior
distribution is declared, this contains the modelling assumptions and the ad hoc element
becomes transparent. The ad hoc element is always present and is stated clearly in the
Bayesian approach.

When an event E occurs that belongs to the well defined algebra of events, over
which there are well defined probabilities, the Bayes rule for updating the probability of
an event A from p(A) to p(A|E) is applied. There are situations where the evidence E

may be given in terms of observations that are less precise (that is, E is not an event that
clearly belongs to the algebra), but nevertheless an update of the the probability function
p(·) is required. Jeffrey’s rule and Pearl’s method of virtual evidence can be useful in
these situations.

1.4.2 Jeffrey’s rule

Suppose that the new evidence implies that You form an exhaustive set of r mutu-
ally exclusive hypotheses (Gi)

r
i=1 which, following the soft evidence have probabilities

p∗(Gi). The question is how to update the probability of any event A ∈ F. Note that You
cannot use Bayes’ rule (Equation (1.6)), since the evidence has not been expressed in
terms of a well defined event E for which the prior probability value is known. Jeffrey’s
rule may be applied to the situation where it may be assumed that for all events A ∈ F,
the probabilities p(A|Gi) remain unchanged. It is only the assessment of the the mutually
exclusive hypotheses (Gi)

r
i=1 that changes; no new information is given about the the

relevance of (Gi)
r
i=1 to other events.

Definition 1.7 (Jeffrey’s Update) The Jeffrey’s rule for computing the update of the prob-
ability for any event A, is given by

p∗(A) =
r∑

i=1

p∗(Gi)p(A|Gi). (1.9)

This is discussed in [15]. Jeffrey’s rule provides a consistent probability function, such
that p∗(A|Gi) = p(A|Gi) for all i. Equation (1.9) is therefore an expression of the rule
of total probability (Definition 1.7). �

1.4.3 Pearl’s method of virtual evidence

In the situation considered by Pearl, new evidence gives information on a set of mutually
exclusive and exhaustive events G1, . . . ,Gn, but is not specified as a set of new probabil-
ities for these events. Instead, for each of the events G1, . . . , Gn, the ratio λj = p(A|Gj )

p(A|G1)
,

for j = 1, . . . , n is given for an event A. That is, λj represents the likelihood ratio that
the event A occurs given that Gj occurs, compared with G1. Note that λ1 = 1.

Definition 1.8 Let p denote a probability distribution over a countable space X (Defi-
nition 1.2) and let G1, . . . ,Gn ∈ F be a mutually exclusive (that is Gi ∩Gj = φ for all
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i 
= j ) and exhaustive (that is ∪n
j=1Gj = �) events, where p(Gj ) = pj . Set λj = p(A|Gj )

p(A|G1)

for j = 1, . . . , n. Then, for each x ∈ X, the Pearl update p̃ is defined as

p̃({x}) = p({x}) λj∑n
j=1 λjpj

x ∈ Gj, j = 1, . . . , n. (1.10)

It is clear that this provides a well defined probability distribution.
Jeffrey’s rule and Pearl’s method for virtual evidence will be discussed further in

Section 3.2. They are methods that, under some circumstances, enable evidence to be
incorporated that does not fit directly into the framework of the chosen statistical model.

1.5 Interpretations of probability and Bayesian networks

Loosely speaking, ‘classical statistics’ proposes a probability distribution over the event
space, where the probability distribution is a member of a parametric family, where the
value of the parameters are unknown. The parameters are estimated , and the estimates
are used to obtain an approximation to the ‘true’ probability, which is unknown. In
Bayesian probability, the lack of knowledge of the parameter is expressed though a
probability distribution over the parameter space, to feature Your personal assessment
of the probability of where the parameter may lie. For this reason, Bayesian probability
is also referred to as personal probability, or epistemological probability. Built into a
Bayesian probability is Your a priori state of knowledge, understanding and assessment
concerning the model and the source of data. So, loosely speaking, classic statistics yields
an approximation to an objectively ‘true’ probability. The ‘true’ probability is fixed, but
unknown, and the estimate of this probability may differ between researchers. Bayesian
statistics yields an exact computation of a subjective probability. It is the probability
itself , rather than the estimate of the probability, that may differ between researchers.

Bayesian networks are frequently implemented as information processing components
of Expert Systems (in artificial intelligence) [14], where personal and epistemological
probability provides a natural framework for the machine to learn from its experience.
P. Cheeseman in [13] and [16] argues that personal probability as the calculus of plausible
reasoning is the natural paradigm for artificial intelligence.

J. Williamson [4] and other authors distinguish between subjective and objective
Bayesian probability. Consider two different learning agents, called (for convenience)
Robbieα and Robbieβ . These are two hardware copies of Robbie in [13], with some
different internal representations (i.e. different ways of assessing prior information). A
Bayesian probability is said to be objective if, with the same background information,
the two agents will agree on the probabilities. Bayesian probabilities are subjective if the
two different learning agents, Robbieα and Robbieβ may disagree about the probabilities,
even though they share the same background knowledge, but without either of then being
provably wrong.

It seems rational to require that subjective probabilities should be calibrated with
the external world. This does not follow from requirements of coherence; it is rather a
principle of inference that is imposed in any serious statistical study. For this, one often
cites Lewis’s principal principle, stated in [17]. This is the assertion that Your subjective
probability for an event, conditional upon the knowledge of a physical probability of that
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event, should equal the physical probability. In terms of the formula (where ch denotes
the physical chance),

p(A | ch (A) = x) = x.

There are several theoretical foundations for reconciling subjective opinion to objec-
tive probability. One of the more prominent was given by R.J. Aumann.3 He proved the
following fact. If two agents have same priors, and if their posteriors for an event A are
common knowledge (i.e. Robbieα and Robbieβ know the posterior, and Robbieα knows
that Robbieβ knows and that Robbieβ knows that Robbieα knows that Robbieβ knows
and so on, ad infinitum), then the two posterior probability masses will be identical [18].

This relies on the rational idea that if someone presents an opinion different from
Yours, then this is an important piece of information which should induce You to revise
Your opinion. The result by Aumann quoted above implies that there will be a process
of revision, which will continue until objective probability (an equilibrium of consensus)
is reached. It can be shown that this will happen in a finite number of steps.

In probabilistic theories of causation there is a set of variables V , over which there
is a probability distribution p. The causal relationships between the variables in V are
the object of study. In [19], the variables are indexed by a time parameter and causality
is reduced to probability. The Bayesian network approach is different; in addition to
the probability distribution p, the variables are nodes of a directed acyclic graph G,
where the edges represent direct causal relationships between the variables in V . This
requires, as pointed out by D. Freedman and P. Humphreys [20], that we already know
the causal structure obtained, for example, by exercise of common sense and knowledge
of the variables V . Both p and G are required [21]. Additional assumptions are therefore
required to infer the direction of cause to effect relationships between variables; there is
no form of Bayesian coherence from which they may be inferred. The role of a directed
graph is to represent information about dependence between variables V . In particular,
the graph may be used to indicate what would happen to values of some variables under
changes to other variables that are called interventions; namely, the variable is forced
to take a particular value irrespective of the state of the rest of the system. The graph
will also indicate how the various different distributions for subsets of V are consistently
connected to each other to yield p.

1.6 Learning as inference about parameters

Consider a random row vector X = (X1, . . . , Xd), denoting d attributes. Suppose that
n independent observations are made on X and the values obtained are recorded in a
matrix x, where xjk denotes the j th recorded value of attribute k. The n× d matrix x
may be regarded as an instantiation of the n× d random matrix X, where each row of
X is an independent copy of X. Suppose that the evidence x is to be used to update the
probability function for another collection of m variables, (Y1, . . . , Ym) from pY1,...,Ym(.)

to pY1,...,Ym|X(.|x).
A fundamental special case, discussed in [22], is that of computing the predictive

probability for the next observation in the univariate setting. That is, d = 1. Here, the

3 2005 Laureate of the Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel.
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matrix X is an n× 1 matrix and may therefore be considered as a column vector X(n) =
(X1, . . . , Xn)

t , where Xj , j = 1, . . . , n are independent identically distributed. Here, x =
x(n) = (x1, . . . , xn)

t , a vector of n observed values. The random vector Y is simply Xn+1.
The problem is to compute the conditional probability distribution of Y given X(n) = x(n).
The connection between x(n) and y is described by a probability pY |X(n)

(y|x(n)) of Y given
X(n) = x(n). Let X(n+1) = (X1, . . . , Xn+1)

t and x(n+1) = (x1, . . . xn+1)
t . You compute

pXn+1|X(n)
(xn+1|x(n)) =

pX(n+1)
(x(n+1))

pX(n)
(x(n))

. (1.11)

The progression from here requires a mathematical model containing parameters denoted
θ such that, given θ , the random variables X1, X2, . . . are independent and identically
distributed (i.i.d.). That is, with notation (.|θ) to denote the parameter fixed as θ , there
is a decomposition

pX(n)
(x(n)|θ) =

n∏
1

qXi
(xi |θ).

The family of probability functions qXi
(.|θ), θ ∈ �̃ (where �̃ is the space of all per-

missible values of the unknown parameter θ ) and the parameter θ need to be specified.
Since the value of θ is unknown, the Bayesian approach is to consider a probability
distribution over �̃. Thus, θ may be regarded as a realisation of a random variable �.
You need to specify a prior distribution over �̃. This discussion confines itself to the case
where � is considered to be a continuous random variable and hence the prior distribu-
tion is described by a probability density function π� : �̃→ R+. The prior predictive
distribution may then be written as

pX(n)
(x(n)) =

∫
�̃

n∏
1

qXi
(xi |θ)π(θ)dθ. (1.12)

Definition 1.9 (Prior Predictive Probability Distribution) The prior distribution pX(n)
for

the collection of random variables X(n) (for which x(n) is an observation) is known as the
Prior Predictive Probability Distribution.

B. De Finetti showed in [23] that if the xj s are infinitely exchangeable (and lie in a
reasonable space), then the structure for pX(n)

(.) given by Equation (1.12) is the only
possible one.

Inserting (1.12) in the right hand side of (1.11) yields

pXn+1(xn+1|x(n)) =
∫
�̃

∏n+1
1 qXi

(xi |θ)π�(θ)dθ∫
�̃

∏n
1 qXi

(xi |θ)π�(θ)dθ

=
∫

�̃

qXn+1(xn+1|θ)

∏n
1 qXi

(xi |θ)π�(θ)∫
�̃

∏n
1 qXi

(xi |θ)π�(θ)dθ
dθ.
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The conditional probability density of � given X(n) = x(n) may be obtained by Bayes’
rule:

π�|X(n)

(
θ | x(n)

) = ∏n
1 qXi

(xi |θ)π�(θ)∫
�̃

∏n
1 qXi

(xi |θ)π�(θ)dθ
. (1.13)

It follows directly that

pXn+1(xn+1|x(n)) =
∫

�̃

qXn+1(xn+1|θ)π�|X(n)

(
θ | x(n)

)
dθ. (1.14)

In Section 1.9, explicit examples of evaluations of Equation (1.14) are given.
The probability density function π�, placed over �̃ before any data is observed is

known as the prior density; the probability density function π�|X(n)
defined by Equation

(1.13) is known as the posterior probability density. Equation (1.14) shows how Bayesian
learning about Xn+1 is based on learning about θ from x(n). Bayesian statistical inference
is the term used to denote Bayesian learning of the posterior distribution of a set of
parameters.

The meaning of causality for K. Pearson, see Chapter 4 in [2], seems to be expressible
by Equation (1.14), as he writes ‘that a certain sequence has occurred and recurred in the
past is a matter of experience to which we give expression in the concept of causation,
that it will recur in the future is a matter of belief to which we give expression in the
concept of probability.’

1.7 Bayesian statistical inference

The aim of learning is to predict the nature of future data based on past experience [22].
One constructs a probabilistic model for a situation where the model contains unknown
parameters. The parameters are only a mechanism to help estimate future behaviour; they
are not an end in themselves.

As stated, the ‘classical’ approach regards a parameter as fixed. It is unknown and has
to be estimated, but it is not considered to be a random variable. One therefore computes
approximations to the unknown parameters, and uses these to compute an approximation
to the probability density. The parameter is considered to be fixed and unknown, because
there is usually a basic assumption that in ideal circumstances, the experiment could be
repeated infinitely often and the estimating procedure would return a precise value for the
parameter. That is, if one increases the number of replications indefinitely, the estimate
of the unknown parameter converges, with probability one, to the true value. This is
known as the ‘frequentist’ interpretation of probability.

Basic to the ‘frequentist’ interpretation is the assumption that an experiment may
be repeated, in an identical manner, an indefinite number of times. With the classical
approach, the sample space � and the event space A of subsets of � have to be defined
in advance. This makes incorporation of ‘soft evidence’ or ‘virtual evidence,’ that will be
considered later in the text, harder; these are situations where the information obtained
cannot be expressed as one of the well defined events of the event space. Then, the
probability distribution is interpreted as follows: for each A ∈ A, p(A) is interpreted as
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the limit, from observed data that would be obtained if the experiment could be repeated
independently, under identical circumstance, arbitrarily often. That is,

p(A) = lim
n→+∞

N(n, A)

n
,

where N(n, A) denotes the number of times event A has been observed from n replica-
tions of the experiment.

This interpretation is intuitively appealing, but there is room for caution, since the
infinite independent replications are imagined , and therefore the convergence of relative
frequencies to a limit is hypothetical; the imagined infinite sequence of replications under
exactly the same conditions is a textbook construction and abstraction. In concrete terms,
it is supposed that there are many sources, each with large numbers of data so that
the ‘empirical’ distribution can approximate the limit with arbitrary precision. Despite
the hypothetical element in the formulation, the ‘frequentist’ interpretation of probability
follows basic human common sense; the probability distribution is interpreted as the long
run average. The ‘long run average’ interpretation assumes prior knowledge; when an
agent like Robbie is to compute probability for its actions, it cannot be instructed to wait
for the result in an infinite outcome of experiments and, indeed, it cannot run in ‘real
time’ if it is expected to wait for a large number of outcomes.

Once the existence of a probability measure p over (�,A) has been established,
which may be interpreted in the sense of ‘long run averages’, it is then a matter of
computation to prove that the parameter estimates θ̂n based on n observations converge
with probability 1, provided a sensible estimating procedure is used, to a parameter
value θ .

As discussed earlier, the Bayesian approach takes the view that since the parameter is
unknown, it is a random variable as far as You are concerned. A probability distribution,
known as the prior distribution , is put over the parameter space, based on a prior assess-
ment of where the parameter may lie. One then carries out the experiment and, using the
data available, which is necessarily a finite number of data, one uses the Bayes rule to
compute the posterior distribution in Equation (1.13), which is the updated probability
distribution over the parameter space.

The posterior distribution over the parameter space is then used to compute the
probability distribution for future events, based on past experience. Unlike the classical
approach, this is an exact distribution, but it contains a subjective element. The subjective
element is described by the prior distribution.

In Bayesian statistics, the computation of the posterior distribution usually requires
numerical methods, and Markov chain Monte Carlo methods seem to be the most efficient.
This technique is ‘frequentist’, in the sense that it relies upon an arbitrarily large supply of
independent random numbers to obtain the desired precision. From an engineering point
of view, there are efficient pseudo-random number generators that supply arbitrarily large
sequences of ‘random’ numbers of very good quality. That is, there are tests available
to show whether a sequence ‘behaves’ like an observation of a sequence of suitable
independent random numbers.

Both approaches to statistical inference have an arbitrary element. For the classical
approach, one sees this in the choice of sample space. The sample space is, to use
H. Jeffreys’ [24] vivid description, ‘the class of observations that might have been
obtained, but weren’t’. For some experiments, the sample space is a clear and well
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defined object, but for others, there is an arbitrary element in the choice of the sample
space. For example, an experiment may be set up with n plants, but some of the plants
may die before the results are established.

Alternative hypotheses There is no distinction within the Bayesian approach between
the various values of the parameter except in the prior π(θ). The view is one of contrast
between various values of θ . Consider the case where the parameter space consists of
just two values, (θ0, θ1). Dropping subscripts where they are clearly implied, Bayes’ rule
for data x gives

π(θ0|x) = p(x|θ0)π(θ0)

p(x)

and

π(θ1|x) = p(x|θ1)π(θ1)

p(x)
.

It follows that

π(θ0|x)

π(θ1|x)
= p(x|θ0)π(θ0)

p(x|θ1)π(θ1)
. (1.15)

The likelihood ratiofor two different parameter values is the ratio of the likelihood func-
tions for these parameter values; denoting the likelihood ratio by LR,

LR(θ0, θ1; x) = p(x|θ0)

p(x|θ1)
.

The prior odds ratio is simply the ratio π(θ0)/π(θ1) and the posterior odds ratio is
simply the ratio π(θ0|x)/π(θ1|x). An odds ratio of greater than 1 indicates support for
the parameter value in the numerator.

Equation (1.15) may be rewritten as

posterior odds = LR × prior odds.

The data affect the change of assessment of probabilities through the likelihood ratio,
comparing the probabilities of data on θ0 and θ1. This is in contrast with a sampling
theory, or tail area significance test, where only the null hypothesis (say θ0) is considered
by the user of the test.

In ‘classical’ statistics, statements about parameters may be made through confidence
intervals . It is important to note that a confidence interval for θ is not a probability
statement about θ , because in classical statistics θ is not a random variable. It is a fixed,
though unknown, value. The confidence interval is derived from probability statements
about x the observation, namely from p(x|θ).

There is no axiomatic system that leads to confidence measures , while the axioms of
probability are well defined. Operations strictly in accord with the calculus of probability
give coherent conclusions. Ideas outside the probability calculus may give anomalies.

The next two sections give a detailed examination of two probability distributions
that are often central to the analysis of Bayesian networks. Section 1.8 discusses binary
variables, while Section 1.9 discusses multinomial variables. The distributions discussed
in Section 1.8 are a useful special case of those discussed in Section 1.9.
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1.8 Tossing a thumb-tack

The discussion of the thumb-tack is taken from D. Heckerman [25].
If a thumb-tack is thrown in the air, it will come to rest either on its point (0) or on

its head (1). Suppose the thumb-tack is flipped n times, making sure that the physical
properties of the thumb-tack and the conditions under which it is flipped remain stable
over time. Let x(n) denote the sequence of outcomes

x(n) = (x1, . . . , xn)
t .

Each trial is a Bernoulli trial with probability θ of success (obtaining a 1). This is
denoted by

Xi ∼ Be(θ), i = 1, . . . , n.

Using the Bayesian approach, the parameter θ is be regarded as the outcome of a random
variable, which is denoted by �. The outcomes are conditionally independent, given θ .
This is denoted by

Xi ⊥ Xj |�, i 
= j.

When � = θ is given, the random variables X1, . . . , Xn are independent, so that

pX(n)
(x(n)|θ) =

n∏
l=1

θxl (1− θ)1−xl = θk(1− θ)n−k

where k =∑n
l=1 xl .

The problem is to estimate θ , finding the value that is best for x(n). The Bayesian
approach is, starting with a prior density π�(.) over the parameter space �̃ = [0, 1], to
find the posterior density π�|X(n)

(.|x(n)).

π�|X(n)
(θ |x(n)) =

pX(n)|�(x(n)|θ)π�(θ)

pX(n)
(x(n))

= pX(n)|�(x(n)|θ)π�(θ)∫
pX(n)|�(x(n)|φ)π�(φ)dφ

.

Let π� be the uniform density on [0, 1]. This represents that initially You have no
preference concerning θ ; all values are equally plausible.4 The choice of prior may seem
arbitrary, but following the computations below, it should be clear that, from a large class
of priors, the final answer does not depend much on the choice of prior if the thumb-tack
is thrown a large number of times.

4 As previously stated, the prior distribution contains the ‘ad hoc’ element. The results obtained from any
statistical analysis are only reliable if there is sufficient data so that any inference will be robust under a rather
general choice of prior.

There are well known difficulties with the statement that a uniform prior represents no preference con-
cerning the value of θ . If the prior density for � is uniform, then the prior density of �2 will not be uniform,
so ‘no preference’ for values of � indicates that there is a distinct preference among possible initial values
of �2. If π1(x) = 1 for 0 < x < 1 is the density function for � and π2 is the density function for �2, then
π2(x) = 1

2x1/2 for 0 < x < 1.
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With the uniform prior,∫ 1

0
pX(n)|�(x(n)|θ)π�(θ)dθ =

∫ 1

0
θk(1− θ)n−kdθ = k!(n− k)!

(n+ 1)!
. (1.16)

This may be computed using integration by parts, as follows. Set

In,k =
∫ 1

0
θk(1− θ)n−kdθ,

then

In,0 =
∫ 1

0
(1− θ)ndθ = 1

n+ 1
.

Using integration by parts,

In,k =
[
−θk(1− θ)n−k+1

n− k + 1

]1

θ=0
+ k

n− k + 1
In,k−1 = k

n− k + 1
In,k−1.

From this,

In,k = k!

n(n− 1) . . . (n− k + 1)

1

(n+ 1)
= k!(n− k)!

(n+ 1)!
.

This is an example of the Beta integral . The posterior distribution is therefore a Beta
density

π�|X(n)
(θ |x(n)) =


(n+1)!

k!(n−k)!θ
k(1− θ)n−k 0 ≤ θ ≤ 1

0 otherwise.
(1.17)

It should be apparent that, in this case, there would have been tremendous difficulties
carrying out the integral if the prior had been anything other than the uniform, or a member
of the Beta family. The computational aspects are, or were, prior to the development of
Markov chain Monte Carlo (McMC) methods [26], the main drawback to the Bayesian
approach.

The Beta distribution is not restricted to integer values; the Euler gamma function is
necessary to extend the definition to positive real numbers.

Definition 1.10 (Euler Gamma function) The Euler Gamma function �(α) : (0,+∞)→
(0,+∞) is defined as

�(α) =
∫ ∞

0
xα−1e−xdx. (1.18)

The Euler Gamma function satisfies the following properties.

Lemma 1.1 For all α > 0, �(α + 1) = α�(α). If n is an integer satisfying n ≥ 1, then

�(n) = (n− 1)!
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Proof of Lemma 1.1 Note that �(1) = ∫∞0 e−xdx = 1. For all α > 0, integration by
parts gives

�(α + 1) =
∫ ∞

0
xαe−xdx = α�(α). (1.19)

The result follows directly. �
Definition 1.11 (Beta Density) The Beta density Beta(α, β) with parameters α > 0 and
β > 0 is defined as the function

ψ(t) =
{

�(α+β)

�(α)�(β)
tα−1(1− t)β−1 t ∈ [0, 1]

0 t 
∈ [0, 1]
(1.20)

The following results show that the Beta density is a probability density function for all
real α > 0 and β > 0.

Lemma 1.2 Set

B(α, β) =
∫ 1

0
tα−1(1− t)β−1dt.

Then

B(α, β) = �(α)�(β)

�(α + β)
.

Proof of Lemma 1.2 Directly from the definition of the Gamma function, using the
substitutions u = a2 and v = b2 and, at the end of the argument cos2 θ = t so that
dt
dθ
= −2 cos θ sin θ ,

�(α)�(β) =
∫ ∞

0

∫ ∞

0
e−uuα−1e−vvβ−1dudv

= 4
∫ ∞

0

∫ ∞

0
e−(a2+b2)a2(α−1)b2(β−1)abdadb

=
∫ ∞

−∞

∫ ∞

−∞
e−(a2+b2)|a|2α−1|b|2β−1dadb

=
∫ 2π

0

∫ ∞

0
e−r2

r2(α+β)−2| cos θ |2α−1| sin θ |2β−1rdrdθ

= 1

2

(∫ 2π

0
| cos θ |2α−1| sin θ |2β−1dθ

)∫ ∞

0
e−uu(α+β)−1du

=
(

2
∫ π/2

0
(cos θ)2(α−1)(sin θ)2(β−1) cos θ sin θdθ

)
�(α + β)

=
(∫ 1

0
tα−1(1− t)β−1dt

)
�(α + β)

= B(α, β)�(α + β).

The result follows directly. �
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Corollary 1.1 Let ψ denote the Beta density, defined in Equation (1.20), then∫ 1
0 ψ(θ)dθ = 1.

Proof of Corollary 1.1 This is a direct consequence of Lemma 1.2. �
It follows that, for binomial sampling, updating may be carried out very easily for any
prior distribution within the Beta family. Suppose the prior distribution π0 is the B(α, β)

density function, n trials are observed, with k taking the value 1 and n− k taking the
value 0. Then

π�|X(n)
(θ |x(n)) =

pX(n)|�(x(n)|θ)π�(θ)

pX(n)
(x(n))

= �(α + β)

�(α)�(β)pX(n)
(x(n))

θα+k−1(1− θ)β+n−k−1 = cθα+k−1(1− θ)β+n−k−1.

Since
∫ 1

0 π�|X(n)
(θ |x(n))dθ = 1, it follows from Lemma 1.2, that

π�|X(n)
(θ |x(n)) =

{
�(α+β+n)

�(α+k)�(β+n−k)
θα+k(1− θ)β+n−k θ ∈ (0, 1)

0 θ 
∈ (0, 1).

so that π�|X(n)
(θ |x(n)) is a B(α + k, β + n− k) density. �

Recall the definition of the maximum likelihood estimate: it is the value of θ that
maximizes p(x(n)|θ) = θk(1− θ)n−k . It is well known that

θ̂MLE

(
x(n)

) = k

n
.

The same pattern of thought can be applied to maximize the posterior density.

Definition 1.12 (Maximum Posterior Estimate) The maximum posterior estimate, θ̂MAP ,
is the value of θ which maximizes the posterior density π�|x(n)

(θ |x(n)).

When the posterior density is B(k + α, n− k + β), an easy computation gives

θ̂MAP = α + k

α + β + n
.

Note that when the prior density is uniform, as in the case above, the MAP and MLE are
exactly the same. The parameter, of course, is not an end in itself. The parameter ought
to be regarded as a means to computing the predictive probability. The posterior is used
to compute this; c.f. (1.14) above.

The predictive probability for the next toss Recall that the ‘parameter’ is, in general,
an artificial introduction, to help compute pXn+1|X(n)

(xn+1|x(n)). Suppose that π(θ |x(n))

has a B(α + k, β + n− k) distribution. The predictive probability for the next toss , for
a = 0 or 1, is given by

pXn+1|X(n)
(a|x(n)) =

∫ 1

0
pXn+1(a|θ)π�|X(n)

(θ |x(n))dθ.
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Since pXn+1(1|θ) = θ , it follows (using equation (1.19)) that

pXn+1|X(n)
(1|x(n)) =

�(α + β + n)

�(α + k)�(β + n− k)

∫ 1

0
θ(α+k+1)(1− θ)β+n−kdθ

= �(α + β + n)

�(α + k)�(β + n− k)

�(α + k + 1)�(β + n− k)

�(α + β + n+ 1)

= α + k

α + β + n
.

In particular, note that the uniform prior, π0(θ) = 1 for θ ∈ (0, 1), is the B(1, 1) density
function, so that for binomial sampling with a uniform prior, the predictive probability is

pXn+1|X(n)
(1|x(n)) =

k + 1

n+ 2
;

pXn+1|X(n)
(0|x(n)) =

n+ 1− k

n+ 2
.

(1.21)

This distribution, or more precisely k+1
n+2 , is known as the Laplace rule of succession. A

combinatorial derivation for it is given in [27].

Reconciling subjective predictive probabilities The example of agreeing to disagree,
referred to in the preceding, is due to R.J. Aumann, in [18]. Suppose two agents,
Robbieα and Robbieβ , both toss a thumb-tack once without communicating the outcome
to each other. Both Robbieα and Robbieβ have the same uniform prior on θ . Suppose
Robbieα and Robbieβ communicate the value of their respective predictive (posterior)
probabilities as

p({Xn+1 = 1}|Robbieα) = 2

3
; p({Xn+1 = 1}|Robbieβ) = 1

3
.

Note that in the conditional probabilities above Robbieα and Robbieβ actually refer to
respective states of knowledge. Now, since both the number of tosses by each agent and
the predictive probabilities held by the two agents is their common knowledge, they can
revise their opinions by (1.21) to

p({Xn+1 = 1}|Robbieα, Robbieβ) = 1+ 1

2+ 2
= 1

2
.

This holds as Robbieα and Robbieβ deduce by (1.21) that exactly one outcome of the
two tosses was 1 (and the other was 0). The revision would not hold if the number of
tosses was not common knowledge.

1.9 Multinomial sampling and the Dirichlet integral

Consider the case of multinomial sampling, where an experiment can take one of k

outcomes, labelled C1, . . . , Ck . Suppose that p(X = Cj) = θj , so that θ1 + . . .+ θk = 1.
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Consider n independent trials, X1, . . . , Xn. The notation 1A, to denote the indicator
function of a set A, will be used; that is

1A(x) =
{

1 x ∈ A

0 x 
∈ A.

Let 1Ci
(x) = 1 if x = Ci and 0 otherwise. Set

Yi =
n∑

j=1

1Ci
(Xj ).

Then Yi denotes the number of trials that result in outcome Ci . Note that

Y1 + . . .+ Yk = n.

Then (Y1, . . . , Yk) is said to have a multinomial distribution and

pY1,...,Yk
(x1, . . . , xk) = n!

x1!x2! . . . xk−1!xk!
θ

x1
1 . . . θ

xk

k ,

where the expression in front of the θ
x1
1 . . . θ

xk

k is the multinomial coefficient.
In the Bayesian approach, a prior distribution is put over θ1, . . . , θk . Then, using the

observations, this is updated using Bayes’ rule to a posterior probability distribution over
θ1, . . . , θk.

A particularly convenient family of distributions to use is the Dirichlet family, defined
as follows.

Definition 1.13 (Dirichlet Density) The Dirichlet density Dir(a1, . . . , ak) is the function

π(θ1, . . . , θk) =


�(a1+...+ak)∏k
j=1 �(ak)

(
∏k

j=1 θ
aj−1
j ) θj ≥ 0,

∑k
j=1 θj = 1,

0 otherwise,

(1.22)

where � denotes the Euler Gamma function, given in Definition 1.10. The parameters
(a1, . . . , ak) are all strictly positive and are known as hyper parameters .

This density, and integration with respect to this density function, are to be understood
in the following sense. Since θk = 1−∑k−1

j=1 θj , it follows that π may be written as
π(θ1, . . . , θk) = π̃(θ1, . . . , θk−1), where

π̃(θ1, . . . , θk−1)

=


�(a1+...+ak)∏k

j=1 �(ak)

(∏k−1
j=1 θ

aj−1
j

) (
1−∑k−1

j=1 θj

)ak−1
θj ≥ 0,

∑k−1
j=1 θj ≤ 1,

0 otherwise.

(1.23)

Clearly, when k = 2, this reduces to the Beta density . The following results show that
the Dirichlet density is a probability density function.
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Lemma 1.3 Set

D(a1, . . . , ak) =
∫ 1

0

∫ 1−x1

0

∫ 1−(x1+x2)

0
. . .

∫ 1−∑k−2
j=1 xj

0k−1∏
j=1

x
aj−1
j

1−
k−1∑
j=1

xj

ak−1

dxk−1 . . . dx1.

Then

D(a1, . . . , ak) =
∏n

j=1 �(aj )

�
(∑k

j=1 aj

) .

Proof of Lemma 1.3 Straight from the definition of the Euler Gamma function, using
the substitutions x2

j = uj ,

n∏
j=1

�(aj ) =
∫ ∞

0
. . .

∫ ∞

0
e
−∑k

j=1 uj

k∏
j=1

u
aj−1
j du1 . . . duk

= 2k

∫ ∞

0
. . .

∫ ∞

0
e
−∑k

j=1 x2
j

k∏
j=1

x
2aj−1
j dx1 . . . dxk

=
∫ ∞

−∞
. . .

∫ ∞

−∞
e
−∑k

j=1 x2
j

k∏
j=1

|xj |2aj−1dx1 . . . dxk.

Now let r =
√∑k

j=1 x2
j and zj = xj

r
for 1 ≤ j ≤ k − 1. Using xj = rzj for

j = 1, . . . , k − 1 and xk = r

√
1−∑k−1

j=1 z2
j , the computation of the Jacobian easy and

is left as an exercise:

J ((x1, . . . , xk)→ (r, z1, . . . , zk−1)) = rk−1√
1−∑k−1

j=1 z2
j

.

Then

n∏
j=1

�(aj ) =
∫ ∞

0
e−r2

r
2(
∑k

j=1 aj )−k
rk−1dr

×
∫ 1

−1

∫ 1−z2
1

−(1−z2
1)

. . .

∫ 1−∑k−2
j=1 z2

j

−(1−∑k−2
j=1 z2

j
)

k−1∏
j=1

z
2aj−1
j

1−
k−1∑
j=1

z2
j

ak−1/2

× 1√
1−∑k−1

j=1 z2
j

k−1∏
j=1

dzj
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= �

 k∑
j=1

aj


×
∫ 1

0

∫ 1−z2
1

0
. . .

∫ 1−∑k−2
j=1 z2

j

0

k−1∏
j=1

z
2(aj−1)

j

1−
k−1∑
j=1

z2
j

ak−1
k−1∏
j=1

2zjdzj

= �

 k∑
j=1

aj

D(a1, . . . , ak)

and the result follows. �

Theorem 1.1 The function π̃(θ1, . . . , θk−1) defined by Equation (1.23) satisfies∫ 1

0

∫ 1−θ1

0
. . .

∫ 1−∑k−2
j=1 θj

0
π̃(θ1, . . . , θk−1)dθk−1 . . . dθ1 = 1,

hence the Dirichlet density (Definition 1.13) is a well defined probability density function.

Proof This follows directly from the lemma. �

Properties of the Dirichlet density Theorem 1.1 shows that the Dirichlet density is a
probability density function.

Another very important property is that the Dirichlet densities Dir(a1, . . . , ak) :
a1 > 0, . . . , ak > 0 form a family of distributions that is closed under sampling .
Consider a prior distribution π� ∼ Dir(a1, . . . , ak) and suppose that an observation
x := (x1, . . . , xk) is made on Y := (Y1, . . . , Yk) based on n independent trials (i.e.
x1 + . . .+ xk = n). Let π�|Y denote the posterior distribution. Then, using Bayes’ rule,

π�|Y (θ1, . . . , θk) =
π�(θ1, . . . , θk−1)pY (x|θ1, . . . , θk)

pY (x)
.

It follows that

π�|Y (θ1, . . . , θk) = 1

pY (x)

n!

x1!x2! . . . xk−1!xk!
θ

a1+x1−1
1 . . . θ

ak+xk−1
k ,

where θk = 1−∑k−1
j=1 θj .

Since the posterior density is a probability density, belonging to the Dirichlet family,
it follows that the constant

1

pY (x)

n!

x1!x2! . . . xk−1!xk!
= �(a1 + · · · + ak + x1 + · · · + xk)∏k

j=1 �(aj + xj )

and hence that

π�|Y (θ1, . . . , θk) ∼ Dir(a1 + x1, . . . , ak + xk).

The results in this section were perhaps first found by G. Lidstone [28].
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Later in the text, the Dirichlet density will be written exclusively as a function of
k variables, π�(θ1, . . . , θk), where there are k − 1 independent variables and θk = 1−∑k−1

j=1 θj .
A question is how to select the hyper parameters a1, . . . , ak for the prior distribution.

The choice of a1 = . . . = ak = 1
k

was suggested by W. Perks in [29].

Definition 1.14 (Conjugate Prior) A prior distribution from a family that is closed under
sampling is known as a conjugate prior.

In [30], I.J. Good proved that exchangeability and sufficientness of samples implied that
the prior is necessarily Dirichlet, if k > 2. The notion of sufficientness was originally
defined by W.E. Johnson and I.J. Good. Loosely speaking, it means that the conditional
probability of seeing case i of k possible in the next sample given n past samples, depends
only on n, the number of times you have seen i in the past and NOT on the other cases .

Notes Full accounts of the coherence argument may be found, for example, in [4], [31]
and [32]. An introduction to inductive logic is given in [33].

The monograph [34] includes a thorough presentation of the topics of statistical infer-
ence and Bayesian machine learning. The papers [13] and [16] argue for subjective
probability as the appropriate inference and language procedures for artificial intelligence
agents, see also [14]. The book [35] provides a clear introduction to the application of
Bayesian methods in artificial intelligence.

The work [36] by Thomas Bayes (1702–1761) and Richard Price was published
posthumously in 1763. This paper makes difficult reading for a modern mathematician.
Consequently, there is a considerable literature investigating the question of what Bayes
actually proved, see, e.g. [22, 37–39] and the references therein. There is, however, a
wide consensus that [36] does contain Equation (1.17).

For this, Bayes deals with billiard balls. Suppose You throw one billiard ball o (orange)
on a square table (e.g. a billiard table without pockets) and measure the shortest distance
from the side of the table, when the side of the table is scaled in size to 1. Let this value
be denoted by p. Then You throw n balls W (white) on the table and note the number
of white balls, say k, to the left of the orange ball. Then it is understood that Bayes
computed the distribution of p given k given by Equation (1.17).

In this setting the uniform prior distribution on p is based on a physical understanding
that is verifiable by repeated experimentation.

There is even the question of whether Bayes was the first to discover the results
attributed to him. This is discussed in [40]. Another up-to-date report on the life and
thinking of the Reverend Thomas Bayes, by D.R. Bellhouse [41], also discusses the
question of whether he was the first to prove these results. The author has discovered
some previously unknown documents. The paper points out that the canonical picture of
Bayes is not proved to be an image of him.5

An alternative procedure on the billiard table is that n+ 1 balls W are thrown on the
table. One of them is then selected at random to play the role of the orange ball, and k,

5 see http://www-history.mcs.st-andrews.ac.uk/PictDisplay/Bayes.html.
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the number of balls to the left of the orange ball, is counted. Then You have a uniform
distribution 1

n+1 on the values of k.
It has been argued that Bayes demonstrated that a prior density π(θ) satisfying the

equality

n!

k!(n− k)!

∫ 1

0
θk(1− θ)n−kπ(θ)dθ = 1

n+ 1
(1.24)

for all 0 ≤ k ≤ n and all n must be the uniform density. It may be checked rather easily
using Equation (1.16) that the uniform density indeed satisfies this equality. F.H. Murray
in [42] observed that Equation (1.24) implies for k = n that∫ 1

0
θnπ(θ)dθ = 1

n+ 1
, (1.25)

which means that all the moments of π(θ) are given. Murray then went on to show that
these moments determine a unique distribution, which is in fact the uniform distribution.6

The probability in Equation (1.24) is a uniform distribution on the number of successes
in n Bernoulli trials with an unknown parameter. Hence Bayes (or Murray) has shown that
the uniform distribution on the number of successes is equivalent to the uniform density on
the probability of success . But this probability on the number of successes is a predictive
probability on observables. This understanding of the Bayesian inference due to Thomas
Bayes is different from many standard recapitulations of it, as pointed out in [39].

The ultimate question raised by reading of [36] is, ‘what is it all about?’. In other
words, what was the problem that Bayes was actually dealing with?

It is hardly credible that Bayes, a clergyman, should have studied this as a mere
curious speculation, and even less that scoring at a billiard room should have been at the
forefront of his mind. Richard Price writes in [36],

. . . the problem . . . mentioned [is] necessary to be solved in order to provide
a sure foundation for all our reasoning concerning past facts, and what is
likely to be hereafter . . .

For a layman in the history of philosophy the argument in [37] and [43] may carry a
convincing power: Bayes and Price developed an inductive logic as a response to the
critical and, in particular, anti-clerical objections to induction, causation and miracles
advanced by David Hume [3] in his book of 1748; the famous philosopher and scholar
was a contemporary of Bayes and Price.

Further evidence that this consideration may have prompted Bayes to develop a math-
ematical framework for inductive logic is seen from his theological interests. In 1731,
he published the following paper: ‘Divine Benevolence, or an Attempt to Prove That
the Principal End of the Divine Providence and Government is the Happiness of His
Creatures’.

6 The moment problem is a classic problem; whether or not the moments of a distribution uniquely char-
acterize the distribution. The technique usually employed is to check whether the Carlemann conditions are
satisfied. For this problem, Murray showed directly that the moments uniquely determined the distribution.
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The models that were later to be called Bayesian networks were introduced into
artificial intelligence by J. Pearl, in the article [44]. Within the artificial intelligence
literature, this is a seminal article, which concludes with the following statement: The
paper demonstrates that the centuries-old Bayes formula still retains its potency for serving
as the basic belief revising rule in large, multi hypotheses, inference systems .
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1.10 Exercises: Probabilistic theories of causality, Bayes’
rule, multinomial sampling and the Dirichlet density

1. This exercise considers the statistical notion of association due to G.U. Yule, who
used it in a classical statistical study to demonstrate the positive effect of innoculation
against cholera.
Here the association between two events A and B, denoted by α (A,B), is defined as

α (A, B) = p (A ∩ B)− p(A) · p(B).

(a) Show that

α (A,B) = −α
(
A, Bc

)
,

where Bc is the complement of B.

(b) Show that

α (A, B) = α
(
Ac, Bc

)
.

Comment: Association is clearly symmetric. That is, for any two events A and
B, α (A, B) = α (B,A). It does not seem reasonable to claim that a decrease in
cholera causes an increase in the number of innoculations. In this case it is common
sense to conclude that there is an underlying causal relation, where innoculation
(say B) causes a decreased prevalence of cholera (A), although without a controlled
experiment, it is not possible to conclude that there is not a hidden factor C that both
causes cholera and makes innoculation less likely.

2. On a probabilistic theory of causality Following the theory of causality due to P.
Suppes [19] an event Bs is defined as a prima facie cause7 of the event At if and
only if the following three statements hold:

• s < t ,

• p (Bs) > 0

• p (At | Bs) >p (At).

Here the parameter is considered as a time parameter, and s < t means that Bs occurs
prior to At ; a cause occurs before an effect.
An event Bs is defined as a prima facie negative cause of an event At [19] if and
only if the following three statements hold:

• s < t ,

• p (Bs) > 0

7 Prima facie is a Latin expression meaning ‘on its first appearance’, or ‘by first instance’. Literally the
phrase translates as first face, ‘prima’ first, ‘facie’ face. It is used in modern legal English to signify that on
first examination, a matter appears to be self-evident from the facts. In common law jurisdictions, ‘prima facie’
denotes evidence that (unless rebutted) would be sufficient to prove a particular proposition or fact.
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• p (At | Bs) < p (At).

Intuitively, a negative cause is an event that prevents another event from happening.
For example, the theory and practice of preventive medicine focuses on certain types
of negative causation. In the problems the indices s, t are dropped for ease of writing.

(a) Show that if Bc is a prima facie negative cause of A, then B is a prima facie
cause of A.

(b) Show that if B is a prima facie cause of A, then Bc is a prima facie cause of Ac.
Also, show that if B is a prima facie negative cause of A, then Bc is a prima
facie negative cause of Ac.

(c) Recall the definition of association from Exercise 1. Show that if B is a prima
facie cause of A, then α(A, B) > 0 and that if B is a prima facie negative cause
of A, then α(A, B) < 0.

3. On odds and the weight of evidence Let p be a probability distribution over a
space X. The odds of an event A ⊆ X given B ⊆ X under p, denoted by Op (A | B),
is defined as

Op (A | B) = p (A | B)

p (Ac | B)
. (1.26)

The odds ration will play an important role in Chapter 7, which considers sensitivity
analysis. Next, the weight of evidence E in favour of an event A given B, denoted
by W (A : E | B), is defined as

W (A : E | B) = log
Op (A | B ∩ E)

Op (A | B)
. (1.27)

Show that if p(E ∩ Ac ∩ B) > 0, then

W (A : E | B) = log
p (E | A ∩ B)

p (E | Ac ∩ B)
. (1.28)

4. On a generalized odds and the weight of evidence Let p denote a probability
distribution over a space X and let H1 ⊆ X, H2 ⊆ X, G ⊆ X and E ⊆ X. The odds
of H1 compared to H2 given G, denoted by Op (H1/H2 | G), is defined as

Op (H1/H2 | G) = p (H1 | G)

p (H2 | G)
. (1.29)

The generalized weight of evidence is defined by

W (H1/H2 : E | G) = log
Op (H1/H2 | G ∩ E)

Op (H1/H2 | G)
. (1.30)

Show that if p(H1 ∩G ∩ E)> 0 and p(H2 ∩G ∩ E)> 0 then

W (H1/H2 : E | B) = log
p (E | H1 ∩G)

p (E | H2 ∩G)
. (1.31)

Clearly this is just a log likelihood ratio and these notions are another expression for
posterior odds = likelihood ratio × prior odds.
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5. In [45], I.J. Good discusses the causes of an event that are necessary and sufficient
from probabilistic view point. For example, let E is the event of being hit by a
car and F the event of going for a walk. Then F tends to be a necessary cause
of E. The quantitites Qsuf (E : F | U) and Qnec (E : F | U) are defined to measure
the probabilistic tendency of an event F to be a sufficient and/or necessary cause,
respectively, for an event E with background information U , by the weights of
evidence discussed in the preceding exercise. They are defined respectively by

Qsuf (E : F | U) = W
(
F c : Ec | U) (1.32)

and

Qnec (E : F | U) = W (F : E | U) . (1.33)

In view of the preceding definitions, Qsuf may be read as the weight of evidence
against F provided by non-occurrence of E. Similarly, Qnec is the the weight of
evidence in favour of F given by occurrence of E. Both quantities are computed, to
borrow a philosophical phrase, ‘given the state of universe U just before F occurred’.

(a) If p (Ec | F ∩ U)> 0, show that

Qsuf (E : F | U) = log
p (Ec | F c ∩ U)

p (Ec | F ∩ U)
. (1.34)

(b) If p (E | Fc ∩ U)> 0, show that

Qnec (E : F | U) = log
p (E | F ∩ U)

p (E | F c ∩ U)
. (1.35)

6. This exercise considers a few more properties of Qsuf and Qnec. Following Exercise
4 above, set

Qnec (E : F1/F2 | U) = W (F1/F2 : E | U)

which is the necessitivity of E of F1 against F2 and

Qsuf (E : F2/F1 | U) = W
(
F1/F2 : Ec | U) ,

which is the sufficientivity of E of F1 against F2.

(a) Show that Qsuf (E : F | U) < 0, if and only if Qnec (E : F | U) < 0. Compare
with prima facie negative cause in Exercise 2.

(b) Show that

Qnec (E : F1/F2 | U) = Qsuf
(
Ec : F2/F1 | U

)
.

This is called a probabilistic contraposition .
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(c) Show that

Qnec (E : F | U) = Qsuf
(
Ec : F c | U) .

This may interpreted along the following lines. Going for a walk F tends to be
a necessary cause for being hit by a vehicle E, whereas staying home tends to
be a sufficient cause for not being hit by a vehicle. (Note that cars and aircraft
are known to have crashed into houses.) Both Qnec and Qsuf should have high
values in this case.

7. Let X = (X1, . . . , Xn)
t be an exchangeable sample of Bernoulli trials and let T =∑n

j=1 Xj . Show that there is a probability density function π such that

(a)

pT (t) =
∫ 1

0

(
n

t

)
θ t (1− θ)n−tπ(θ)dθ, t = 0, 1, . . . , n

(b)

E[T ] = n

∫ 1

0
θπ(θ)dθ.

You may use the result of DeFinetti.

8. Consider a sequence of n independent, identically distributed Bernoulli trials, with
unknown parameter θ , the ‘success’ probability. For a uniform prior over θ , show
that the posterior density for θ , if the sequence has k successes, is

π�|x
(
θ | x) = { (n+1)!

k!(n−k)! · θk (1− θ)n−k 0 ≤ θ ≤ 1
0 elsewhere.

(1.36)

9. Consider the thumb-tack experiment and the conditional independence model for the
problem and the uniform prior density for θ . What is PXn+1|X(n)

(
head|x(n)

)
, where

x(n) denotes the outcome of the first n throws?

10. Consider multinomial sampling, where θj is the probability that category j is
obtained, with prior density π�(θ1, . . . , θL) is the Dirichlet prior Dir(αq1, . . . , αqL)

with
∑L

j=1 qj = 1, defined by

π�(θ) =


�(α)∏L
j=1 �(αqj )

∏L
j=1 θ

αqj−1
j θ1 + . . .+ θL = 1, 0 ≤ θi ≤ 1

0 elsewhere.

Show that for multinomial sampling, with the Dirichlet prior, the posterior density
p�|x

(
θ |x; α) is the Dirichlet density

Dir (n1 + αq1, . . . , nL + αqL) ,

which is shorthand for

π�|X(n)

(
θ |x(n);αq

)
= � (n+ α)∏L

i=1 � (αqi + ni)

L∏
i=1

θ
ni+αqi−1
i , (1.37)

where q = (q1, . . . , qL).
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11. A useful property of the Dirichlet density is that the predictive distribution of Xn+1

may be computed explicitly by integrating pXn+1|� (. | θ) with respect to the posterior
distribution containing the stored experience x(n). Using the previous exercise, show
that

pXn+1|X(n)

(
xi | x(n)

) = ∫
SL

θiπ
(
θ1, . . . , θL|x;αq

)
dθ1 . . . dθL = ni + αqi

n+ α
. (1.38)

12. Let � = (�1, . . . , �L) be a continuous random vector with Dir (α1, . . . , αL) distri-
bution. Compute Var (�i).

13. Prove the Laplace rule of succession . Namely, let {X1, . . . , Xn+1} be independent,
identically distributed Bernoulli random variables, where pXi

(1) = 1− pXi
(0) = θ

and θ ∼ U(0, 1). Then the Laplace rule of succession states that

p({Xn+1 = 1}|{X1 + . . .+Xn = s}) = s + 1

n+ 2
.

14. Let V = (V1, . . . , VK) be a continuous random vector, with

V ∼ Dir (a1, . . . , aK) ,

and set

Ui =
Vix

−1
i∑K

i=1 Vix
−1
i

, , i = 1, . . . , K,

where x = (x1, . . . , xK) is a vector of positive real numbers; that is, xi > 0 for each
i = 1, . . . , K . Show that U = (U1, . . . , UK) has density function

�
(∑k

i=1 ai

)
∏K

i=1 �(ai)

K∏
i=1

u
ai−1
i

(
1∑K

i=1 uixi

)∑K
i=1 ai K∏

i=1

x
ai

i .

This density is denoted

U ∼ S
(
a, x

)
.

This is due to J.L. Savage [46]. Note that the Dirichlet density is obtained as a special
case when xi = c for i = 1, . . . , K .

15. The next two examples illustrate how the Savage distribution of the previous exercise
can arise in Bayesian analysis, for updating an objective distribution over the subjec-
tive assessments of a probability distribution by several different researchers, faced
with a common set of data. Consider several researchers studying an unknown quan-
tity X, where X can take values in {1, 2, . . . , K}. Each researcher has his own initial
assessment of the probability distribution V = (V1, . . . , VK) for the value that X

takes. That is, for a particular researcher,

Vi = pX (i) , i = 1, . . . , K.
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It is assumed that

V ∼ Dir (a1, . . . , aK) .

Each researcher observes the same set of data with the common likelihood function

li = p (data|{X = i}) , i = 1, . . . , K.

The coherent posterior probability of a researcher is

Ui = p ({X = i} | data) , i = 1, 2, . . . , K.

Let U = (U1, . . . , UK). Prove that

U ∼ S
(
a, l−1) ,

where a = (a1, . . . , aK) and l−1 =
(
l−1
1 , . . . , l−1

K

)
. This is due to J.M. Dickey [47].

16. Show that the family of distributions S
(
a, l−1

)
is closed under updating of the

opinion populations. In other words, if

V ∼ S
(
a, z
)
,

before the data is considered, then

U ∼ S
(
a, z× l−1) ,

after the data update, where

z× l−1 =
(
z1l
−1
1 , . . . , zKl−1

K

)
.



2

Conditional independence, graphs
and d -separation

2.1 Joint probabilities

Consider a random vector X = (X1, . . . , Xd), defined on a state space X = X1 × . . .×
Xd , where Xj is the state space for Xj , where Xj = {x(1)

j , . . . , x
(jk)

j } for j = 1, . . . , d .
In principle, the joint probability function pX1,...,Xd

contains full information about the d

random variables X1, . . . , Xd . But, although mathematically complete, this is not usually
such a useful description in practice; the important features of the distribution may not be
immediately clear in a table that has

∏d
j=1 kj elements, if this number is large. Further-

more, in many situations, the elementary building blocks will be low order conditional
probabilities, each defined over small groups of variables.

Definition 2.1 (Independence) Two discrete random variables X and Y are independent
if and only if

pX,Y = pXpY .

A collection of d random variables {X1, . . . , Xd} is said to be jointly independent if for
any random vector (Xi1 , . . . , Xim) where ij 
= ik for all j 
= k,

pXi1 ,...,Xim
=

m∏
j=1

pXij
.

Bayesian Networks: An Introduction T. Koski, J. Noble
 2009 John Wiley & Sons, Ltd
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In practice, dependence between variables, or independence, can often be detected or
understood even if the precise numerical values of the joint probability distribution are
unavailable. Likewise, the relationships of conditional dependence (for example, the con-
ditional distribution of X and Y given Z and the distribution of Z) often provide more
convenient basic building blocks than the joint probability function pX,Y,Z, since the
conditional probability distribution is often easier to assess.

In many cases, qualitative dependencies among variables may be asserted relatively
easily, before making numerical assignments for the relevant probabilities. This is simply
an assertion as to whether or not two sets of variables are conditionally independent given
another set of variables. Such a dependence structure may be modelled by a directed
acyclic graph , where the nodes of the graph represent random variables.

In many problems, the directed acyclic graph may be interpreted in the following
way: a directed edge between two variables may be used to indicate the modelling
assumption that there is a direct causal connection between the two variables, the cause
to effect relationship indicated by the direction of the arrow. Lack of any arrow indicates
that there is no direct causal relation between the variables. The dependence structure
between different variables in the network is described by the structure of the directed
acyclic graph which, under certain circumstances, may have a causal interpretation. This
leads to the notion of d-separation of variables (or directed separation), which will be
introduced later.

It will be shown that d-separation characterises the conditional independence state-
ments that can be inferred from a given DAG. A DAG where all conditional independence
statements may be inferred from d-separation ‘faithfully’ represents the probability distri-
bution. That is, when the representation is ‘faithful’, there are no artificial dependencies
that have to be considered simply through an unfortunate choice of parametrization. In sit-
uations where there is a causal structure between the variables, it can, in many situations,
be modelled by a faithful DAG. This idea is expanded in [48].

2.2 Conditional independence

Conditional independence (CI) is the key probabilistic notion in Bayesian networks. The
following gives a quick summary of some basic properties of CI.

Characterizations of CI Let (X, Y , Z) be three discrete random vectors, with joint
probability function pX,Y ,Z. Let XX, XY and XZ denote the state spaces for X, Y and Z

respectively. The vectors X and Y are said to be conditionally independent given Z if
for all (x, y, z) ∈ XX × XY × XZ ,

pX,Y ,Z(x, y, z) = pX|Z(x|z)pY |Z(y|z)pZ(z).

This will be indicated by the notation

X ⊥ Y |Z.

The notation X ⊥ Y denotes that X and Y are independent; that is, pX,Y (x, y) =
pX(x)pY (y) for all (x, y) ∈ XX × XY . This may be considered as X ⊥ Y |φ, where φ

denotes the empty vector. Similarly, for a set V = {X1, . . . , Xd} of random variables, and
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three subsets A ⊂ V , B ⊂ V , C ⊂ V , the notation A ⊥ B|C denotes that the variables
in A are independent of the variables in B once the variables in set C are instantiated.
A ⊥ B means that the variables in A are independent of those in B and could be written
A ⊥ B|φ, where φ denotes the empty set.

Theorem 2.1 The following are all equivalent to X ⊥ Y |Z:

1) For all (x, y, z) ∈ XZ × XY × XZ such that pY |Z(y|z) > 0 and pZ(z) > 0,

pX|Y ,Z(x|y, z) = pX|Z(x|z).
2) Then there exists a function a : XX × XZ → [0, 1] such that for all (x, y, z) ∈

XX × XY × XZ satisfying pY |Z(y|z) > 0 and pZ(z) > 0,

pX|Y ,Z(x|y, z) = a(x, z)

3) There exist functions a : XX × XZ → R and b : XY × XZ → R such that for all
(x, y, z) ∈ XX × XY × XZ satisfying pZ(z) > 0,

pX,Y |Z(x, y|z) = a(x, z)b(y, z)

4) For all (x, y, z) ∈ XX × XY × XZ such that pZ(z)> 0,

pX,Y ,Z(x, y, z) = pX,Z(x, z)pY,Z(y, z)

pZ(z)
.

5) There exist functions a : XX × XZ → R and b : XY × XZ → R such that

pX,Y ,Z(x, y, z) = a(x, z)b(y, z).

Proof of Theorem 2.1

CI �⇒ 1) This is proved as follows: firstly,

pX,Y ,Z(x, y, z) = pX|Y ,Z(x|y, z)pY |Z(y|z)pZ(z).

Recall that CI is defined as

pX,Y ,Z(x, y, z) = pX|Z(x|z)pY |Z(y|z)pZ(z) ∀(x, y, z) ∈ XX × XY × XZ.

By equating these two expressions, it follows that if CI holds, then for all (x, y, z) such
that pZ(z)> 0, either pY |Z(y|z) = 0 or pX|Z(x|z) = pX|Y ,Z(x|y, z) so CI �⇒ 1).

1) �⇒ 2) The first characterization of CI implies the second by taking a(x, z) =
pX|Z(x|z).
2) �⇒ 3) The second implies the third by taking

pX,Y |Z(x, y|z) = pX|Y ,Z(x|y, z)pY |Z(y|z),
where, from 2), a(x, z) = pX|Y ,Z(x|y, z). The result follows by taking b(y, z) =
pY |Z(y|z).
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3) �⇒ 4) The third implies the fourth as follows: assume there are two functions a and
b such that

pX,Y |Z(x, y|z) = a(x, z)b(y, z). (2.1)

Set A(z) =∑x∈XX
a(x, z) and B(z) =∑y∈XY

b(y, z). By summing over XY on both
sides of Equation (2.1), it follows that

pX|Z(x|z) = B(z)a(x, z) (2.2)

and by summing over XX on both sides of Equation (2.1), it follows that

pY |Z(y|z) = A(z)b(y, z).

It follows, from summing over XX on both sides of Equation (2.2), that B(z)A(z) = 1.
From this, it follows directly that

pX,Y |Z(x, y|z) = a(x, z)b(y, z) = B(z)a(x, z)A(z)b(y, z) = pX|Z(x|z)pY |Z(y|z).
This, incidentally, shows that 3) implies CI. If 3) holds, then since a(x, z)b(y, z) =
pX|Z(x|z)pY |Z(y|z), it follows that

pX,Y ,Z(x, y, z) = pX,Y |Z(x, y|z)pZ(z)

= a(x, z)b(y, z)pZ(z) = pX|Z(x|z)pY |Z(y|z)pZ(z) = pX,Z(x, z)pY,Z(y, z)

pZ(z)
,

and therefore 3) �⇒ 4) is proved.

4) �⇒ 5) This is proved by taking (for example) a(x, z) = pX|Z(x|z) and b(y, z) =
pY |Z(y|z)pZ(z).

5) �⇒ CI This is proved as follows: 5) gives

pX,Y,Z(x, y, z) = pX|Y ,Z(x|y, z)pY |Z(y|z)pZ(z) = a(x, z)b(y, z). (2.3)

Set C(z) =∑x∈XX
a(x, z) and D(z) =∑y∈XY

b(y, z). It follows, by summing over XX

first and then summing over XY in Equation (2.3), that C(z)D(z) = pZ(z). Set

ã(x, z) = a(x, z)

A(z)
pZ(z)

and

b̃(y, z) = b(y, z)

B(z)
.

It follows that

pX,Y ,Z(x, y, z) = pX|Y ,Z(x|y, z)pY |Z(y|z)pZ(z) = ã(x, z)b̃(y, z)

and summing over XX gives

pY |Z(y|z)pZ(z) = b̃(y, z)pZ(z).
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Therefore, for pZ(z) > 0, b̃(y, z) = pY |Z(y|z). Similarly, it follows that ã(x, z) =
pX|Y ,Z(x|y, z)pZ(z). For pZ(z) > 0, it follows that pX|Y ,Z(x|y, z) = pX|Z(x|z), so that
ã(x, z) = pX|Z(x|z)pZ(z) and

pX,Y,Z(x, y, z) = pX|Z(x|z)pY |Z(y|z)pZ(z)

thus proving CI. The proof of Theorem 2.1 is complete. ��

2.3 Directed acyclic graphs and d-separation

A graphical model is a representation of a collection of the components of a random
vector X = (X1, . . . , Xd) as nodes of a graph G = (V, E), where important aspects of
the conditional independence structure between the variables may be inferred from the
structure of the graph, and in some cases the whole conditional independence structure
is described by the graph.

2.3.1 Graphs

This section introduces some of the necessary graph theory. The remainder is presented
in Chapter 4.

Definition 2.2 (Graph, Simple Graph) A graph G = (V, E) consists of a finite set of nodes
V and an edge set E, where each edge is contained in V × V . The edge set therefore
consists of ordered pairs of nodes.

Let V = {α1, . . . , αd}. A graph is said to be simple if E does not contain any edges
of the form (αj , αj ) (that is a loop from the node to itself) and any edge (αj , αk) ∈ E

appears exactly once. That is, multiple edges are not permitted.
For any two distinct nodes α and β ∈ V , the ordered pair (α, β) ∈ E if and only if

there is a directed edge from α to β. An undirected edge will be denoted 〈α, β〉. In terms
of directed edges,

〈α, β〉 ∈ E ⇔ (α, β) ∈ E and (α, β) ∈ E.

For a simple graph that may contain both directed and undirected edges, the edge set E

may be decomposed as E = D ∪ U , where D ∩ U = φ, the empty set. The sets U and D

are defined by

〈α, β〉 ∈ U ⇔ (α, β) ∈ E and (β, α) ∈ E.

(α, β) ∈ D ⇔ (α, β) ∈ E and (β, α) 
∈ E.

For the definitions of ‘path’, ‘trail’ and ‘cycle’, an undirected edge will be considered as
a single edge.

All the graphs considered in this text will be simple graphs and the term ‘graph’ will
be used to mean ‘simple graph’. If (αi, αj ) ∈ D, this is denoted by an arrow going
from αi to αj . If 〈αi, αj 〉 ∈ U , this is denoted by an edge between the two variables αi

and αj .
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a1

a4

a6 a7a5

a2 a3

Figure 2.1 Example of a graph illustrating Definition 2.3.

Figure 2.1 gives an example of a graph that will be used to illustrate the definitions
that follow. The node set is

V = {α1, α2, α3, α4, α5, α6, α7}
and the edge set is

E = {(α1, α2), (α1, α3), (α1, α4), (α2, α3), (α2, α5), (α3, α5), (α4, α6), (α4, α7)}.
The node α4, for example, has neighbours α1, α6, α7, since the edge set contains
(α1, α4), (α4, α6) and (α4, α7).

Definition 2.3 (Parent, Child, Directed and Undirected Neighbour, Family) Consider a
graph G = (V, E), where V = {α1, . . . , αd} and let E = D ∪ U , where D is the set of
directed edges and U the set of undirected edges. These are defined by

(α, β) ∈ D ⇔ (α, β) ∈ E, (β, α) 
∈ E

〈α, β〉 ∈ U ⇔ (α, β) ∈ E, (β, α) ∈ E.

Let αj , αk ∈ G. If (αj , αk) ∈ D, then αk is referred to as a child of αj and αj as a parent
of αk .

For any node α ⊆ V , the set of parents is defined as

�(α) = {β ∈ V | (β, α) ∈ D} (2.4)

and the set of children is defined as

Ch(α) = {β ∈ V | (α, β) ∈ D}. (2.5)

For any subset A ⊆ V , the set of parents of A is defined as

�(A) = ∪α∈A{β ∈ V \A | (β, α) ∈ D}. (2.6)

The set of directed neighbours of a node α is defined as

N(d)(α) = �(α) ∪ Ch(α)

and the set of undirected neighbours of α as

N(u)(α) = {β ∈ V | 〈α, β〉 ∈ U }. (2.7)
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For any subset A ⊆ V , the set of undirected neighbours of A is defined as

N(u)(A) = ∪α∈A{β ∈ V \A | 〈α, β〉 ∈ U }. (2.8)

For a node α, the set of neighbours N(α) is defined as

N(α) = N(u)(α) ∪N(d)(α).

The family of a node β is the set containing the node β together with its parents and
undirected neighbours. It is denoted:

F(β) = {β} ∪�(β) ∪N(u)(β) = {family of β}.

When G is undirected, this reduces to F(β) = {β} ∪N(β).
When the variables have a clear indexing set, for example, the variables of the set

V = {α1, . . . , αd} are clearly indexed by the set Ṽ = {1, . . . , d}, the notation �j will
also be used to denote the parent set �(αj ) of variable αj . Similarly with children, family
and neighbour.

The notation α ∼ β will be used to denote that α ∈ N(β); namely, that α and β are
neighbours. Note that α ∈ N(β) �⇒ β ∈ N(α).

For example, in Figure 2.1, �(α1) = �1 = φ where φ denotes the empty set,
�(α2) = �2 = {α1}, �(α3) = �3 = {α2, α1}, �(α4) = �4 = {α1}, �(α5) = �5 =
{α2, α3}, �(α6) = �6 = {α4} and �(α7) = �7 = {α4}.

In this text, a directed edge (αj , αk) is indicated by a pointed arrow from αj to αk;
that is, from the parent to the child. In the graph in Figure 2.1, α4 has a single parent α1

and two children α6 and α7.

Definition 2.4 (Directed, Undirected Graph) If all edges of a graph are undirected, then
the graph G is said to be undirected. If all edges are directed, then the graph is said to
be directed. The undirected version of a graph G, denoted by G̃, is obtained by replacing
the directed edges of G by undirected edges.

The graph in Figure 2.1 is a directed graph.

Definition 2.5 (Trail) Let G = (V, E) be a graph, where E = D ∪ U ; D ∩ U = φ, D

denotes the directed edges and U the undirected edges. A trail τ between two nodes α ∈ V

and β ∈ V is a collection of nodes τ = (τ1, . . . , τm), where τi ∈ V for each i = 1, . . . , m,
τ1 = α and τm = α and such that for each i = 1, . . . , m− 1, τi ∼ τi+1. That is, for each
i = 1, . . . , m− 1, either (τi, τi+1) ∈ D or (τi+1, τi) ∈ D or 〈τi, τi+1〉 ∈ U .

For example, in the graph in Figure 2.1, there is a trail τ = (α3, α1, α4, α7) between α3

and α7, since the edges (α1, α3), (α1, α4), (α4, α7) are contained in the edge set.

Definition 2.6 (Sub-graph, Induced Sub-graph) Let A ⊆ V and EA ⊆ E ∩ A× A. Then
F = (A, EA) is a sub graph of G.

If A ⊂ V and EA = E ∩ A× A, then GA = (A, EA) is the sub-graph induced
by A.
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Note that in general it is possible for a sub-graph to contain the same nodes, but fewer
edges, but the sub-graph induced by the same node set will have the same edges.

Definition 2.7 (Connected Graph, Connected Component) A graph is said to be con-
nected if between any two nodes αj ∈ V and αk ∈ V there is a trail. A connected com-
ponent of a graph G = (V, E) is an induced sub-graph GA such that GA is connected and
such that if A 
= V , then for any two nodes (α, β) ∈ V × V such that α ∈ A and β ∈ V \A,
there is no trail between α and β.

It is clear that the graph in Figure 2.1 is connected.

Definition 2.8 (Path, Directed Path) Let G = (V, E) denote a simple graph, where E =
D ∪ U . That is, D ∩ U = φ, D denotes the directed edges and U denotes the undirected
edges. A path of length m from a node α to a node β is a sequence of distinct nodes
(τ0, . . . , τm) such that τ0 = α and τm = β such that (τi−1, τi) ∈ E for each i = 1, . . . , m.
That is, for each i = 1, . . . , m, either (τi−1, τi) ∈ D, or 〈τi−1, τi〉 ∈ U .

The path is a directed path if (τi−1, τi) ∈ D for each i = 1, . . . , m. That is, there are
no undirected edges along the directed path.

It follows that a trail in G is a sequence of nodes that form a path in the undirected
version G̃.

Unlike a trail, a directed path (τ0, . . . , τm) requires that the directed edge (τi, τi+1) ∈
D for all i = 0, . . . , m− 1. Therefore, in Figure 2.1, there is no path between α3 and
α7, although there is a trail between these two nodes.

Definition 2.9 (Descendant, Ancestor) Let G = (V, E) be a graph. A node α is a descen-
dant of a node β if and only if there is a directed path from α to β. A node γ is an ancestor
of a node α if and only if there is a directed path from γ to α.

Let E = U ∪D, where U denotes the undirected edges and D denotes the directed
edges. The set of descendants D(α) of a node α is defined as

D(α) = {β ∈ V | ∃τ = (τ0, . . . , τk) : τ0 = α, τk = β, (τj , τj+1) ∈ D, j = 0, 1, . . . , k}.
(2.9)

The set of ancestors A(α) of a node α is defined as

A(α) = {β ∈ V | ∃τ = (τ0, . . . , τk) : τ0 = β, τk = α, (τj , τj+1) ∈ D, j = 0, 1, . . . , k}.
(2.10)

In both cases, the paths are directed; they consist of directed edges only; they do not
contain undirected edges.

In Figure 2.1, all the nodes α2, α3, α4, α5, α6, α7 are descendants of α1, while α3 and α5

are the descendants of α2.

Definition 2.10 (Cycle) Let G = (V, E) be a graph. An m-cycle in G is a sequence of
distinct nodes

τ0, . . . , τm−1

such that τ0, . . . , τm−1, τ0 is a path (Definition 2.9).
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Definition 2.11 (Directed Acyclic Graph (DAG)) A graph G = (V, E) is said to be a
directed acyclic graph if each edge is directed (that is, G is a simple graph such that
for each pair (α, β) ∈ V × V , (α, β) ∈ E �⇒ (β, α) 
∈ E) and for any node α ∈ V there
does not exist any set of distinct nodes τ1, . . . , τm such that α 
= τi for all i = 1, . . . , m

and (α, τ1, . . . , τm, α) forms a directed path. That is, there are no m-cycles in G for any
m ≥ 1.

The graph in Figure 2.1 is a directed acyclic graph.

Definition 2.12 (Tree) A tree is a graph G = (V, E) that is connected and such that for
any node α ∈ V , there is no trail between α and α and for any two nodes α and β in V

with α 
= β, there is a unique trail. A leaf of a tree is a node that is connected to exactly
one other node.

The graph in Figure 2.1 is not a tree; τ = (α1, α2, α3, α1) is a trail from α1 to α1.
Figure 2.2 gives an example of a tree.

Definition 2.13 (Forest) A forest is a graph where all its connected components (Defini-
tion 2.7) are trees.

This is illustrated in Figure 2.3. Each connected component in Figure 2.3 is a tree.

2.3.2 Directed acyclic graphs and probability distributions

Now consider a random vector X = (X1, . . . , Xd). Throughout the text, when the nodes
of the graph represent random variables, they will be labelled by random variables that

a1

a5

a6a2

a3

a4

a7

Figure 2.2 Example of a tree.

a4

a6 a7

a5

a8 a9

a1

a2 a3

Figure 2.3 Example of a forest.
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they represent. That is, V = {X1, . . . , Xd} will denote the node set for the graph, which
is a set of random variables. A directed acyclic graph G = (V, E) may be used to model
assumptions that certain variables have direct causal relations on others. If a variable Xi

is considered to have a direct causal effect on variable Xj , then (Xi, Xj ) ∈ E. For a vari-
able Xi , �i = {Xj |(Xj , Xi) ∈ E}. In situations where immediate associations between
variables are considered to be causal, �i , the parent set for variable Xi , is the complete
set of variables in the model whose values are considered to have a direct cause on the
value taken by Xi .

A variable can have any number of states . For example, (red, green, blue, brown)
(four states), or number of children in a family (0, 1, 2, 3, 4, 5, 6, > 6) (eight states). In
this text, attention is restricted to variables with a finite number of possible states. A
variable is in exactly one of its states, which may or may not be known.

Factorization of a probability distribution For any collection of random variables
(X1, . . . , Xd), it always holds, as a straightforward consequence of the definition of
conditional probability, that the probability function pX1,...,Xd

may be written as

pX1,...,Xd
= pX1pX2|X1pX3|X1,X2 . . . pXd |X1,...Xd−1 .

By reordering the variables, it therefore holds that for any ordering σ of (1, . . . , d),

pX1,...,Xd
= pXσ(1)

pXσ(2)|Xσ(1)
pXσ(3)|Xσ(1),Xσ(2)

. . . pXσ(d)|Xσ(1),...Xσ(d−1)
.

This way of writing a probability distribution is referred to as a factorization. A directed
acyclic graph may be used to indicate that certain variables are conditionally independent
of other variables, thus indicating how a factorization may be simplified.

Definition 2.14 (Factorization Along a Directed Acyclic Graph) A probability function
pX1,...,Xd

over the variables X1, . . . , Xd is said to factorize along a directed acyclic graph
G if the following holds: there is an ordering Xσ(1), . . . , Xσ(d) of the variables such that

• �(Xσ(1)) = �σ(1) = φ; that is, Xσ(1) has no parents.

• For each j , �(Xσ(j)) = �σ(j) ⊂ {Xσ(1), . . . , Xσ(j−1)}.
• pXσ(j)|Xσ(1),...,Xσ(j−1)

= pXσ(j)|�σ(j)
.

For each ordering of the variables, there is a directed acyclic graph that indicates how
to factorize the probability distribution and those variables that may be excluded in the
conditioning.

In some of the applications, the DAGs of interest will be trees (Definition 2.12) and
forests (Definition 2.13).

Definition 2.15 (Instantiated) When the state of variable is known, the variable is said to
be instantiated.

Within a directed acyclic graph, there are three basic ways in which two variables can
be connected via a third variable and the whole graph is built up from these connections.
They are the chain, fork and collider connections respectively.
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X1 X2 X3

Figure 2.4 Chain connection: X2 is a chain node.

Chain connections Consider a situation with three random variables (X1, X2,X3),
where X1 influences X2, which in turn influences X3, as in Figure 2.4, but there is
no direct influence from X1 to X3. If the state of X2 is unknown , then information about
X1 will influence the probability distribution of X2, which then influences the proba-
bility distribution of X3. Similarly, information about X3 will influence the probability
distribution of X1 through X2.

If state X2 is known , then the channel is blocked and X1 and X3 become independent
given X2. The DAG indicates that the probability distribution of (X1, X2, X3) may be
factorized as:

pX1,X2,X3 = pX1pX2|X1pX3|X2 .

If X2 = x2 is known, then

pX1,X2,X3(., x2, .) = (pX1(.)pX2|X1(x2|.))(pX3|X2(.|x2))

and so, following characterization 5) of conditional independence from Theorem 2.1, the
variables X1 and X3 are conditionally independent, given X2.

From the DAG, the variables X1 and X3 are said to be d-separated given X2. The
full definition of d-separation is given in Definition 2.18, found later.

Fork connections A fork is illustrated in Figure 2.5. Influence can pass between all
the children of X1 unless the state of X1 is known. If X1 is known, then the variables
X2 and X3 are said to be d-separated given X1. Evidence may be transmitted through a
fork node unless it is instantiated.

The DAG for the fork indicates that the probability distribution may be factorized as

pX1,X2,X3 = pX1pX2|X1pX3|X1 .

This implies that if the state of X1 is known, then

pX2,X3|X1(., .|x1) = pX2|X1(.|x1)pX3|X1(.|x1),

so that X2 and X3 are conditionally independent, following characterization 3) from the
characterizations of conditional independence listed in the statement of Theorem 2.1.

Example 2.1 The directed acyclic graph (Figure 2.6) illustrates the following situation,
described by Albert Engström (1869–1940), a Swedish cartoonist. During a convivial
gathering there is talk of the unhygienic aspect of using galoshes. One of those present
chimes in: ‘Yes, I’ve also noticed this. Every time I’ve woken up with my galoshes on,
I’ve had a headache.’

X2 X1 X3

Figure 2.5 Fork connection: X1 is a fork node.
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drink

galoshes head

Figure 2.6 Causal relationship between galoshes, head and drink.

But does the footwear that he adopts while sleeping really influence the state of his
head the next morning? The causal model represented by the graph indicates that if
there is no information about his activities of the previous evening, then the presence of
galoshes on his feet when he awakes indicates that his head will not be in such good
shape. On the other hand, if there is full information concerning the activities of the
previous evening, then the state of the feet gives no further information about the state
of the head. �

Collider connections Consider the graph in Figure 2.7. If nothing is known about X1

except that which may be inferred from knowledge about its parents, then the parents
are independent; information about one of them will not affect the assessment of the
probability values of the others. Information about one possible cause of an event does
not give any further information about other possible causes, if there is no information as
to whether or not the event actually happened. But if there is any information concerning
the event, then information about one possible cause may give information about the
other causes. In Figure 2.7, if it is known that the event {X1 = x1} has occurred, and
it is considered a priori that both {X2 = x2} and {X3 = x3} make the event {X1 = x1}
more likely, then the information that the event {X2 = x2} has occurred will, in general,
decrease the probability that the event {X3 = x3} has occurred.

Information may only be transmitted through a collider if information has been
received either about the variable in the connection or about one of its descendants.

The factorization of the distribution pX1,X2,X3 corresponding to the DAG for the
collider is

pX1,X2,X3 = pX2pX3pX1|X2,X3 .

Clearly, from the characterizations of conditional independence, X2 and X3 are not con-
ditionally independent given X1, but if X1 is unknown, then X2 and X3 are independent;
for any (x

(i)
2 , x

(j)

3 ) ∈ X2 × X3, where X1, X2, X3 are the state spaces for the random

X2 X3

X1

Figure 2.7 Collider connection: X1 is a collider node.
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variables X1, X2 and X3 respectively.

pX2,X3(x
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2 , x

(j)

3 ) =
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2 )pX3(x

(j)

3 ).

For a chain or a fork, blocking requires the chain or fork variable respectively to be
instantiated . Opening in the case of a collider holds for any information at all on any
of the descendant variables. Information may be transmitted between nodes of a graph
along an active trail , defined below.

Definition 2.16 (S-Active Trail) Let G = (V, E) be a directed acyclic graph. Let S ⊂ V

and let X, Y ∈ V \S. A trail τ between the two variables X and Y is said to be S-active if

1. Every collider node in τ is in S, or has a descendant (Definition 2.9) in S.

2. Every other node is outside S.

Definition 2.17 (Blocked Trail) A trail between X and Y that is not S-active is said to be
blocked by S.

The following definition is basic for all that follows in this chapter.

Definition 2.18 (D-separation) Let G = (V, E) be a directed acyclic graph, where V =
{X1, . . . , Xd} is a collection of random variables. Let S ⊂ V such that all the variables in
S are instantiated and all the variables in V \S are not instantiated. Two distinct variables
Xi and Xj not in S are d-separated by S if all trails between Xi and Xj are blocked by S.

Let C and D denote two sets of variables. If every trail from any variable in C to any
variable in D is blocked by S, then the sets C and D are said to be d-separated by S.
This is written

C ⊥ D ‖G S. (2.11)

The set S blocks every path between C and D.

The terminology d-separation is short for directed separation. The insertion of the letter
‘d’ points out that this is not the standard use of the term ‘separation’ found in graph
theory. The term ‘separation’ will be introduced and used in the standard way in the later
discussion about decomposable graphs (Chapter 4).

In common language, d-separation may be regarded in terms of irrelevance. In other
words, if A and B are d-separated by a set S then, once the variables in the set S are
known, new information on one of the sets A or B does not change the probability
distribution of the other. This has been seen in some basic cases above; a general proof
will be given later.
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Definition 2.19 (d-connected) If two variables X and Y are not d-separated, they are
said to be d-connected.

A procedure for determining d -separation The following procedure may be used to
check whether a set of variables S d-separates a set C from a set D.

1. Find all trails connecting the variables in C to the variables in D.

2. Check for each trail, until an active trail is found:

(a) If there a chain or fork node in S on the trail, then the trail is not active.

(b) If there is a collider node on the trail, then check whether any of its descendants
are in S. If not, then the trail is not active.

(c) Otherwise, the trail is active.

3. If an active trail was found, then C and D are not d-separated by S. If none of
the trails are active, they are d-separated by S.

To declare that sets are not d-separated, it is only necessary to find a single active trail.
To declare that sets are d-separated, it is necessary to show that all trails are not active.

It is clear that if all the parents of a variable X and all the children of X and all the
variables sharing a child with X are instantiated, then X is d-separated from the rest of
the network. This set of variables is known as the Markov blanket of the variable X:

Definition 2.20 (Markov Blanket) The Markov blanket of a variable X is the set consist-
ing of the parents of X, the children of X and the variables sharing a child with X.

Example 2.2 Consider the DAG given in Figure 2.8. The Markov blanket of the variable
X1 is the set of nodes {X2, X3, X4, X6}. Let S = {X2, X3, X4, X6}, then X1 ⊥ X5‖GS.

There are several interesting algorithmic applications of Markov blankets, e.g. to
selection of variables in pattern recognition; see [49].

2.4 The Bayes ball

The Bayes ball provides a convenient method for deciding whether or not two nodes are
d-separated. The idea was introduced by R. Schachter [50] and is illustrated in Figure
2.9. Variables are d-connected if the Bayes ball can be passed between them employing
the following rule. The uninstantiated (hidden) nodes are represented by circles, the
instantiated nodes as squares. This notation will be used throughout the book.

X1

X3 X2

X6

X5X4

Figure 2.8 DAG for example of a Markov blanket.
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Figure 2.9 Bayes ball.

Consider the three types of connection in a DAG: chain, collider and fork.

• For the chain connection illustrated in Figure 2.4, the Bayes ball algorithm indicates
that if the node is instantiated, then the ball does not move from X1 to X3 through
X2. The communication in the trail is blocked . If the node is not instantiated, then
communication is possible.

• For the fork connection illustrated in Figure 2.5, the algorithm states that if node
X1 is instantiated, then again communication between X2 and X3 is blocked . If the
node is not instantiated, then communication is possible.

• For the collider connection illustrated in Figure 2.7, the Bayes ball algorithm states
that the ball does move from X2 to X3 if node X1 is instantiated. Instantiation of
X1 opens communication between the parents .

For a collider node X1, instantiation of any of the descendants of X1 also opens commu-
nication. If node X1 is uninstantiated, and none of its descendants is instantiated, then
there is no communication.

Explaining away The ways that the Bayes ball may move in a collider are the opposite
of those for a chain or fork. In Figure 2.7, the nodes X2 and X3 are independent when
X1 is not instantiated, but a link emerges after instantiation. This pattern of reasoning
is known as explaining away . That is, if there are two possible causes for an event and
if one possible cause is known to have happened, then the other possible cause is less
likely to have happened.

2.4.1 Illustrations

The following examples illustrate situations that may be modelled using random variables
with causal relations between them, how these may be expressed as DAGs and inferences
that may be drawn.
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Example 2.3 Consider a situation where a desktop computer is powered by an electricity
supply. The light source operates from the same electricity supply. If the computer is
turned on and nothing happens, then the problem may be the result either of a hardware
malfunction in the computer, or of a fault in the electricity supply.

If the lights are not working, this gives information about electricity failure, since it
is a likely cause of light failure. If the computer does not respond when the electricity is
switched on, it could be a result of a failure in the electricity supply, or a problem with
the computer hardware. A computer malfunction as a cause for lack of response is less
likely if it is known that there is an electricity failure. A network describing the situation
is shown in Figure 2.10.

This is an example of explaining away , as described above. If the ‘effect’ variable is
instantiated, then any particular cause is less likely if another possible cause is known to
have taken place.

Example 2.4 The DAG in Figure 2.11 has been instantiated in X3,X4,X7 and X8, the
set of neighbours of X5. In this graph, the variable X5 is d-connected to X6, through X8;
the connection is a collider and X8 is instantiated.

Example 2.5 The DAG in Figure 2.12 has been instantiated in X2, X3, X4. The node
X6 is d-separated from all the uninstantiated nodes.

electricity

computer light

malfunction

Figure 2.10 Light, Computer, Electricity.

X1 X2

X3 X4

X5 X6

X7 X8

Figure 2.11 Figure for Example 2.
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X1

X2 X3 X4

X5 X6 X7

Figure 2.12 Figure for Example 2.5.

H1 H2 H3 . . .

. . .

. . .

Hn

S1 S2 S3 Sm

C1 F C2 Cp

Figure 2.13 Bayesian network for Root Cause Analysis.

Example 2.6 (Root Cause Analysis) The following example is taken from [51], p.
1999. In large scale and complex industrial processes, the process operator has to isolate
the cause of a failure by analyzing the signals from many sensors.

The root causes in the hardware, (Hi)
n
i=1 are the parent variables, which are the

causes of various symptoms , (Sj )
m
j=1. The word ‘symptoms’ refers to changes in the

process operation conditions, which affect the equipment performance or the final output.
These in turn cause either failure F or confirming events (Ck)

p

k=1 that confirm that the
process is abnormal. From the confirming events that occur, the objective is to deduce
which hardware problem is the root cause. A directed acyclic graph for Root Cause
Analysis is given in Figure 2.13.

Root Cause Analysis is a situation where the concept of explaining away appears;
symptoms connected with a root cause may make it less likely that other root causes
(which are not supported by confirming events) are present.

2.5 Potentials

Let V = {X1, . . . , Xd} denote a collection of random variables, where variable Xj

has state space Xj = (x
(1)
j , . . . , x

(kj )

j ) for j = 1, . . . , d . Let X = ×d
j=1Xj denote the

state space for X. Let Ṽ = {1, . . . , d} denote the indexing set for the variables. For
D ⊂ Ṽ , where D = {j1, . . . , jm}, let XD = ×j∈DX and let XD = (Xj1 , . . . , Xjm).
Let x ∈ X denote a generic element of X and let xD = (xj1 , . . . , xjm) ∈ XD , when
x = (x1, . . . , xd) ∈ X.

Furthermore, for W ⊂ V , let W̃ denote the indexing set for W . The notation XW will
also be used to denote XW̃ , XW to denote XW̃ and xW to denote xW̃ .
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Definition 2.21 (Potential) A potential φ over a domain XD is defined as a non negative
function φ : XD → R+. The space XD is known as the domain of the potential. If the
domain is the state space of a random vector XD , then the random vector XD may also
be referred to as the domain of the potential.

In this setting, a potential over a domain XD has
∏

j∈D kj entries. For W ⊂ V , the domain
of a potential XW may also be denoted by the collection of random variables W .

For example, let {X1, X2} ⊂ V and let φ denote the joint probability distribution of
(X1, X2), defined by

x
(1)
2 x

(2)
2 x

(3)
2

x
(1)
1 0.05 0.10 0.05

x
(2)
1 0.15 0.00 0.25

x
(3)
1 0.10 0.20 0.10

Here X1 = (x
(1)
1 , x

(2)
1 , x

(3)
1 ) and X2 = (x

(1)
2 , x

(2)
2 , x

(3)
2 ). The potential φ is a function of

two variables. The domain of the potential φ is X1 × X2, which may also be denoted by
(X1, X2). A pair c = (x

(i)
1 , x

(j)

2 ) is called a configuration of (X1, X2). If, for example
c = (x

(1)
1 , x

(3)
2 ), then

φ(c) = φ((x
(1)
1 , x

(3)
2 )) = 0.05.

Consider two potentials over (X1, X2); φ and φ′, given by

φ =

x
(1)
2 x

(2)
2 x

(3)
2

x
(1)
1 a1 a2 a3

x
(2)
1 b1 b2 b3

x
(3)
1 c1 c2 c3

and φ′ =

x
(1)
2 x

(2)
2 x

(3)
2

x
(1)
1 a′1 a′2 a′3

x
(2)
1 b′1 b′2 b′3

x
(3)
1 c′1 c′2 c′3

These will be used to illustrate the definitions of multiplication and division of potentials.

Definition 2.22 (Addition of Potentials) Two potentials φ and φ′ defined over the same
domain XD may be added together. Their sum is defined as the coordinate-wize sum; for
each xD ∈ XD ,

(φ + φ′)(xD) = φ(xD)+ φ′(xD).

Definition 2.23 (Multiplication of Potentials) Two potentials φ and φ′ may be multiplied
together to yield the potential φ.φ′ if they are both defined over the same domain. Multi-
plication of potentials is defined by multiplying each entry in the configuration.

Hence, in the example above,

φ.φ′ ↔

X\Y y1 y2 y3

x1 a1a
′
1 a2a

′
2 a3a

′
3

x2 b1b
′
1 b2b

′
2 b3b

′
3

x3 c1c
′
1 c2c

′
2 c3c

′
3

�
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Definition 2.24 (Division of Potentials) Two potentials φ and φ′ may be divided if they
are defined over the same domain. The division of a potential φ by φ′ to give the potential
φ/φ′ is defined by coordinate-wize division where the definition is that b = 0 �⇒ a

b
= 0.

In the example above, provided that none of the entries of potential φ′ are zero, the
potential φ

φ′ is given by

φ/φ′ ↔

X\Y y1 y2 y3

x1 a1/a
′
1 a2/a

′
2 a3/a

′
3

x2 b1/b
′
1 b2/b

′
2 b3/b

′
3

x3 c1/c
′
1 c2/c

′
2 c3/c

′
3 �

Potentials over different domains If potential φ1 is defined over domain XD1 and
potential φ2 is defined over domain XD2 , then multiplication and division of potentials
may be defined by first extending both potentials to the domain XD1∪D2 .

Definition 2.25 (Extending the Domain) Let the potential φ be defined on a domain XD ,
where D ⊂ W̃ ⊆ Ṽ . Then φ, defined over a domain XD , is extended to the domain XW̃ in
the following way. For each xW̃ ∈ XW̃ ,

φ(xW̃ ) = φ(xD),

where xD is the projection of xW̃ onto XD , using the definition of xD (and hence xW̃ ) from
the beginning of Section 2.5. In other words, the extended potential depends on xW̃ only
through xD .

Definition 2.26 (Addition, Multiplication and Division of Potentials over Different
Domains) Addition, multiplication and division of potentials over different domains is
defined as first, extending the domains of definition, using Definition 2.25, so that they
are defined over the same domain, and then using Definition 2.22 for adding, Definition
2.23 for multiplication and Definition 2.24 for division.

Multiplication of potentials may be expressed in the following terms: the product φ1.φ2

of potentials φ1 and φ2, defined over domains XD1 and XD2 is defined as

(φ1.φ2)(xD1∪D2
) = φ1(xD1∪D2

)φ2(xD1∪D2
),

where φ1 and φ2 have first been extended to XD1∪D2 .
Let Dφ denote the index set for the domain variables of a potential φ. Multiplication

has the following properties:

1. Dφ1.φ2 = Dφ1 ∪Dφ2 ,

2. (Commutative Law): φ1.φ2 = φ2.φ1

3. (Associative law): (φ1.φ2).φ3 = φ1.(φ2.φ3).
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4. (Existence of unit) The number 1 is a potential over the empty domain and 1φ = φ

for all potentials φ. The unit potential is denoted by 1.

Example 2.7 Let

φXY ↔
X\Y y1 y2

x1 a1 a2

x2 a3 a4

and φ′XZ ↔
X\Z z1 z2

x1 b1 b2

x2 b3 b4

Following Definition 2.26, the product φXY .φXZ is

[φXY .φXZ](x, y, z)
def= φXY (x, y)φXZ(x, z).

Thus

φXY φXZ ↔
X\Y \Z y1 y1

x1 (a1b1, a1b2) (a2b1, a2b2)

x2 (a3b1, a3b4) (a4b3, a4b4)

Now consider marginalizing the potential φXY φXZ over the variable Z. The term
marginalizing simply means summing over the state space XZ . This produces a potential
with domain XX × XY ;

∑
XZ

φXYφXZ ↔
X\Y y1 y2

x1 a1b1 + a1b2 a2b1 + a2b2

x2 a3b1 + a3b4 a4b3 + a4b4

The entry for configuration (x1, y2) is

[
∑
Z

φXY .φXZ](x1, y2) = φXY .φXZ(x1, y2, z1)+ φXY φXZ(x1, y2, z2) = a2b1 + a2b2.

Marginalization The operation of marginalization is now considered more generally.
Let V = {X1, . . . , Xd} denote a set of d random variables, with indexing set Ṽ =
{1, . . . , d}. Let U ⊆ W ⊆ V and let φ be a potential defined over XW . The expres-
sion

∑
XW \U

φ denotes the margin (or the sum margin) of φ over XU and is defined for
xU ∈ XU by (∑

W \U

φ

)
(xU ) =

 ∑
z∈XW \XU

φ

 (z, xU ),

where the arguments have been rearranged so that those corresponding to W appear
first, z ∈ XW is the projection of (z, xU) ∈ X onto XW and xU ∈ XU the projection of
(z, xU ) ∈ X onto XU . The following notation is also used:

φ↓U =
(∑

W \U

φ

)
.
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The marginalization operation obeys the following rules:

1. The Commutative Law: for any two sets of variables U ⊂ V and W ⊂ V ,

(φ↓U)↓W = (φ↓W)↓U .

2. The Distributive Law:
If XD1 is the domain of φ1 and D1 ⊆ Ṽ , then (φ1φ2)

↓D1 = φ1(φ2)
↓D1 .

Joint probability distributions Consider three variables, X1, X2, X3, with state spaces
X1, X2 and X3 respectively, where X1 = (x

(1)
1 , x

(2)
1 ), X2 = (x

(1)
2 , x

(2)
2 , x

(3)
2 ) and X3 =

(x
(1)
3 , x

(2)
3 , x

(3)
3 ), with joint probability function pX1,X2,X3 . The joint probability function

is a three-way potential. In the potential below, the entry at position (i, j) is the triple

(pX1,X2,X3(x
(i)
1 , x

(j)

2 , x
(1)
3 ), pX1,X2,X3(x

(i)
1 , x

(j)

2 , x
(2)
3 ), pX1,X2,X3(x

(i)
1 , x

(j)

2 , x
(3)
3 )).

x
(1)
2 x

(2)
2 x

(3)
2

x
(1)
1 (0, 0.05, 0.05) (0.05, 0.05, 0) (0.05, 0.05, 0.05)

x
(2)
1 (0.1, 0.1, 0) (0.1, 0, 0.1) (0.2, 0, 0.05)

In this example, pX1,X2,X3(x
(2)
1 , x

(3)
2 , x

(1)
3 ) = 0.2. The distribution of (for example) X1

and X3, is found by marginalizing over the unwanted variables; here, by summing over
X2. This gives

x
(1)
3 x

(2)
3 x

(3)
3

x
(1)
1 0.10 0.15 0.10

x
(2)
1 0.40 0.10 0.15

The conditional probability distribution of X2 given X1 = x
(2)
1 and X3 = x

(1)
3 , for

example, is computed using

pX2|X1,X3(.|x(2)
1 , x

(1)
3 ) = pX1,X2,X3(x

(2)
1 , ., x

(1)
3 )

pX1,X3(x
(2)
1 , x

(1)
3 )

= (0.25, 0.25, 0.5).

The entire potential giving the conditional probability distribution of X2 given X1 and
X3 may be computed by marginalizing over X2 to give the potential pX1,X3 and then by
division of potentials to give the potential

pX2|X1,X3 =
pX1,X2,X3

pX1,X3

.
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2.6 Bayesian networks

The formal definition of a Bayesian network is given in Definition 2.27. It consists of
a graphical model (namely, the directed acyclic graph) together with the corresponding
probability potentials .

The result of the following lemma is clear and is inserted for completeness. It is
necessary for the formal definition and construction of a Bayesian network. The statement
of the lemma follows p.22 in [52].

Lemma 2.1 (Shafer) For any DAG with a finite number of nodes α1, . . . , αd there is an
ordering (ασ(1), . . . , ασ(d)) of the nodes (not necessarily unique) such that the parents of
ασ(i) are a subset of {ασ(1) . . . , ασ(i−1)}. That is, by renaming the nodes as βj = ασ(j),
j = 1, . . . , d , the parents of βj are a subset of {β1, . . . , βj−1} for each j = 1, . . . , d .

The statement of the lemma does not require the DAG to be connected.

Proof In any DAG with d > 1 nodes, it is possible to find at least one node that has no
children. This is easily proved by contradiction. Assume there are no such nodes. Then,
since there are only a finite number of nodes, it possible to move from any given node to
one of its children. After repeating this d + 1 times, a node already visited is encountered
again. This implies that there is a cycle, and hence a contradiction.

For k = 1, . . . , d do the following: In the DAG with d − k + 1 nodes, choose a node
without a child, call it jk . Let σ(d − k + 1) = jk. Remove the node αjk

from the node
set and all edges (αi, αjk

) (i.e. those with a directed arrow pointing towards αjk
from the

edge set. This leaves a DAG with d − k nodes.
This produces an ordering of the nodes (ασ(1), . . . , ασ(d)) that satisfies the given

condition. �

For any joint probability distribution over a set of variables, with a given ordering
for the variables, there is a directed acyclic graph over which the probability distribution
may be factorized, where for each node Xj , �j ⊆ {X1, . . . , Xj−1}. The directed acyclic
graph is induced by the ordering of the nodes X1, . . . , Xd and any other ordering of
the nodes Xσ(1), . . . , Xσ(d) will induce a different directed acyclic graph along which the
probability distribution may be satisfied such that �σ(j) ⊆ {Xσ(1), . . . , Xσ(j−1)}. In many
situations of interest, additional causal modelling assumptions are to be incorporated,
which may be modelled into a Bayesian network rather easily, by choosing an ordering
of the variables to reflect them; for each i = 1, . . . , d , Xi is chosen in such a way that
all the variables that have a causal effect on Xi are contained in the set of variables
X1, . . . , Xi−1. For a variable Xi , the parent set �i will be the subset of {X1, . . . , Xi−1}
containing those variables that, according to the model, may have a direct causal effect
on Xi . The model needs an a priori assessment of the conditional probability potentials
pXi |�i

for i = 1, . . . , d . The prior probability distribution over the whole set of variables
is obtained by multiplying these together.

The factorization pX =
∏d

j=1 pXj |�j
expresses certain explicit modelling assump-

tions of conditional independence between variables and, if there are assumptions of
direct causal relations between variables, these are also expressed by the factorization.
Further conditional independence relations implied by these modelling assumptions may
be inferred by checking whether nodes of the graph are d-separated. A graph for which
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the only conditional independence relations are those that are given by d-separation
within the graph is said to be faithful to the probability distribution. When a graph is
faithful to a probability distribution, the variables that are d-connected within the graph
are associated. That is, when ‘faithfulness’ holds, associations suggested by the graph are
real associations and not an accident of the parametrization.

Definition 2.27 (Bayesian Network) A Bayesian network is a pair (G, p), where G =
(V, E) is a directed acyclic graph with node set V = {1, . . . , d} for some d ∈ N, E is the
edge set, and p is either a probability distribution or a family of probability distributions,
indexed by a parameter set �, over d discrete random variables, {X1, . . . , Xd}. The pair
(G, p) satisfies the following criteria:

• For each θ ∈ �, p(.|θ) is a probability function with the same state space X, where
X has a finite number of elements. That is, for each θ ∈ �, p(.|θ) : X→ [0, 1] and∑

x∈X p(x|θ) = 1.

• For each node Xv ∈ V with no parent variables, there is assigned a potential
denoted by pXv , giving the probability distribution of the random variable Xv . To
each variable Xv ∈ V with a non empty parent set �v = (X

b
(v)
1

, . . . , X
b
(v)
m

), there is

assigned a potential
pXv |�v

containing the conditional probability function of Xv given the variables
{X

b
(v)
1

, . . . , X
b
(v)
m
}. If Xv has no parents, set �v = φ, the empty set, so that

pXv = pXv |�v . The joint probability function p may be factorized using the
potentials pXv |�v thus defined:

pX1,...,Xd
=

d∏
v=1

pXv |�v .

• The factorization is minimal in the sense that for an ordering of the variables
such that �j ⊆ {X1, . . . , Xj−1}, �j is the smallest set of variables such that Xj ⊥
�c

j |�j . That is,

�j = ∩{A ⊆ {X1, . . . , Xj−1} such that Xj ⊥ Ac|A}.

Example 2.8 Consider the Bayesian network with four variables X, Y, Z,W given in
Figure 2.14.

W

Y

Z

X

Figure 2.14 A graph on four variables.
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The graph in Figure 2.14 represents a probability distribution which may be factorized
according to

pX,Y,Z,W = pZ|X,Y pY |X,WpX|WpW .

The joint distribution has been expressed in terms of conditional probabilities which have
been given. Furthermore, using the notation of Lemma 2.1, the variables may be renamed
as W = β1, X = β2, Y = β3 and Z = β4, giving the variables an ordering that has the
property described in Lemma 2.1. The parent set of W = β1 is empty.

Vorobev’s example It is important for the calculus developed in this text that there are
no feedback cycles and that the probability distributions factorizes along a directed acyclic
graph. In the context of causal probability calculus, this is interpreted as a requirement
that circular reasoning is not permitted, where an event A has a causal influence on an
event B, while at the same time B has a causal influence on an event A. The following
example, due to N. Vorobev [53], illustrates how things can go wrong if cycles are
permitted. This is a fundamental paper in the field, but rarely cited.

Consider the cyclic graph in Figure 2.15. Three two-dimensional marginal distribu-
tions are specified, for a joint probability of three variables, which is to be factorized
according to the directed graph given by Figure 2.15.

The potentials for the joint distributions are:

x2

0 1

x1 0 1/2 0

1 0 1/2

,

x3

0 1

x2 0 0 1/2

1 1/2 0

,

x1

0 1

x3 0 1/2 0

1 0 1/2

Here the potentials yield the marginals pX1(0, 1) = ( 1
2 , 1

2 ), pX2(0, 1) = ( 1
2 , 1

2 ) and
pX3(0, 1) = ( 1

2 , 1
2 ). If these potentials are used to compute the joint distribution

pX1,X2,X3 , then, factorizing along the graph,

pX1,X2,X3(0, 0, 0) = pX1|X3(0|0)pX3|X2(0|0)pX2(0)

= pX1|X3(0|0)pX2,X3(0, 0)

= pX1,X3(0, 0)

pX3(0)
× 0

= 1× 0 = 0,

x1

x2x3

Figure 2.15 A cyclic graph.
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but

pX1,X2,X3(0, 0, 0) = pX2|X1(0|0)pX1|X3(0|0)pX3(0)

= pX2|X1(0|0)pX1,X3(0, 0)

= pX1,X2(0, 0)

pX1(0)
× 1

2

= 1× 1

2
= 1

2

and hence a contradiction is reached if cyclic graphs are permitted. �

Example 2.9 Consider the following three variables: Electricity Failure (E) (1/0), Mal-
function (M) (1/0), Computer Breakdown (C) (1/0) where 1 denotes ‘yes’ and 0 denotes
‘no’. Suppose the causal relation is given by the DAG in Figure 2.16. Then the spec-
ified probabilities for the DAG are pC|E,M , pE and pM . The factorization of the joint
probability along the DAG is

pC,E,M = pC|E,MpEpM.

For this DAG, E and M are independent. Suppose that

pE(1) = 0.1, pM(1) = 0.2

pC|M,E(1|1, 1) = 1, pC|M,E(1|0, 1) = 1,

pC|M,E(1|1, 0) = 0.5, pC|M,E(1|0, 0) = 0.

This gives all the information necessary for a Bayesian network.
Suppose the computer is turned on and nothing happens. Then C = 1 has been instan-

tiated . pC(1) is computed by marginalizing over E and M;

pC(1) =
∑
e,m

pC|E,M(1|e, m)pE(e)pM(m) = 0.19.

The joint distribution of E and M given C = 1 may be computed via Bayes’ theorem,

pM,E|C(m, e|1) = pC|M,E(1|m, e)pM(m)pE(e)

pC(1)

E M

C

Figure 2.16 Electricity, Malfunction, Breakdown.
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which gives

e

1 0

m 1 0.02
0.19

0.09
0.19

0 0.08
0.19 0

The marginal probabilities may be computed. For example:

pM|C(1|1) =
∑

e

pM,E|C(1, e|1) = 0.58

pE|C(1|1) =
∑
m

pE,M|C(1, m|1) = 0.53.

From this, it is clear that

pM|C(1|1)pE|C(1|1) 
= pM,E|C(1, 1|1).

That is, M and E are not conditionally independent given C. �

Example 2.10 Continuing the previous example, suppose that, having observed a com-
puter failure, C = 1, it is also observed that the lights in the room have gone off, L = 1.
The situation is described by the DAG in Figure 2.17, where square nodes represent the
instantiated variables.

Only one more conditional probability, pL|E is required, in addition to the ones given
above, to create a Bayesian network. Suppose that

pL|E(1|1) = 1, pL|E(1|0) = 0.2.

Then
pL(1) = pL|E(1|1)pE(1)+ pL|E(1|0)pE(0) = 0.28.

Having first observed C = 1 and then L = 1, the previous posterior distribution
pM,E|C(m, e|1) becomes the new prior and Bayes’ rule gives

pM,E|C,L(m, e|1, 1) = pC,L|M,E(1, 1|m, e)pM,E(m, e)

pC,L(1, 1)

= pC|M,E(1|m, e)pL|E(1|e)pM(m)pE(e)∑
e,m pC|E,M(1|e, m)pL|E(1|e)pE(e)pM(m)

E M

L = 1 C = 1

Figure 2.17 Electricity, Malfunction, Breakdown, Lights.
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The computation is as follows:

pM(m) = 1 0
0.2 0.8

pE(e) = 1 0
0.1 0.9

so that

pM(m)pE(e) =
M\E 1 0
1 0.02 0.18
0 0.08 0.72

pC|M,E(1|m, e) =
M\E 1 0
1 1 0.5
0 1 0

so that

pM(m)pE(e)pC|M,E(1|m, e) =
M\E 1 0
1 0.02 0.09
0 0.08 0

The potential pL|E is

pL|E(1|e) = 1 0
1 0.2

and multiplication of potentials gives

pM(m)pE(e)pC|M,E(1|m, e)pL|E(1|e) =
M\E 1 0
1 0.02 0.018
0 0.08 0

Finally, the normalizing constant is obtained by summation, which gives 0.118, so that

pM,E|C,L(m, e|1, 1) =
M\E 1 0
1 0.169 0.153
0 0.678 0

Marginalizing gives

pM|C,L(1|1, 1) = 0.322

pE|C,L(1|1, 1) = 0.847.

This is an example of explaining away ; here, pM|C(1|1) = 0.58, but pM|C,L(1|1, 1) =
0.322. The observation that there is a light failure reduces the chance of a mechanical
problem with the computer hardware. �

2.7 Object oriented Bayesian networks

Object oriented Bayesian networks are discussed in [54]. In an object oriented Bayesian
network (OOBN), a node represents an object which is a collection of random variables
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(attributes) rather than a single random variable. The attributes are contained within the
object.

The idea is that if there are several different types of object, which share common
features, then the same potentials and parameters may be used to represent the common
features. In this way, there are fewer parameters and the conditional probability potentials
related to the common features may be updated using all the information available.

This is now illustrated by an example taken from [54]. Old MacDonald (OMD) has a
farm where he keeps two milk cows and two meat cows. OMD wants to model his stock
using OOBN classes. The object , or class , is a cow . A generic cow contains only those
features common to both (Figure 2.18). Since the mother of the cow and the food that
the cow eats both influence how much milk and meat the cow produces, OMD wants
mother and food to be input nodes . OMD wants milk , the daily output of milk and meat ,
the amount of meat on a cow, as output nodes . Nodes in an instantiation that are neither
input nor output nodes are termed normal nodes .

The values taken by an instantiation of the ‘milk’ and ‘meat’ variables are the quanti-
ties of milk and meat respectively produced by the animal. The generic cow contains the
input and normal nodes that both the milk and meat cows have in common. There may
be other nodes peculiar to both. For example, suppose OMD is told by an expert that
music influences the state of mind of a milk cow, which in turn influences its metabolism,
while ‘music’ has no influence on a meat cow, but that the weather does influence the
state of mind of a meat cow (while not that of a milk cow), hence its metabolism and
hence the quantities of milk and meat produced. Following all the advice from the expert,
the milk cows and meat cows may be represented as illustrated in the DAGs shown in
Figures 2.19 and 2.20 respectively.

Here ‘cow’ is a class and ‘milk cow’ and ‘meat cow’ are subclasses . A class S is
a subclass of a class C if the set of nodes of C is a subset of the set of nodes of S.
This ensures that an instantiation of S may be used anywhere in the OOBN instead of
an instantiation of C.

The idea is that while milk cows and meat cows may be quite different, they never-
theless have some features in common, so that OMD may use the information from the
entire herd to update the CPPs (conditional probability potentials) common to both.

Each node in the subclass inherits the conditional probability potentials of the class,
unless the parent sets differ.

Food Mother

Metabolism

Milk Meat

Figure 2.18 A generic cow.
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Food Mother Music

Metabolism State of Mind

Milk Meat

Figure 2.19 A milk cow.

Food Mother Weather

Metabolism State of Mind

Milk Meat

Figure 2.20 A meat cow.

The structure of a class hierarchy will be a tree, or a forest (recall that a forest is a
collection of disjoint trees).

In the example of OMD’s cattle, suppose that the mothers of two of the cows are
known: Daisy is the mother of one of the meat cows while Matilda is the mother of
one of the milk cows, but the other two mothers are unknown. For the two where the
mother is unknown, this may be accommodated by introducing a third category, ‘mother
unknown’, for the situation where the identity of the mother is missing from the data.

The Object Oriented Assumption is that the CPPs (conditional probability potentials)
of a class are the same, wherever that class appears. In the example of OMD’s farm, the
generic cow potentials are the same for all four cows, the milk cow potentials are the
same for each milk cow and the meat cow potentials are the same for each meat cow.

Let X1 = food, X2 = mother, X3 = Music, X4 = state of mind, X5 = metabolism,
X6 = milk, X7 = meat. X8 = weather. Then the CPPs that need to be specified for the
generic cow are pX1 , pX2 , pX5|X1,X2 , pX7|X5 and pX6|X5 .

The potentials pX7|X5 , pX6|X5 , pX1 and pX2 remain the same for the milk cows and
meat cows. The potentials connected with food and mother pX1 and pX2 will clearly be
irrelevant in the analysis once these variables are fixed in a particular instantiation.

To specify the milk cow class, the potentials pX3 and pX4|X2,X3 are needed, and the
potential pX5|X1,X2 from the generic cow has to be replaced with pX5|X1,X2,X4 .
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To specify the meat cow class, the potentials pX8 , pX4|X2,X8 , pX5|X1,X4,X8 are needed,
together with the potentials for the generic cow, except for pX5|X1,X2 .

2.8 d-Separation and conditional independence

The following result shows that, for a given DAG G, d-separation characterizes those
conditional independence statements that it is possible to infer from that particular DAG.

Theorem 2.2 (d-Separation Implies Conditional Independence) Let G = (V, E) be a
directed acyclic graph and let p be a probability distribution that factorizes along G.
Then for any three disjoint subsets A, B,C ⊂ V , it holds that A ⊥ B|C (A and B are
independent given C) if A and B are d-separated by C.

Conditions under which a converse to this theorem hold are discussed later in this section,
and presented in Theorem 2.3.

Proof of Theorem 2.2 Let V = {X1, . . . , Xd} denote the set of variables, let A ⊂ V ,
B ⊂ V and C ⊂ V be three disjoint sets of variables and let Ã, B̃, C̃, Ṽ denote the
indexing sets of the variables in A, B, C and V respectively. For any set S ⊆ V of
variables, let S̃ denote the set of indices. Suppose that A ⊥ B‖GC. Let A, B and C

denote also the random vectors XA, XB and XC of variables in A, B and C respectively
and let XA, XB and XC denote their respective state spaces. It is required to show that
for all a ∈ XA, b ∈ XB and c ∈ XC ,

pA,B|C(a, b|c) = pA|C(a|c)pB|C(b|c).
Let D = V \(A ∪ B ∪ C). Let

E1 = {Y ∈ V |there is a C-active trail from A to Y }
E2 = {Y ∈ V |there is a C-active trail from B to Y }

D1 = D ∩E1 ∩E2, D2 = D ∩E1 ∩Ec
2, D3=D ∩E2 ∩Ec

1, D4=D ∩ (Dc
1 ∪Dc

2 ∪Dc
3).

Since all the nodes of D are uninstantiated and there is no active trail from A to B,
it follows that any nodes in D1 are colliders with ancestors (Definition 2.9) in both A

and B, together with all the descendants (Definition 2.9) of these colliders. Neither the
colliders with ancestors in both A and B nor their descendants are instantiated (that is,
belong to C); neither do the nodes in D1 have descendants that belong to either A or B,
otherwise it is from the definitions that there would be an active trail between A and B.

From characterization 5) of Theorem 2.1, it is required to show that there are two
functions F and G such that

pA,B,C(a, b, c) = F(a, c)G(b, c).
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Let p(Xj |�j) denote the conditional probability function of Xj given the parent variables
�j . Then

p(X1, . . . , Xn) =
∏
j∈Ã

p(Xj |�j)
∏
j∈B̃

p(Xj |�j)
∏
j∈C̃

p(Xj |�j)

×
∏

j∈D̃1

p(Xj |�j)
∏

j∈D̃2

p(Xj |�j)
∏

j∈D̃3

p(Xj |�j)
∏

j∈D̃4

p(Xj |�j).

Any descendant of a variable in D1 is also in D1. Marginalizing over the variables in
D1 does not involve the parent variables of A, B or C, nor does it involve the variables
in D2 or D3 or their ancestors. Furthermore, the parents of variables in D4 are either in
D4 or in C.

Now, using φ to denote the empty set, let C2 = {X ∈ C | �(X) ∩D2 
= φ}, C3 =
{X ∈ C | �(X) ∩D3 
= φ} and C4 = C ∩ Cc

2 ∩ Cc
3. Then C2 ∩ C3 = φ, the empty set,

otherwise there would be a collider node in C that would result in an active trail from
A to B. It is also clear that �(C4) ⊆ C ∪D4, where �(C4) denotes the parent variables
of the variables in C4; that is, �(C4) = {Y |(Y,X) ∈ E,X ∈ C4}. The sets C2, C3, C4

are disjoint. Using XS to denote the state space of the random vector formed from the
variables in a set S, it follows that

p(A, B,C) =
∑

XD1

∑
XD4

∏
j∈D̃1

p(Xj |�j)
∏

j∈D̃4

p(Xj |�j)
∏
j∈C̃4

p(Xj |�j)


×
∑

XD2

∏
j∈Ã

p(Xj |�j)
∏
j∈C̃2

p(Xj |�j)
∏

j∈D̃2

p(Xj |�j)


×
∑

XD3

∏
j∈B̃

p(Xj |�j)
∏
j∈C̃3

p(Xj |�j)
∏

j∈D̃3

p(Xj |�j)


= (ψ1(C)ψ2(A, C))ψ3(B,C)

where the definitions of ψ1, ψ2 and ψ3 are clear from the context. This factorization
clearly satisfies the required criteria. It follows that d-separation implies conditional
independence. �

2.9 Markov models and Bayesian networks

This section introduces the local directed Markov condition , a necessary and sufficient
condition so that a probability function p over a set of variables V can be factorized
along a graph G.
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Definition 2.28 (Local Directed Markov Condition, Locally G-Markovian) Let
V = {X1, . . . , Xd} be a set of discrete random variables. A probability function p over
the random vector X = (X1, . . . , Xd) satisfies the local directed Markov condition with
respect to a DAG G = (V, E) or, equivalently, is said to be locally G-Markovian if and
only if for each j ∈ {1, . . . , d}, Xj is conditionally independent, given �j (the set of
parents of Xj ) of all the variables in the set V \(Vj ∪�j), where Vj is the set of all
descendants of Xj . That is,

Vj = {Y ∈ V |there is a directed path from Xj to Y }. (2.12)

That is,
Xj ⊥ V \(Vj ∪�j)|�j .

The terminology Markov model corresponding to a directed acyclic graph G = (V, E),
defined below, was introduced into the literature and may be found in [55].

Definition 2.29 (Markov Model) Let V = {X1, . . . , Xd} denote a set of variables and let
G = (V, E) be a directed acyclic graph. Let V denote the entire set of subsets of V . Let p

be a probability function for the random vector X = (X1, . . . , Xd). Let

I(p) = {(X, Y, S) ∈ V × V × V|X, Y 
∈ S, X ⊥ Y |S}.
Note that φ ∈ V and X ⊥ Y |φ means that X ⊥ Y .

The Markov model MG determined by a directed acyclic graph G = (V, E) is the set
of conditional independence statements

MG = {I|I = I(p) for some p that is locally G- Markovian}.
That is, the Markov model is the set of all sets I of conditional independence relations
corresponding to locally G-Markovian distributions. A distribution p is said to belong to
the Markov model of G, p ∈MG, if and only if I(p) ∈MG.

Proposition 2.1 Let I(p) denote the entire set of conditional independence statements
satisfied by a probability function p for a random vector X = (X1, . . . , Xd). Then I(p) ∈
MG if and only if p factorizes along G.

Proof of Proposition 2.1 Firstly, if I(p) ∈MG then, by definition, p is locally
G-Markovian; that is, for each j ∈ {1, . . . , d}, Xj ⊥ V \(Vj ∪�j) where Vj is defined
in Equation (2.12). Let πj (x1, . . . , xj−1) denote the instantiation of �j when X is
instantiated as (x1, . . . , xd). By characterization 1) of Theorem 2.1, for all j = 1, . . . , d

and any πj such that p�j
(πj )> 0,

pXj |X1,...,Xj−1(xj |x1, . . . , xj−1) = pXj |�j
(xj |πj )

with pXj |X1,...Xj−1(xj |x1, . . . , xj−1) = pXj
(xj ) if �j = φ. It follows directly that

pX1,...,Xd
=

d∏
j=1

pXj |�j

and hence, by definition, that p factorizes along G.
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Secondly, suppose that p factorizes along a graph G = (V, E). Then it is clear (for
example by using the Bayes ball algorithm) that

Xj ⊥ V \(Vj ∪�j)‖G�j

where Vj is the set of variables defined by Equation (2.12). If �j is instantiated, then
any trail from Xj to a variable in V \(Vj ∪�j) has to pass through a node in �j , which
will be either a chain or fork connection. It follows from Theorem 2.2 that

Xj ⊥ V \(Vj ∪�j)|�j,

from which it follows that p is locally G-Markovian. �

2.10 I -maps and Markov equivalence

A particular directed acyclic graph arises from a particular ordering of the variables.
This ordering may arise from considerations of cause to effect, but often this is not the
case. Faced with a probability distribution pX1,...,Xd

(x1, . . . , xd), it is often useful to find
a factorization along a directed acyclic graph that expresses the structural dependencies
between the variables, even if there is no clear causal relationship between the variables.
This problem was considered in [56] and the references therein.

As in Definition 2.29, let V denote the set of all subsets of V . The collection of triples

M = {(X, Y, S) ∈ V × V × V | X ⊥ Y‖GS}
(using the notation of Definition 2.17) represents the entire set of conditional indepen-
dence statements that it is possible to infer from the DAG, but this collection does not
necessarily represent the complete set of independence statements that hold for a collec-
tion of variables under a given probability distribution. When it does, it is known as a
perfect I -map.

Definition 2.30 (Perfect I -Map, Faithful) A DAG G = (V, E) over a set of variables V

is known as a perfect I -map for a probability function p over V if for any three disjoint
subsets of variables A, B and C,

A ⊥ B|C ⇔ A ⊥ B ‖G C,

using the notation introduced in Definition 2.18, Equation (2.11). If G is a perfect I -map
for p, then G is said to be faithful to p.

If a collection of independence statements is in view, rather than a probability distribution
p, the term consistency is used to mean exactly the same thing.

Definition 2.31 (Consistency) Let V = {X1, . . . , Xd} be a collection of random variables
and let M denote the entire collection of conditional independence statements: that is, let
V denote the set of all subsets of V . Then for all (Xi, Xj , S) ∈ V × V × V : Xi, Xj 
∈ S,

(Xi, Xj , S) ∈M⇔ Xi ⊥ Xj |S.
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A directed acyclic graph G = (V, E) is consistent with a set of conditional independence
statements M if and only if

(Xi,Xj , S) ∈M⇔ Xi ⊥ Xj‖GS.

Let p denote a probability distribution over a set of variables V = {X1, . . . , Xd} and let
Mp denote the set of conditional independence statements associated with p. That is, for
each (X, Y, S) ∈ V × V × V, let (X, Y, S) ∈Mp ⇔ X ⊥ Y |S. Then a DAG G = (V, E)

is consistent with Mp if and only if G is faithful to p, if and only if G is a perfect I -map
of p.

A set of variables (X1, . . . , Xd), may be ordered in d! ways. Each permutation σ of
1, . . . , d gives an ordering (Xσ(1), . . . , Xσ(d)). Suppose that an ordering σ of the variables
is given and that, for each variable Xσ(j), a minimal set of σ -predecessors �

(σ)
j is identi-

fied that renders Xσ(j) independent of all the other σ -predecessors. A σ -predecessor for
variable Xσ(j) is a variable Xσ(i) such that i < j . Let �j = {Xσ(1), . . . , Xσ(j)} A mini-
mal set is a set Uj ⊆ �j such that for any Y ∈ Uj , then Xσ(j) will not be independent of
(�j \Uj ) ∪ {Y } given Uj \{Y }. A direct link is then assigned from every variable in �

(σ)
j

to Xσ(j). The resulting DAG is minimal, in the sense that no edge can be deleted if the
DAG is to represent the probability distribution.

The input for this construction consists of a list L of d conditional independence
statements, one for each variable, all of the form {Xσ(j)} ⊥ Uσ

j |�σ
j , where Uσ

j is the
list of σ -predecessors of Xσ(j), without �σ

j . This is equivalent to the statement that the
variable Xσ(j) is d-separated from the set of variables Uσ

j when the set of variables �σ
j

is instantiated.
For a given collection of variables V = {X1, . . . , Xd}, there may be several different

DAGs, each representing the same independence structure. Two DAGs which represent
exactly the same independence structure are said to be I -equivalent.

Definition 2.32 (I -sub-map, I -map, I -equivalence, Markov Equivalence) Let G1 and G2

be two DAGs over the same variables. The DAG G1 is said to be an I -sub-map of G2 if
any pair of variables d-separated by a set in G1 are also d-separated by the same set in
G2. They are said to be I -equivalent if G1 is an I -sub-map of G2 and G2 is an I -sub-map
of G1.

I -equivalence is also known as Markov equivalence.

Example 2.11 In the following example on three variables, all three factorizations
give the same independence structure. Consider a probability distribution pX1,X2,X3 with
factorization

pX1,X2,X3 = pX1pX2|X1pX3|X2 .

It follows that

pX1,X2,X3 = pX2pX1|X2pX3|X1,X2 = pX2pX1|X2pX3|X2 ,

using Theorem 2.1, since X1 ⊥ X3|X2. Also,

pX1,X2,X3 = pX3pX2|X3pX1|X2,X3 = pX3pX2|X3pX1|X2 ,
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X1 X2 X3 X2 X3 X2 X1

X1 X3

Figure 2.21 Three DAGs, each with the same independence structure.

since X1 ⊥ X3|X2. For the first and last of these, X2 is a chain node, while in the second
of these X2 is a fork node. The conditional independence structure associated with chains
and forks is the same. The three corresponding DAGs are given in Figure 2.21. �

In general, the factorizations resulting from different orderings of the variables will
not necessarily give I -equivalent maps. This is illustrated by the following example on
four variables.

Example 2.12 Consider a probability distribution over four variables, which may be
factorized as

pX1,X2,X3,X4 = pX1pX2pX3|X1,X2pX4|X3 .

If the distribution is factorized using the ordering (X1,X4, X3, X2), proceeding as out-
lined above, the following factorization results:

pX1,X2,X3,X4 = pX1pX4|X1pX3|X1,X4pX2|X1,X3,X4 = pX1pX4|X1pX3|X1,X4pX2|X1,X3

since X1 
⊥ X4 and X2 
⊥ X1|(X3, X4). The corresponding DAG gives less information
on conditional independence; it is not possible, with this ordering of the variables, to
conclude that X4 is conditionally independent of X1, given X3. The two corresponding
DAGs are shown in Figure 2.22. �

While d-separated variables are conditionally independent conditioned on the sep-
arating set, it does not hold that conditionally independent variables are necessarily
d-separated; a necessary and sufficient condition is that the DAG is a perfect I -map.
This result is stated in the following theorem.

Theorem 2.3 Recall Definition 2.18 and the notation introduced in Equation (2.11). Let
p be a probability function for a random vector X = (X1, . . . , Xd), factorized along a
DAG G. Then p and G are faithful to each other if and only if for any three disjoint sets
of variables A, B and C

A ⊥ B ‖G C ⇔ pA,B|C = pA|CpB|C.

X1 X2 X1 X2

X3 X3

X4 X4

Figure 2.22 DAGs with different independence structures, arising from different fac-
torizations of the same distribution.
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In other words, p and G are faithful to each other if and only if for any three disjoint sets
of variables A, B and C,

A ⊥ B ‖G C ⇔ A ⊥ B|C.

Proof of Theorem 2.3 A ⊥ B‖GC �⇒ A ⊥ B|C is the result of Theorem 2.2. If p

and G are faithful and A ⊥ B|C then (by definition of faithfulness) A ⊥ B‖GC. This
d-separation follows straight from the definition of faithfulness and is, indeed, the purpose
of the definition. �

A DAG that is faithful to a probability distribution p may be considered as a true
representation of the distribution, in the sense that there are no artificial dependencies
introduced by the graph. That is, any statement inferred from the graph that two sets of
variables A and B are d-connected when a set S is instantiated implies that the sets of
variables A and B are not independent, given S.

2.10.1 The trek and a distribution without a faithful graph

Theorem 2.3 raises an important question; given a probability distribution pX over a
random vector X = (X1, . . . , Xd), is it always possible to find a directed acyclic graph
that is faithful to the independence relations of p? The answer is no, as the following
basic example on four variables illustrates.

Definition 2.33 (Trek) Let G = (V, E) be a directed acyclic graph. A trek is a sub-graph
with four variables (X1, X2, X3, X4) where there are exactly four directed edges; X1 →
X2, X2 → X4, X1 → X3, X3 → X4. The sub-graph is illustrated in Figure 2.23.

The d-separation statements for the trek are: X1 ⊥ X4‖G{X2, X3} and X2 ⊥ X3‖GX1.
This is the entire list; X1 
⊥ X4‖Gφ, X2 
⊥ X3‖Gφ, X2 
⊥ X3‖G{X4}, X2 
⊥ X3‖G{X1,X4}.
These relations may be seen using the Bayes ball. There are exactly three directed acyclic
graphs that share the same d-separation properties as the trek; the other two are shown
in Figure 2.24.

Now consider a distribution over (X1, X2, X3, X4) such that the entire list of con-
ditional independence statements is X1 ⊥ X4|{X2, X3}, X1 ⊥ X4, X2 ⊥ X3|X1. Such a
distribution is given by taking a distribution that factorizes along the trek;

pX1,X2,X3,X4 = pX1pX2|X1pX3|X1pX4|X2,X3,

X2

X1 X4

X3

Figure 2.23 A trek.
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X2

X1 X4

X3

X2

X1 X4

X3

Figure 2.24 Graphs with the same d-separation properties as Figure 2.23.

where X1,X2,X3, X4 are each binary variables, taking values 1 or 0 and where

pX2|X1(1|0) = 1− pX3|X1(1|1) = a,

pX2|X1(1|1) = 1− pX3|X1(1|0) = b,

pX4|X2,X3(1|11) = pX4|X2,X3(1|00) = c, pX4|X2,X3(1|01) = pX4|X2,X3(1|10) = d.

Then
pX4|X1(1|1) = c ((1− a)b + a(1− b))+ d (ab + (1− a)(1− b))

while
pX4|X1(1|0) = c (a(1− b)+ (1− a)b)+ d ((1− a)(1− b)+ ab)

so that X4 ⊥ X1. Take a 
= 1
2 , b 
= 1

2 , c 
= 1
2 , d 
= 1

2 , a 
= b, c 
= d . Then, with these
conditions, X4 
⊥ X3|S for any S ⊆ {X1,X2} and X4 
⊥ X3|S for any S ⊆ {X1,X2}. Fur-
thermore, X3 
⊥ X1|S for any S ⊆ {X2, X4} and X2 
⊥ X1|S for any S ⊆ {X3, X4}. The
independence relation X3 ⊥ X2|X1 holds and clearly X1 ⊥ X4|{X2,X3} holds.

There does not exist a directed acyclic graph that expresses all the conditional inde-
pendence relations that hold for this distribution and no others. If X1 ⊥ X4, then there
can be no edge between X1 and X4. If X2 ⊥ X3|X1 then there can be no edge between
X2 and X3. Furthermore, any trail between X1 and X4 must contain a collider connection.
The lack of d-separation implies that there are edges between X1 and X2, X1 and X3,
X2 and X4, X3 and X4. This implies that the nodes X2 and X3 are collider nodes. This
contradicts the requirement that X1 ⊥ X4|{X2,X3}, since the instantiation of a collider
connection opens the communication.

Therefore, there is no directed acyclic graph that is faithful to the distribution
described above when a 
= 1

2 , b 
= 1
2 , c 
= 1

2 , d 
= 1
2 , a 
= b, c 
= d . �

Notes Perhaps the earliest work that uses directed graphs to represent possible depen-
dencies among random variables is that by S. Wright [57]. A recent presentation of the
path analysis methods due to Wright is found in Shipley [58] An early article that con-
sidered the notion of a factorization of a probability distribution along a directed acyclic
graph representing causal dependencies is that by H. Kiiveri, T.P. Speed and J.B. Carlin
[59], where a Markov property for Bayesian networks was defined. This was developed
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by J. Pearl in [9]; d-separation, and the extent to which it characterises independence is
discussed by J. Pearl and T. Verma in [60] and by J. Pearl, D. Geiger and T. Verma in
[56]. The Bayes ball is taken from R.D. Schachter [50]. See, for example, F. Markowetz
and R. Spang [7] for applications of Bayesian networks to cellular models. The applica-
tion to root cause analysis was discussed in [51]. The counter example showing that it is
necessary that the probability function factorizes along a directed acyclic graph is found
in N. Vorobev [53]. Object oriented Bayesian networks are discussed in [54]. The results
for identifying independence in Bayesian networks are taken from D. Geiger, T. Verma
and J. Pearl [61] and the results on Markov equivalence are taken from T. Verma and
J. Pearl [62]. The web page in [63] contains links to an introduction to Bayesian nets
and the Bayes Net Toolbox MATLAB software.
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2.11 Exercises: Conditional independence and
d-separation

The ‘HUGIN’ software (the educational package) may be used for the analysis
of Bayesian networks. A description of the package, and information about how
to obtain it, may be found at http://www.hugin.com/Products_Services/Products/
Academic/Educational/

1. Let (X, Y, W,Z) be discrete random variables, each with a finite state space. Let X
denote the state space of (X, Y, W,Z).

(a) Prove that if X ⊥ (Y, W)|Z then X ⊥ Y |Z and X ⊥ W |Z.

(b) Prove that if X ⊥ Y |Z and X ⊥ W |(Y,Z) then X ⊥ (W, Y )|Z.

(c) Assume that pX,Y,W,Z(x, y, w, z) > 0 for each (x, y, w, z) ∈ X. Prove that if X ⊥
Y | (Z, W) and X ⊥ W | (Z, Y ), then X ⊥ Z | (Y, W).

2. Let A, B and C be binary random random variables, each of which takes values in
{0, 1}. Suppose that the joint probability function for (A, B,C) is given by

pA,B,C (0, 0, 0) = 0.028 pA,B,C (0, 0, 1) = 0.042

pA,B,C (0, 1, 0) = 0.00003 pA,B,C (0, 1, 1) = 0.02997

pA,B,C (1, 0, 0) = 0.072 pA,B,C (1, 0, 1) = 0.108

pA,B,C (1, 1, 0) = 0.00072 pA,B,C (1, 1, 1) = 0.71928

Show that the probability function pA,B,C admits a factorization according to the
DAG given in Figure 2.25.

A B C

Figure 2.25 Chain connection.

3. Suppose that the following table gives the values for the joint probability function
pA,B :

pA,B(., .) =
b1 b2 b3

a1 0.02 0.03 0.15
a2 0.10 0.00 0.30
a3 0.05 0.15 0.20

Compute pA, pB , pA|B , pB|A.

4. This is the classic example used to illustrate ‘explaining away’. A former prime
minister and Labour Party leader is now a business consultant. He is in his office in
Stockholm, when he receives the news that the burglar alarm in his country mansion
has gone off. Convinced that a burglar has broken in, he starts to drive home. But,
on his way, he hears on the radio that there has been a minor earth tremor in the
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area. Since an earth tremor can set off a burglar alarm, he therefore returns to his
office.

(a) Construct the Bayesian network associated with the situation.

(b) Suppose that the variables are listed as R for the radio broadcast (y/n), A for the
alarm (y/n), B for the burglary (y/n) and E for the earthquake (y/n), where y

stands for ‘yes’ and n stands for ‘no’. Suppose that the conditional probability
tables associated with the Bayesian network are

pR|E =
R\E n y

n 0.99 0.05
y 0.01 0.95

pA|B,E(y|., .) =
E\B n y

n 0.03 0.95
y 0.95 0.98

pB = n y

0.99 0.01

pE = n y

0.001 0.999

Find

i. pB|A(y|y), pB|A(y|n) and

ii. pB|A,R(y|y, y).

5. a(a) Consider the network given in Figure 2.26, where variables B and J have
been instantiated. Which variables are d-separated from A? Which variables
are d-separated from F ? Explain.

J = 1

G H

D I F

B = 1 E C

A

Figure 2.26 Network.
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B

A D E C

G H F

J = 1 I

Figure 2.27 Network.

(b) Consider the network given in Figure 2.27, where variable J has been instanti-
ated. Which variables are d-separated from A? Which variables are d-separated
from F ? Explain.

6. Let A be a variable in a DAG. Prove that if all the variables in the Markov blanket of
A are instantiated, then A is d-separated from the remaining uninstantiated variables.

7. Recall the definition of I -sub-maps and I -equivalence given in Definition 2.32.

(a) Find those graphs from the four given in Figure 2.28 that are I -equivalent to
each other.

(b) Suppose that the probability distributions p, q and r over the variables A, B and
C may be factorized as pApB|ApC|A, qBqA|BqC|A and rBrCrA|B,C . Do p and q

have the same independence structure? Do p and r have the same independence
structure?

8. Consider the first DAG in Figure 2.28 (a fork connection centred at A) and suppose
that pA,B,C may be factorized along the DAG.

(a) Prove that
pB|A,C = pB|A.

A A

B C B C

A A

B C B C

Figure 2.28 Which are I equivalent?
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(b) Suppose that pA,B,C = pApB|ApC|A, with probability tables given by

pA = a1 a2

0.3 0.7

pB|A =
A\B b1 b2

a1 0.1 0.9
a2 0.8 0.2

pC|A =
A\C c1 c2

a1 0.6 0.4
a2 0.4 0.6

Using appropriate operations of tables, compute

pA,B, pB, pB,C, pC|B and pA,B,C.

9. Let T denote a test result (positive or negative) for the event A (whether or not a
driver has too much alcohol in the blood). Suppose the conditional probabilities pT |A
are given in the following table (where y = ‘yes’ and n = ‘no’):

pT |A(.|.) =
A\T y n

y 0.95 0.05
n 0.005 0.995

(a) The police may stop a motorist and perform a blood test on suspicion that the
motorist is driving under the influence of alcohol. Experience suggests that 15%
of drivers under suspicion do, in fact, drive with too much alcohol. Compute the
table pA|T . A driver is taken and the blood test is positive. What is the probability
that the driver has too much alcohol?

(b) One week, the policy changes so that the police stop drivers randomly and carry
out the same test. It is estimated that one in 2000 drivers stopped at random have
too much alcohol in their blood. Compute the table pA|T . A driver is stopped
and gives a positive test result. What is the probability that he is driving under
the influence of alcohol?

10. Conditional independence Consider three random variables (X, Y, Z) with joint
probability function pX,Y,Z. Prove that X ⊥ Y |Z if and only if

pX,Y,Z(x, y, z)pX,Y,Z(x′, y′, z) = pX,Y,Z(x′, y, z)pX,Y,Z(x, y′, z) ∀(x, y, x′, y′, z).

This observation is due to B. Sturmfels and has important consequences for the
application of techniques from algebraic geometry to the study of Bayesian networks
(see [64]). The quantity

�(x, y; x′, y′; z) := pX,Y,Z(x, y, z)pX,Y,Z(x′, y′, z)− pX,Y,Z(x′, y, z)p(x, y′, z)

is known as the cross product difference and is identically zero if and only if X ⊥
Y |Z.
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H1 H2 H3 H4

S1 S2 S3

F

Figure 2.29 Root Cause Analysis.

11. Root Cause Analysis Are the variables F and (H2, H3) d-connected when (S1, S3)
are instantiated in the directed acyclic graph in Figure 2.29?

12. Transitive DAGs A DAG G = (V, E) is defined as a transitive DAG if it satisfies
the following additional condition:

(Xi,Xj ) ∈ E and (Xj ,Xr) ∈ E �⇒ (Xi, Xr) ∈ E.

Let an (Xν) denote the set of ancestors of Xν . Check that a DAG G is transitive if
and only if for every ν

� (Xν) = an (Xν) .

13. Transitive DAGs Assume that G = (V , E) is a transitive DAG following the defi-
nition in Exercise 12 and that p a probability distribution over the variables in V in
G = (V, E). Show that p satisfies local directed Markov condition with respect to
G (Definition 2.28) if and only if for all X and Y in V , X ⊥ Y | X ∩ Y or, equiva-
lently X \ Y ⊥ Y \X | X ∩ Y . This is known as the lattice conditional independence
property (LCI). In other words, the LCI is characterized by a Markov model on a
transitive DAG. This result is found in [55].

14. The notation XA is used to denote the random (row) vector of all variables in set
A. Let V = {X1, . . . , Xd} be the d variables of a Bayesian network and assume that
XV \{Xi} = w. That is, all the variables except Xi are instantiated. Assume that Xi is
a binary variable, taking values 0 or 1. Consider the odds

Op

({Xi = 1} | {XV \{Xi} = w}) ,
and show that this depends only on the variables in the Markov blanket (Definition
2.20) of Xi .





3

Evidence, sufficiency and Monte
Carlo methods

Let X = (X1, . . . , Xd) denote a random vector, with finite state space X = ×d
j=1Xj ,

where Xj = (x
(1)
j , . . . , x

(kj )

j ) is the state space for random variable Xj . This chapter
considers the various kinds of evidence available: hard evidence, soft evidence and virtual
evidence. The definitions used will be the following:

Definition 3.1 (Hard Evidence, Soft Evidence, Virtual Evidence) The following defini-
tions will be used:

• A hard finding is an instantiation, {Xi = x
(l)
i } for a particular value of i ∈ {1, . . . , d}

and a particular value of l ∈ {1, . . . , ki}. This specifies that variable Xi is in state
x

(l)
i . It is expressed as a k1 × . . .× kd potential e where

e(x
(p1)

1 , . . . , x
(pd )

d ) =
{

1 pi = l

0 pi 
= l.

That is, the entries corresponding to configurations containing the instantiation are
1 and the entries corresponding to all other configurations are 0.

• Hard evidence is a collection of hard findings. It is given by a collection of potentials
e = (e1, . . . , em) where em is a hard finding on one of the variables.

• A soft finding on a variable Xj specifies the probability distribution of the variable
Xj . That is, the potential pXj |�j

is replaced by a potential p∗Xj
with domain Xj .

Bayesian Networks: An Introduction T. Koski, J. Noble
 2009 John Wiley & Sons, Ltd
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• Soft evidence is a collection of soft findings.

• A virtual finding on variable Xj is a collection of likelihood ratios {L(x
(m)
j ), m =

{1, . . . , m}} such that the updated conditional probability potential for Xj |�j =
π

(n)
j is, for m = 1, . . . , kj ,

p∗Xj |�j
(x

(m)
j |π(n)

j ) = 1∑kj

q=1 pXj |�j
(x

(q)

j |π(n)
j )L(x

(q)

j )
pXj |�j

(x
(m)
j |π(n)

j )L(x
(m)
j ).

(3.1)

• Virtual evidence is a collection of virtual findings.

Soft evidence and virtual evidence are different. When soft evidence is received on
a variable, the links between the variable and its parents are severed; if soft evidence
is received on variable Xj , then the potential pXj |�j

is replaced by a new potential
p∗Xj

. When virtual evidence is received, the links are preserved. Virtual evidence may be
modelled by adding a new node to the network.

3.1 Hard evidence

Consider a situation where the domain variables are {X, Y }, XX = {x1, x2, x3} and XY =
{y1, y2, y3}. The following is an example of a finding e that Y is in state y1.

e ↔

X\Y y1 y2 y3

x1 1 0 0

x2 1 0 0

x3 1 0 0

Entering hard evidence Let pX denote a joint probability function over a random
vector X and let e be a finding corresponding to a piece of evidence. The evidence is
entered into pX by multiplying the potentials together. Let pX;e denote the result;

pX;e = pX.e (3.2)

Suppose that several hard findings are received, expressed in potentials (e1, . . . , ek). Then
the hard evidence e = (e1, . . . , ek) is entered by

pX;e = pX.

k∏
j=1

ej ,

where the multiplication is in the sense of potentials, having been extended to the
domain X.

Hard evidence renders certain states impossible, giving value 0 for the corresponding
configurations in the potential and leaves the other configurations unaltered. The potential
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j=1 ej (where the domains have been extended to X) may be considered as a hard

evidence potential with domain X. Clearly, multiplication of hard evidence potentials
yields another hard evidence potential.

The potential pX;e is not a probability function, in the sense that the entries do not add
up to 1. To compute the conditional probability potential, conditioned on the evidence
received, it is necessary to compute the probability of the evidence. This is given by

p(e) =
∑
x∈X

pX;e(x)

and the conditional probability potential is given by

pX|e =
pX;e
p(e)

, (3.3)

where the division is taken in the sense of potentials (Definition 2.24).

Example 3.1 Consider a joint probability function

pX,Y =

X\Y y1 y2 y3

x1 0.05 0.10 0.05

x2 0.15 0.00 0.25

x3 0.10 0.20 0.10

and suppose that evidence is received that {Y = y1}. The evidence potential e is

e =

X\Y y1 y2 y3

x1 1 0 0

x2 1 0 0

x3 1 0 0

Entering the evidence gives

pX,Y ;e = pX,Y .e =

X\Y y1 y2 y3

x1 0.05 0 0

x2 0.15 0 0

x3 0.10 0 0

This potential is not a probability function; the numbers do not add up to 1, but the
conditional probability potential may be computed by first computing the probability of
the evidence;

p(e) =
∑
x,y

pX,Y ;e(x, y) = 0.05+ 0.15+ 0.10 = 0.30.
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The conditional probability of (X, Y ) given the evidence is then computed using the
rules for ‘division of potentials’ (Definition 2.24):

pX,Y |e = pX,Y ;e
p(e)

=

X\Y y1 y2 y3

x1
1
6 0 0

x2
1
2 0 0

x3
1
3 0 0

.

Example 3.2 Consider an example where X, Y and Z each take on values 0 or 1 and
the joint probability function of (X, Y,Z) may be factorized according to the DAG in
Figure 3.1. Z is the parent, X and Y are the children.

The factorization of the joint probability function corresponding to the DAG is

pX,Y,Z = pX|ZpY |ZpZ.

Suppose that a hard finding is received, that {Y = 0}. The evidence potential is

e =
Z\Y 0 1

0 1 0

1 1 0

Now,
pX,Y,Z;e = pX|ZpY |ZpZe

so that, by the multiplication rules for potentials,

pY |ZpZe ↔
Z\Y 0 1

0 pY |Z(0|0)pZ(0) 0

1 pY |Z(0|1)pZ(1) 0

By multiplication rules for potentials with different domains,

pX|ZpY |ZpZe ↔
X\Z\Y 0 1

0 (a, 0) (b, 0)

1 (c, 0) (d, 0)

Z

X Y

Figure 3.1 Graph for Example 3.2.
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where

a = pX|Z(0|0)pY |Z(0|0)pZ(0),

b = pX|Z(1|0)pY |Z(0|0)pZ(0),

c = pX|Z(0|1)pY |Z(0|1)pZ(1),

d = pX|Z(1|1)pY |Z(0|1)pZ(1).

By disregarding the zero elements in the potential, ‘entering the evidence’ has resulted
in a potential defined over the domain XX × XY

pX,Y,Z;e(., 0, .) = pX|Z(.|.)pY |Z(0|.)pZ(.).

Let �v denote the set of parent variables of Xv and let πv denote the function such that
πv(x1, . . . , xn) = (xj1 , . . . , xjv ) if and only if �v = {Xj1 , . . . , Xjv }, for 1 ≤ j1 < . . . <

jv ≤ n. Let x = (x1, . . . , xd). The general rule for hard evidence is, for a collection of
hard evidence potentials e = (e1, . . . , em),

pX1,...,Xd ;e(x1, . . . , xd) =
n∏

v=1

pXv |�v (xv|πv(x))

m∏
i=1

ei.

3.2 Soft evidence and virtual evidence

Soft evidence and virtual evidence (Definition 3.1) are both types of evidence that affect
the probabilities of a state, but which do not enable any claim to be made that the
probability of a state is zero. A virtual finding on variable Xj affects the probability
potential pXj |�j

, without affecting the subsequent conditional probability potentials. The
virtual finding may be considered as an additional variable V (denoting ‘virtual finding’),
that is added into the network, with a single arrow from V , to the variable affected by
the soft evidence. This is the situation in which Pearl’s method of virtual evidence is
applicable, depending on how the evidence is formulated.

Example 3.3 Consider a DAG on five variables, X1, X2, X3, X4 and X5, given in
Figure 3.2. Suppose that a piece of virtual evidence is received on the variable X3. This
evidence may be modelled by a variable V , that is inserted to the DAG giving the DAG
in Figure 3.3. The variable X3 is in a certain state, which affects the soft evidence that
is observed.

It is clear that (X1, X2, X4, X5) ⊥ V ‖GX3. In particular, the decomposition along
the DAG gives p(V |X1, X2, X3, X4, X5) = p(V |X3) and p(X1,X2,X4,X5|X3, V ) =
p(X1,X2,X4,X5|X3).

In general, consider a set of variables V = {X1, . . . , Xd}, where the joint probability
distribution is factorized as

pX1,...,Xd
=

d∏
j=1

pXj |�j
.
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X1 X2

X3

X4 X5

Figure 3.2 Before virtual evidence is added.

X1 X2

X3

X4 V X5

Figure 3.3 After the virtual evidence node is added.

Suppose that virtual evidence is received on variable Xj . This may be expressed as a
variable V and, by d-separation properties, the updated distribution pX1,...,Xd ,V has a
factorization

pX1,...,Xd ,V =
∏

k 
=j

pXk |�k

pXj |�j∪{V }pV . (3.4)

The variable V is a ‘dummy variable’, in the sense that its state space and distribution
do not need to be defined; the virtual evidence is interpreted as a particular instantiation
{V = v} for this variable and this is the only information that is needed. From Equation
(3.4),

pX1,...,Xd |V (., . . . , .|v) =
∏

k 
=j

pXk |�k

pXj |�j∪{V }(.|., v).

From Equation (3.1),

L(x
(m)
j )∑kj

i=1 L(x
(i)
j )pXj |�j

(x
(i)
j |π(n)

j )
= pXj |�j∪{V }(x

(i)
j |π(n)

j , v) m = 1, . . . , kj .

This is the setting where Pearl’s update method may be applied.

3.2.1 Jeffrey’s rule

The definition of the Jeffrey’s update was given in Equation (1.9) and is restated here. Let
p denote the original probability and let q denote the probability obtained after the update
is applied. Let G1, . . . ,Gr denote the set of mutually exclusive and exhaustive events
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for which the updated probability q(Gi) is prescribed. Set λi = q(Gi) and µi = p(Gi).
For any set A ⊂ X and any x ∈ X, let 1A denote the indicator function;

1A(x) =
{

1 x ∈ A

0 x 
∈ A.

Then Jeffrey’s rule may be rewritten in the following way: for all x ∈ X,

q({x}) =
r∑

j=1

λj

µj

p({x})1Gj
(x).

The following example is taken from [65] and discussed in [66].

Example 3.4 A piece of cloth is to be sold on the market. The colour C is either green
(cg), blue (cb) or violet (cv). Tomorrow, the piece of cloth will either be sold (s) or
not (sc); this is denoted by the variable S. Experience gives the following probability
distribution over C,S

pC,S =
S\C cg cb cv

s 0.12 0.12 0.32

sc 0.18 0.18 0.08

The marginal distribution over C is

pC =
cg cb cv

0.3 0.3 0.4
.

The piece of cloth is inspected by candle light. Since it cannot be seen perfectly, this
only gives soft evidence. From the inspection by candle light, the probability over C is
assessed as:

qC =
cg cb cv

0.7 0.25 0.05
.

This is a situation where Jeffrey’s rule may be used to update the probability. For
example,

qS,C(s, cg) = λg

µg

p(s, cg) = 0.7

0.3
× 0.12 = 0.28.

Updating the whole distribution in this way gives

qC,S =
S\C cg cb cv

s 0.28 0.10 0.04

sc 0.42 0.15 0.01

3.2.2 Pearl’s method of virtual evidence

Pearl’s method deals with virtual evidence. If virtual evidence is received on a variable
in a Bayesian network, it may be treated by adding an additional node V . If virtual
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evidence is received on variable X3 in the network in Figure 3.2, the network may be
extended to the network in Figure 3.3 as before. Pearl’s method of virtual evidence was
introduced in Section 1.4.3 and considers the situation a piece of soft evidence {V = v},
which affects a set of mutually exclusive and exhaustive events G1, . . . , Gr , comes in
the form of an odds ratio. The evidence is not specified as a set of new probabilities, but
rather for each Gj , j = 1, . . . , r , the ratio λj = q({V=v}|Gj )

q({V=v}|G1)
, j = 2, . . . , r is given, with

λ1 = 1. The parameter λj therefore represents the likelihood ratio of the event Gj to the
event G1 given the evidence E. Again, using the notation 1Gj

(x) = 1 for x ∈ Gj and 0
for x 
∈ Gj , Pearl’s method of virtual evidence defines the update q(.) as

q({x}) = p({x})
r∑

j=1

λj∑r
k=1 p(Gk)λk

1Gj
(x), x ∈ X.

Example 3.5 (Burglary) The following example is taken from [9] and discussed
in [66]. It has become a classic example. A variant is included as Exercise 4 in
Chapter 2.

On any given day, there is a burglary at any given house with probability 10−4. If there
is a burglary, then the alarm will go off with probability 0.95. One day, Professor Noddy
receives a call from his neighbour Jemima, saying that she may have heard Professor
Noddy’s burglar alarm going off. Professor Noddy decides that there is an 80% chance
that Jemima did hear the alarm going off.

Let A denote the event that the alarm goes off, B the event that a burglary takes place
and let E denote the evidence of the telephone call from Jemima. According to Pearl’s
method, this evidence can be interpreted as

λ = p(E|A)

p(E|Ac)
= 4.

An application of Pearl’s virtual evidence rule gives the updated probability that a bur-
glary has taken place as q(B) = 3.85× 10−4.

3.3 Queries in probabilistic inference

The following are examples of queries for a Bayesian network with the variables in U :

Probability updating namely, if evidence e is given on some variables, find the posterior
probability potentials for the rest of the variables.

Most probable configuration namely, if evidence e is given on the variables in a set U ,
find the most probable values of the rest of the variables.

Maximum aposterior (map) hypothesis namely, if evidence e is given on some variables
in a set U , find a hypothesis h over a subset of variables which maximizes the probability
p(h|e).
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visit Asia

smoking

tuberculosis

lung cancer
bronchitis

tuberculosis or
cancer

breathlessness

positive X ray

Figure 3.4 The Chest Clinic Problem.

3.3.1 The chest clinic problem

The following is an example of a query. It is known as ‘The Chest Clinic Problem’ and
is due to A.P. Dawid. It may be found in [67]. You are ill, short of breath, and you want
to know what is wrong with you. The corresponding DAG is given in Figure 3.4.

Chapters 4 and 10 develop a method for the first query listed, updating the probability
distribution when evidence is received. As pointed out by A.P. Dawid, in [68], this method
may equally well be applied to the problem of ‘maximum aposterior hypothesis’, with
only minor modifications.

3.4 Bucket elimination

Most of this text is concerned with finding effective algorithmic solutions to probability
updating, most probable configuration and maximum aposterior hypothesis. The first
technique considered is an algorithm known as bucket elimination . It was introduced by
R. Dechter in [69].

Consider the DAG in Figure 3.5.
Here

pA,B,C,D,F,G = pG|F pF |C,BpD|B,ApB|ApC|ApA.

Assume there is a finding G = 1, and the updated probability

pA|e = pA|G(.|1)

is required. To compute this, both pA;e and p(e) are needed. Since e = {G = 1},

pA;e = pA,G(., 1) =
∑

B,C,D,F

pG|F (1|.)pF |C,BpD|B,ApC|ApB|ApA.
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A

B C

D

F

G

Figure 3.5 Illustration for bucket elimination.

This may be manipulated symbolically using x(y + z) = xy + xz. This is the associative
law , which may seem mathematically trivial, but efficient algorithms will exploit it as
much as possible. The left hand side requires two computations (y + z, followed by a
multiplication by x) while the right hand side requires three (xy, then xz, then add them
together).

pA;e = pA

∑
C

pC|A
∑
B

pB|A
∑
F

pF |C,BpG|F (1|.)
∑
D

pD|B,A.

Note that
∑

D pD|B,A = 1, so that

pA;e = pA

∑
C

pC|A
∑
B

pB|A
∑
F

pF |C,BpG|F (1|.).

Set
λC,B;G=1(., .)

def=
∑
F

pF |C,BpG|F (1|.),

so that
pA;e = pA

∑
C

pC|A
∑
B

pB|AλC,B;G=1(., .)

and set
λC,A;G=1(., .)

def=
∑
B

pB|AλC,B;G=1(., .),

so that
pA;e = pA

∑
C

pC|AλC,A;G=1(., .).

Set
λA;G=1(.)

def=
∑
C

pC|AλC,A;G=1(., .)
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so that finally
pA;e = pAλA;G=1(.).

Here all the variables except for A have been eliminated in a certain order. Let

U = {A,B,C, D, F,G},
then

pA;e =
∑

U \{A,G}
pA,B,C,D,F,|G(., ., ., ., .|1).

The preceding can be described as follows. First, the conditional probability potentials
are put into buckets relative to the order to be used in elimination of variables. The
first bucket (bucketG) contains all the potentials that have G in the domain. Bucket
bucketD contains all those, from the remaining potentials that contain D in the domain
and so on.

The buckets are therefore:

bucketG = pG|F (1|.),
bucketD = pD|B,A,

bucketF = pF |B,C,

bucketB = pB|A,

bucketC = pC|A,

bucketA = pA.

It is shown diagrammatically as follows. Each arrow corresponds to marginalization and
multiplication.

bucketG pG|F (1|.)
↘

bucketD pD|B,A λ(.) = pG|F (1|.)
↘ ↓

bucketF pF |B,C λ(.) = pG|F (1|.)
↘ ↓

bucketB pB|A λC,B;G=1(., .)

↘ ↓
bucketC pC|A λC,A;G=1(., .)

↘ ↓
bucketA pA λA;G=1(.).

The algorithm is summarized as follows: start with a set of potentials V . Whenever a
variable X is to be removed, all potentials from V with X in the domain are taken, and
removed from V . Their product is calculated and the potential obtained by summing over
the X variable is computed from this product. The resulting potential λ is then added to
V . Repeat with the next variable.
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3.5 Bayesian sufficient statistics and prediction sufficiency

The conditional independence structure is central to the analysis of a Bayesian network.
Sufficient statistics, a central concept in statistics, are random variables that help to estab-
lish conditional independence. Suppose that X is an n× d random matrix, representing
n independent copies of a random (row) vector X and � is a random vector. A function
t of X such that X and � are independent given t (X) is a Bayesian sufficient statistic
for �. The notation is suggestive; an instantiation of the random matrix X represents the
results of n independent replications of an experiment, where d attributes are measured,
while � is the random vector associated with the parameters. In this text, a random
vector that models the outcome of an experiment is, for the most part, discrete and the
random vector associated with the parameters is generally taken to be continuous. In
the analysis that follows, it will be assumed that X is discrete and � is continuous,
although the results are general and the proofs are easily modified to deal with the other
cases.

3.5.1 Bayesian sufficient statistics

Let X be an n× d random matrix, where each row is an independent copy of a dis-
crete random vector and let � be a continuous random vector representing the unknown
parameters, from the Bayesian point of view. Suppose that, conditioned on � = θ , X has
conditional probability function pX|�(.|θ). Suppose that � has prior density π�

(
θ
)

and
suppose that t is a function or a statistic of X,

t = t (X) .

Definition 3.2 (Statistic) A statistic is the result of applying a function, or statistical algo-
rithm, to a set of data. More formally, a statistic is a function of a random sample (taken in
the sense of random variables), where the function itself is independent of the distribution
of the sampling distribution. The term ‘statistic’ is used both for the function and the value
of the function on a given sample.

Definition 3.3 (Bayesian Sufficiency) A statistic T defined as T = t (X) such that for
every prior π� within the space of prior distributions under consideration, there is a
function φ such that

π�|X(θ |x) = pX|�(x|θ)π�(θ)

p X(x)
= φ(θ, t (x)) (3.5)

is called a Bayesian sufficient statistic for �.

This definition states that for learning about � based on X, the statistic T contains all
the relevant information, since the posterior distribution depends on X only through T .

The following result shows that conditional independence of X and � given t (X)

implies Bayesian sufficiency. If the families of probability measures have finite dimen-
sional parameter spaces, then the converse is also true. If there are an infinite number of
parameters, counter examples may be obtained to the converse statement.
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Proposition 3.1 Let t denote a function and let T = t (X). If

X ⊥ �|T , (3.6)

then T = t (X) is a Bayesian sufficient statistic for �.

Before proving this proposition, the following lemma is required.

Lemma 3.1 Let X be a discrete random matrix, T = t (X) where t is a function and let
� be a continuous random vector. Let X ⊥ �|T , then

pX|T (x|t) = pX|T ,�(x|t, θ). (3.7)

Proof of Lemma 3.1 Let θ ⊂ �̃ and set Aθ,ε = {ψ ∈ �̃||ψ − θ | < ε}. Recall that, in
this text, if there are d parameters, then �̃ ⊆ Rd , where �̃ is the parameter space. The
distance |ψ − θ | is defined as the Euclidean distance:

|ψ − θ | :=
√√√√ d∑

j=1

(ψj − θj )2.

Since X ⊥ �|T , it follows that

p({X = x}|{T = t}, {� ∈ Aθ,ε}) =
p({X = x}, {� ∈ Aθ,ε}|{T = t})

p({� ∈ Aθ,ε}|{T = t})

= p({X = x}|{T = t})p({� ∈ Aθ,ε}|{T = t})
p({� ∈ Aθ,ε}|{T = t})

= p({X = x}|{T = t}).
Since this holds for all ε > 0, the result follows by letting ε → 0. �

Proof of Proposition 3.1 In the set up considered here, X is considered to be a discrete
random n× d matrix (representing n replications of an experiment where d attributes
are recorded), while � is considered to be a continuous random vector. As usual, let
T = t (X).

An application of Bayes’ rule gives

π�|X,T (θ |x, t) = pX,T |�(x, t |θ)π�(θ)

pX,T (x, t)
= pX|T ,�(x|t, θ)pT |�(t|θ)π�(θ)

pX,T (x, t)
, (3.8)

and Equation (3.8), together with an application of Equation (3.7) gives

π�|X,T (θ |x, t) = pX|T (x|t)pT |�(t|θ)π�(θ)

p X|T ( x|t)pT (t)

= pT |�(t |θ)π�(θ)

pT (t)
= π�|T (θ |t). (3.9)

The proposition is proved by setting φ(θ, t (x)) = π�|T (θ |t (x)). �
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Example 3.6 (Tossing a Thumb-tack) In the thumb-tack experiment described in
Section 1.8, there is a single parameter, θ . In this paragraph, a Bayesian sufficient statistic
is derived for θ , for a suitable class of prior distributions. Let π� denote the prior density
function for θ , and let � denote the random variable with this density function. In this
case, X is a n× 1 matrix, a column vector, which will be written as X = (X1, . . . , Xn)

t ,
a sequence of n independent Bernoulli trials, each with probability θ of success (that is
Xj ∼ Be(θ), j = 1, . . . , n and Xi ⊥ Xj |� for i 
= j ). The sequence of outcomes will
be denoted by the vector

x = (x1, . . . , xn)
t .

That is, for each j = 1, . . . , n, xj = 1 or 0. The statistic t is a function of n variables,
defined as

t (x) =
n∑

j=1

xj .

That is, when t is applied to a sequence of n 0s and 1s, it returns the number of 1s in
the sequence. Here, T = t (X) =∑n

j=1 Xj and therefore T has a binomial distribution
with the parameters n and θ , since it is the sum of independent Bernoulli trials. The
probability function of T is given by

pT |�(k|θ) =


(

n

k

)
θk(1− θ)n−k k = 0, 1, . . . , n

0 other k.

Since t is a function of x, it follows that

pX,T |�(x, k|θ) =
{

θk(1− θ)n−k k = 0, 1, . . . , n

0 other k

from which

pX|T ,�(x|k, θ) = pX,T |�(x, k|θ)

pT |�(k|θ)
= 1(

n

k

) .

The right hand side does not depend on θ , from which Equation (3.7) holds and hence
Equation (3.6) follows. Therefore, if x = (x1, . . . , xn) are n independent Bernoulli trials,
each with parameter θ , the function t such that t (x) =∑n

l=1 xl is a Bayesian sufficient
statistic for the parameter θ . In the thumb-tack example, given in Section 1.8, the posterior
distribution, based on a uniform prior is an explicit function of the data x only through
the function t (x).

Now consider a random vector X and suppose now that t is a generic sufficient
statistic. Since t is a function of X (i.e. t = t (X)), it follows, using the rules of conditional
probability and Equation (3.7), that

pX|�(x|θ) = pX,T |�(x, t (x)|θ) = pX|T ,�(x|t (x), θ)pT |�(t (x)|θ)

= pX|T (x|t (x))pT |�(t (x)|θ).
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In other words, there is a factorization of the form

pX|�(x|θ) = g(t (x), θ)h(x), (3.10)

where
h(x) = pX|T (x|t (x)) = pX|t (X)(x|t (x)).

In statistical literature, t (X) is often defined to be a sufficient statistic if there is a factor-
ization of the type given by Equation (3.10). Equation (3.10) is in fact a characterization
of sufficiency in the sense that the likelihood function for θ depends on data only through
t ; the aspects of data that do not influence the value of t are not needed for inference
about θ , as long as pX|�(x|θ) is the object of study. In the example above, and in many
other cases, this offers a data reduction . That is, for any n, a sample of size n can be
reduced to a quantity of fixed dimension.

3.5.2 Prediction sufficiency

Let X be a discrete random vector, Y a discrete random variable or vector, t a function
and let T = t (X). Let � be a continuous random variable or vector. Suppose X, Y , �

and T satisfy

X ⊥ (Y , �
) |T . (3.11)

That is, once t (X) is given, there is no additional statistical information in X about Y

or �. The problem is to predict Y statistically using a function of X. The following
proposition is found in [70, 71].

Proposition 3.2

X ⊥ (Y ,�
) |T ⇔ {

X ⊥ �|T
X ⊥ Y |(�, T ).

(3.12)

Proof of Proposition 3.2 Showing that X ⊥ (Y , �
) |T �⇒ X ⊥ �|T is a simple

marginalization. It is required to show that for any sets A and B and any value t such
that p({T = t}) 
= 0,

p({X ∈ A}, {� ∈ B}|{T = t}) = p({X ∈ A}|{T = t})p({� ∈ B}|{T = t}).
Assuming that X ⊥ (Y , �

) |T holds, then

p({X ∈ A}, {� ∈ B}|{T = t}) =
∑

y

p({X ∈ A}, {Y = y}, {� ∈ B}|{T = t})

=
∑

y

p({X ∈ A}|{T = t})p({Y = y}, {� ∈ B}|{T = t})

= p({X ∈ A}|{T = t})
∑

y

p({Y = y}, {� ∈ B}|{T = t})

= p({X ∈ A}|{T = t})p({� ∈ B}|{T = t})
and hence X ⊥ �|T .
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Next, it is proved that X ⊥ (Y , �
) |T �⇒ X ⊥ Y |(�, T ). Let Aθ,ε = {z ∈ �̃||z−

θ | < ε}. It is required to show that

pX,Y |�,T (x, y|θ, t) = pX|�,T (x|θ, t)pY |�,T (y|θ, t).

Assuming that X ⊥ (Y , �
) |T ,

pX,Y |�,T (x, y|θ, t) = lim
ε→0

p({X = x}, {Y = y}, {� ∈ Aθ,ε}|{T = t})
p({� ∈ Aθ,ε})

= lim
ε→0

p({X = x}|{T = t})p({Y = y}, {� ∈ Aθ,ε}|{T = t})
p({� ∈ Aθ,ε})

= p({X = x}|{T = t})
(

lim
ε→0

p({Y = y}|{� ∈ Aθ,ε}, {T = t})
)

= p({X = x}|{T = t})p({Y = y}|{� = θ}, {T = t})
= p({X = x}|{� = θ}, {T = t})p({Y = y}|{� = θ}, {T = t})
= pX|�,T (x|θ, t),

so that
pX,Y |�,T (x, y|θ, t) = pY |�,T (y|θ, t).

By definition, therefore, X ⊥ Y |(�, T ). It has therefore been shown that X ⊥ (Y ,�)|T
implies both X ⊥ �|T and X ⊥ Y |(�, T ).

Finally, the converse, that X ⊥ �|T and X ⊥ Y |(�, T ) imply X ⊥ (Y ,�)|T , is rel-
atively straightforward. It is required to prove that, under the assumptions, for any sets
A, B,C and any value t such that p({T = t}) 
= 0,

p({X ∈ A}, {Y ∈ B}, {� ∈ C}|{T = t})
= p({X ∈ A}|{T = t})p({Y ∈ B}, {� ∈ C}|{T = t}).

Using X ⊥ Y |(�, T ) for the second equality and X ⊥ �|T for the third,

p({X ∈ A}, {Y ∈ B}, {� ∈ C}|{T = t})
= p({X ∈ A}, {Y ∈ B}|{� ∈ C}, {T = t})p({� ∈ C}|{T = t})
= p({X ∈ A}|{� ∈ C}, {T = t})p({Y ∈ B}|{� ∈ C}, {T = t})p({� ∈ C}|{T = t})
= p({X ∈ A}|{T = t})p({Y ∈ B}, {� ∈ C}|{T = t})

so that X ⊥ (Y , �)|T . The proof of Proposition 3.6 is complete. �

The following result shows that if X ⊥ (Y , �)|T then, in a sense, (Y , T ) is Bayesian
sufficient for �.

Proposition 3.3 Let t denote a function and let T = t (X). If X, Y , T , � satisfy X ⊥
(Y ,�)|T , then

π�|Y ,X,T (θ | y, x, t) = π�|Y ,T (θ | y, t). (3.13)
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Proof of Proposition 3.3 Firstly, X ⊥ (Y ,�)|T implies (by a simple marginalization
over �) that X ⊥ Y |T . The previous result also gives that X ⊥ (Y ,�)|T implies X ⊥
�|T and X ⊥ Y |(T , �). It follows that

pX,Y |T (x, y|t) =
∫

�̃

pX,Y |�,T (x, y|θ, t)π�|T (θ |t)dθ

=
∫

�̃

pX|�,T (x, y|θ, t)pY |�,T (y|θ, t)π�|T (θ |t)dθ

= pX|T (x|t)
∫

�̃

pY |�,T (y|θ, t)π�|T (θ |t)dθ

= pX|T (x|t)pY |T (y|t).

It follows that

pY |X,T (y|x, t) = pX,Y |T (x, y|t)
pX|T (x|t) = pY |T (y|t). (3.14)

An application of Bayes’ rule gives

π�|Y ,X,T (θ |y, x, t) = pY,X,T |�(y, x, t |θ)π�(θ)

pY,X,T (y, x, t)
= pY,X|T ,�(y, x|t, θ)pT |�(t|θ)π�(θ)

pY,X,T (y, x, t)

= pY |T ,�(y|t, θ)pX|T ,�(x|t, θ)pT |�(t|θ)π�(θ)

pY,X,T (y, x, t)
,

where the conditional independence X ⊥ Y |(�, T ) was used. Then, since X ⊥ �|T , it
follows that pX|T ,�(x|t, θ) = pX|T (x|t) and hence, using the Equation (3.14), that

π�|Y ,X,T (θ |y, x, t) = pY |T ,�(y|t, θ)pX|T (x|t)pT |�(t|θ)π�(θ)

pY |X,T (y | x, t)pX|T (x | t)pT (t)

= pY |T ,�(y|t, θ)pT |�(t|θ)π�(θ)

pY |T (y | t)pT (t)
.

It follows that

π�|Y ,X,T (θ |y, x, t) = pY,T |�(y, t | θ)π�(θ)

pY |T (y, t)
= π�|Y ,T (θ |y, t),

as claimed. �

3.5.3 Prediction sufficiency for a Bayesian network

Let G = (V, E) denote a DAG with V = {X1, . . . , Xd}, where the nodes are numbered,
for convenience such that for each j ,

�j ⊆ {X1, . . . , Xj−1},
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where �j (as usual) denotes the parent set for Xj . Such a numbering is always possible
by Lemma 2.1.

Using a fully Bayesian approach to the problem, the parameter vector θ is considered
as an observation on a random vector � and for each j = 1 . . . , d the parameter vector
θj an observation on a random vector �j .

Definition 3.4 (Parameter Modularity) A set of parameters � for a Bayesian network
satisfies parameter modularity if it may be decomposed into d distinct parameter sets
�1, . . . , �d such that for j = 1, . . . , d , the parameters in vector �j are directly linked
only to node Xj .

This definition was introduced in [72], and is a necessary condition for the sensitivity
analysis discussed in Chapter 7.

Under the assumption of parameter modularity, the DAG may be expanded by adding
the parameter nodes as parent variables in the graph, and directed links from each node
in the set �j to the node Xj giving an extended graph that is directed and acyclic, where
pX1,...,Xd |� has the decomposition

pX1,...,Xd |� =
d∏

j=1

pXj |�j ,�j
. (3.15)

Furthermore, under the assumption of modularity, �1, . . . , �d are independent random
vectors and the joint prior distribution is a product of individual priors; π� =

∏d
j=1 π�j

.
Following Proposition 3.2, the following notation is useful:

X̃j :=
(
(X1, �1), . . . , (Xj−1,�j−1)

)
, j = 1, . . . , d

and, for j = 1, . . . , d , tj is used to denote the function such that

tj (X̃j ) = �j .

It follows directly from (3.15) that

X̃j ⊥
(
Xj, �j

)
|�j.

In other words, the parent set �j is a prediction sufficient statistic for (Xj ,�j ) in the

sense that there is no further information in
(
(X1, �1), . . . , (Xj−1,�j−1)

)
relevant to

uncertainty about either �j or Xj .
In a Bayesian network where the parameters satisfy the modularity assumption (Defi-

nition 3.4), (�j , Xj ) are a Bayesian sufficient statistic for �j . The modularity assumption
is clearly satisfied when Equation (3.15) holds.

3.6 Time variables

This section considers Markov models .
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X1 X2 X3 X4 X5

Figure 3.6 Illustration of a Markov model.

Definition 3.5 (Markov Chain) A sequence (Xn)n≥1 is a Markov Chain if for all n, N ,

(Xn+N, . . . , Xn+1) ⊥ (Xn−1, . . . , X1)|Xn.

In other words, the past is conditionally independent of the future given the present.

A Markov chain may be represented by the DAG given in Figure 3.6. The index n,
for n = 1, 2, 3, 4, 5, may be considered as a time variable. For a Markov chain, the
conditional probability potentials pXn+1|Xn are known as transition probabilities . The
Markov chain is said to be time homogeneous if pXn+1|Xn does not depend on n. For a
time homogeneous Markov chain on a binary space,

pXn+1|Xn =
Xn+1\Xn 0 1

0 p 1− q

1 1− p q

where 0 ≤ p ≤ 1 and 0 ≤ q ≤ 1. The joint probability may be decomposed as

pX1,X2,X3,X4,X5 = pX1pX2|X1pX3|X2pX4|X3pX5|X4 ,

which is a product of transition probability potentials.
Consider the Bayesian network described by the graph in Figure 3.7 and suppose

that the variables (X1, X2, X3, . . .) cannot be observed, but that the values taken by
(Y1, Y2, Y3, . . .) can be observed. For example, Xn may be the state of an infection on
day n and Yn the test result on day n.

The model supposes that the past and future are independent given the current state
and therefore the sequence of variables (Xj )j≥1 in Figure 3.7 form a Markov chain.
Since only the variables (Yn)n≥1 may be observed, the sequence (Xn)n≥1 is referred to
as a hidden Markov chain . From the graph,

p(X1,Y1),...,(X5,Y5) = pY5|X5pX5|X4pY4|X4pX4|X3pY3|X3pX3|X2pY2|X2pX2|X1pY1|X1pX1 .

It also follows from the graph that

Yn ⊥ Yn−1|Xn and Yn+1 ⊥ Yn|Xn.

X1 X3 X4 X5

Y1 Y2 Y3 Y4 Y5

X2

Figure 3.7 Illustration of a hidden Markov model.
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In other words, the observable variables are conditionally independent given the state
sequence Xn.

Note that the observed variables Y1, . . . , Yn may be considered in the same way as
the virtual evidence node V in Figure 3.3.

Queries for Markov models The queries for hidden Markov models formulated above
are given the following names:

• filtering: Find pXn|Y1,...,Yn .

• prediction: Find pXn+1|Y1,...,Yn .

The maximum aposterior hypothesis problem is that of finding the most probable path;
i.e. finding the path X1, . . . , X5 which maximizes

pX1,...,X5|Y1,...,Y5 .

Often, it is natural to consider discrete time variables when one considers a Markov
model. Associated with each time, one may have several variables, hidden or observable,
with causal relations between them. These variables, together with the associated DAG,
are known as a time slice. The DAG for the entire system is then decomposed into the
consecutive time slices, together with additional causal links between the time slices to
indicate the direct causal relationships. Time slices connected by temporal links constitute
dynamic Bayesian networks , as discussed by K. Murphy in [73].

3.7 A brief introduction to Markov chain
Monte Carlo methods

Since the problem of locating an appropriate graph structure of a Bayesian network is
NP-hard (Chickering [74]), exact methods are of limited use and Markov chain Monte
Carlo methods are essential for the analysis of larger networks. An McMC method for
locating the graph structure is described in Section 6.4 and the necessary preparatory
material on Markov chains and Monte Carlo methods is given here.

Since there are many good treatments of Markov chains available (see, for example,
[75]), only a sketch is presented here; the necessary results and features of Markov Chains
are recapitulated and the key ideas outlined.

For a random variable X taking values in a finite state space E = (s(1), . . . , s(k)),
the purpose of Markov chain Monte Carlo (McMC) is to find an estimate p̂E(.) of the
distribution of pE(.) for the random variable E. In the setting where it will be used, E is
the space of all possible graph structures. This may then used to find an optimal ‘value’;
for example, the sj that maximizes p̂E(sj ). The McMC approach to the problem is to
develop a time homogeneous Markov chain X = (X0, X1, X2 . . .) (defined below) with
state space E and has stationary distribution (defined below) pE(.).

Definition 3.6 (Time Homogeneous Markov Chain, Stationary Distribution) A Markov
chain X with state space E = (s1, . . . , sk) is defined as a sequence of random variables
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X = (X0, X1,X2, . . .) such that for any n ≥ 1 and any sequence (s0, s1, . . . , sn) ∈ En,

pXn|Xn−1,...,X0(sn|sn−1, . . . , s1, s0) = pXn|Xn−1(sn|sn−1).

The Markov chain is time homogeneous if, in addition, there is a k × k matrix P with
entries Pij for all n ≥ 1 and all (s(i), s(j)) ∈ E2,

pXn|Xn−1(s
(j)|s(i)) = Pij .

The matrix P is known as the one step transition matrix, or transition matrix when the
‘one step’ is clear.

A stationary distribution for the time homogeneous Markov chain is a row vector
π = (π1, . . . , πk) such that πj ≥ 0 for all j ∈ {1, . . . , k} and

∑k
j=1 πj = 1 and such

that if pX0(sj ) = πj for all j ∈ {1, . . . , k}, then pXn(sj ) = πj for all n ≥ 1 and all j ∈
{1, . . . , k}.

It follows directly from the definition of the Markov chain that the future is indepen-
dent of the past, conditioned on the present. That is,

(Xn+1,Xn+2, . . .) ⊥ (X0, . . . , Xn−1)|Xn.

Since only time homogeneous Markov chains will be considered, the term ‘Markov
chain’ will be used for ‘time homogeneous Markov chain’.

Lemma 3.2 (Stationary Distribution) A distribution π = (π1, . . . , πk) (that is, a row vec-
tor such that 0 ≤ πj ≤ 1 for each j ∈ {1, . . . , k} and

∑k
j=1 πj = 1) is a stationary dis-

tribution for the Markov chain X with transition matrix P if and only if

πP = π.

Proof of Lemma 3.2 Firstly, if pXn(sj ) = πj for all j ∈ {1, . . . , k} and all n ≥ 0, then

πj = pX1(sj ) =
k∑

i=1

pX1|X0(sj |si)pX0(si) =
k∑

i=1

πiPij

so that a stationary distribution satisfies π = πP . Secondly, if pX0(sj ) = πj for all
j ∈ {1, . . . , k} and if πP = π , then

pXn(sj ) =
k∑

i=1

pXn|Xn−1(sj |si)pXn−1(si).

Let ψ(n) = (pXn(s1), . . . , pXn(sk)) (the row vector). Then

ψ(n) = ψ(n−1)P = ψ(0)P n,

so if ψ(0) = π and π satisfies πP = π , then ψ(n) = π for all n ≥ 0. It follows that π is
a stationary distribution and the result is proved. �
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For each i ∈ {1, . . . k} (where k is finite, but typically can be very large), the row Pi.

in the transition matrix should try to have as few j ∈ {1, . . . , k} as possible such that
Pij is non-zero. Then, if the MC has been designed properly (the requirements will be
discussed below), and it can be simulated well enough, the empirical distribution from
the first n steps, defined by

p̂E(si) = 1

n

n∑
j=1

Ksi (Xj ), si ∈ E,

where Ks(e) = 1 if s = e and 0 otherwise, will be close to pE(.) for sufficiently large n.
Designed properly means that the MC satisfies certain conditions, as defined below:

1. It has to be irreducible,

2. It has to be aperiodic,

3. pE (the target distribution) is a stationary distribution for the Markov chain.

With these conditions satisfied, it is possible to show that, for sufficiently n, the empirical
distribution will be close to the target distribution, no matter what initial value is chosen.

Let X = (X0,X1,X2, . . .) be a Markov chain with state space E = (s1, . . . , sk) A
realization of the process is a sequence of states. The state associated with time 0 is the
initial state, and it must be specified. After that the one step transition matrix P describes
how to select successive states.

Example 3.7 There is (in spring 2009) a coffee shop at every corner of the main square
(Stora torget) in the town of Linköping, Ostrogothia Province in Sweden. These are
ν1 = Cioccolata, ν2 = Coffee-house by George, ν3 = Linds, and ν4 = Santinis. Suppose
that an Ostrogothian is at corner νj at time n. He tosses a coin. If the coin comes up
heads, he will move to corner νj+1 at time n+ 1, otherwise he will move to corner νj−1

at time n+ 1, where ν5 ≡ ν1 and ν0 ≡ ν4. The states of this process and the transition
probabilities may be represented by the circle diagram in Figure 3.8.

Any time homogeneous Markov chain with a finite state space may be represented this
way. In this case, the transition matrix P with entries defined by Pij = pXn+1|Xn(νj |νi)

is given by

P =


0 1

2 0 1
2

1
2 0 1

2 0

0 1
2 0 1

2
1
2 0 1

2 0

 .

1 2

4 3

Figure 3.8 Diagram for state transitions.
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If an initial distribution µ = (µ1, . . . µk) is specified, such that µj ≥ 0 for j = 1, . . . , k,∑k
j=1 µj = 1 and such that pX0(sj ) = µj , then the distribution pX1 is determined by

pX1(sj ) =
k∑

i=1

pX1,X0(sj , si) =
k∑

i=1

pX1|X0(sj |si)pX0(si) =
k∑

i=1

µiPij .

Let µ(n) = (pXn(s1), . . . , pXn(sk)), where the probability distribution is described as a
row vector with k components. Then it follows that

µ(1) = µ(0)P

and, in general, it is easy to see that

µ(n) = µ(0)P n.

3.7.1 Simulating a Markov chain

This discussion will assume that there is access to a source of uniformly distributed ran-
dom variables. In practice, this involves a pseudo random number generator of reasonable
quality. To simulate a time homogeneous Markov process X for n steps, the following
are required:

1. An initial distribution.

2. A procedure to determine the next state given the present state, so that
the input of a sequence of independent uniform variables of length n+ 1,
(U0, U1, . . . , Un) produces the initial value and the first n steps of the Markov
chain (X0, X1, . . . , Xn). For some algorithms, several independent uniformly
distributed variables are required to produce the next step of the chain.

3. It has to be possible verify that the simulation is a plausible trajectory of X.

Specifying the initial value Suppose that an initial distribution µ = (µ1, . . . , µk) is
specified. Given u ∈ [0, 1], an observation from a U(0, 1) distributed random variable,
an observation from this distribution can be simulated quite easily using a function
ψ : [0, 1] → E, defined as

ψ(u) =
{

s1 u ∈ [0, µ1)

si u ∈ [
∑i−1

j=0 µj,
∑i

j=0 µj) i = 1, . . . , k.

This function ψ is known as the initiation function.

Updating Suppose Xn = sm, then Xn+1 may be determined from the function
φ(sm, u) by

φ(sm, u) =
{

s1 u ∈ [0, psm,s1)

ei u ∈ [
∑i−1

j=0 psm,sj ,
∑i

j=0 psm,sj ) i = 1, . . . , k.
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To simulate the chain now, given a sequence (u0, u1, . . . , un) of observations from inde-
pendent U(0, 1) random variables, set

X0 = ψ(u0),

Xj+1 = φ(Xj , uj+1), j = 0, . . . , n− 1.

3.7.2 Irreducibility, aperiodicity and time reversibility

This subsection clarifies the requirements on a Markov chain that is to be used for Monte
Carlo simulation. It has to be irreducible and aperiodic with a finite state space. Many
efficient methods (such as the Metropolis-Hastings, considered below) also require that
the Markov chain is time reversible.

Definition 3.7 (Irreducible Markov Chain) An irreducible Markov chain is a chain in
which all the states communicate. Two states si and sj are said to communicate if there is
an n1 < +∞ such that pXn1 |X0(sj |si)> 0 and an n2 < +∞ such that pXn2 |X0(si |sj )> 0.

Aperiodic Markov chains Let Pij (n) := pXn|X0(sj |si). The matrix P(n) is known as
the n step transition matrix . The greatest common divisor of a finite, or infinite set of
positive integers A = {a1, a2, a3, . . .}, will be written GCD(A).

Definition 3.8 (Period of a State) Suppose E = {s1, . . . , sk}. For each j = 1, . . . , k, set

Aj = {n|Pjj (n) > 0}.
The period of state sj is defined as d(sj ) = GCD(Aj ), the greatest common divisor of
the set of times that the chain starting at a state sj can return to state sj with positive
probability.

Definition 3.9 (Aperiodic Markov Chain) A state sj is said to be aperiodic if d(sj ) = 1,
A Markov chain is said to be aperiodic if all of its states are aperiodic. Otherwise, the
chain is said to be periodic.

The following theorem describes a key property of aperiodic Markov chains, that is
necessary for Monte Carlo simulation.

Theorem 3.1 Suppose that X = (X0, X1, . . .) is a Markov chain with state space E =
(s1, . . . , sk) and one-step transition matrix P . Then there exists an N <∞ such for all
that for all j = 1, . . . , k and all n ≥ N , Pjj (n) > 0.

The proof of this theorem requires the following standard lemma from number theory,
which is stated here without proof.

Lemma 3.3 Let A = {a1, a2, . . .} be a set of positive integers such that

1. GCD(A) = 1

2. For any ai, aj ∈ A, ai + aj ∈ A.

Then there exists an integer N < +∞ such that n ∈ A for all n ≥ N .
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Proof of Lemma 3.3 Omitted: it may be found in any standard introduction to number
theory. �

Proof of Theorem 3.1 For each sj ∈ E, let Aj = {n ≥ 1|Pjj (n) > 0}, the set of possible
return times to the state sj for the chain E starting from site sj . Since the chain is
aperiodic, GDC(Aj ) = 1. Suppose that a1, a2 ∈ Aj , then

Pjj (a1 + a2) = pXa1+a2 |X0(sj |sj ) ≥ pXa1 ,Xa1+a2 |X0(sj , sj |sj )

= pXa1+a2 |Xa1 ,X0(sj |sj , sj )pXa1 |X0(sj |sj ) = Pjj (a2)Pjj (a1)> 0,

so that the conditions of Lemma 3.3 are satisfied. The result follows directly from
Lemma 3.3. �

Corollary 3.1 Suppose that X is an irreducible and aperiodic MC with state space E =
{s1, . . . , sk} with one-step transition matrix P . Then there exists a finite positive integer
M such that Pij (n) > 0 for all n ≥ M and all 1 ≤ i ≤ k, 1 ≤ j ≤ k.

Proof of Corollary 3.1 Since X is aperiodic, there is an N < +∞ such that Pjj (n) > 0
for all j = 1, . . . , k and all n ≥ N . For any si, sj , there is, by irreducibility, an nij such
that Pij (nij )> 0. Let Mij = N + nij . Then, for all m ≥ Mij ,

pXm|X0(sj |si) ≥ pXm,Xm−nij
|X0(sj , si |si)

= pXm|Xm−nij
(sj |si)pXm−nij

|X0(si |si) = Pij (nij )Pii (m− nij ) > 0.

Take M = maxij Mij . �

Stationary distributions When carrying out a Markov chain Monte Carlo simulation,
it is necessary that the distributions of X(n) converge as n→+∞ to a distribution
that is independent of the initial condition and that they converge to the correct target
distribution. That is,

(pXn(s1), . . . , pXn(sk))
n→+∞−→ π

for any initial distribution µ.
The following results concern existence, uniqueness, and convergence to stationarity

for irreducible, aperiodic Markov chains.

Theorem 3.2 (Existence and Uniqueness) Let X be a time homogeneous irreducible ape-
riodic Markov chain with a finite state space E = (s1, . . . , sk). There exists a unique
stationary distribution π .

Proof of Theorem 3.2 This is found in any standard introduction to Markov chains and
is omitted. �

When applying a Monte Carlo simulation, it is necessary that the process eventually visits
all sites in the state space, hence the first hitting time and the expected return times for
a site are of interest.
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Definition 3.10 (First Hitting Time, Mean Return Time) The first hitting time of site sj

is defined as
Tj = min{n : Xn = sj },

with Tj = +∞ if the chain never visits site sj . The expected first hitting time of site sj

for a process started at site si is defined as

τij = E[Tj |X0 = si].

The mean return time for site si is defined as τii for i = 1, . . . , k.

Lemma 3.4 Let X be an irreducible and aperiodic time homogeneous Markov chain with
state space E = (s1, . . . , sk) and one step transition matrix P and let si, sj ∈ E. Then for
all i, j , p({Tj < +∞}|{X0 = si}) = 1. Furthermore, τij < +∞. That is, the mean hitting
time for any state is finite.

Proof of Lemma 3.4 By Corollary 3.1, there is an integer M < +∞ such that Pij (n) > 0
for all i, j ∈ {1, . . . , k} and all n ≥ M . Let α = min1≤i≤k, 1≤j≤k{Pij (M)}. Note that α > 0.
For states si, sj ,

p({Tj > M}|{X0 = si}) ≤ p({XM 
= sj }|{X0 = si}) ≤ 1− α.

Also,

p({Tj > 2M}|{X0 = si}) =
∑

r1 
=si ,...,r2M 
=si

pX2M,X2M−1...,X1|X0(r2M, . . . , r1|si)

≤
∑

r2M 
=si ,rM 
=si

pX2M,XM |X0(r2M, rM |si)

=
∑

r2M 
=si ,rM 
=si

pX2M |XM
(r2M |rM)pXM |X0(rM |si)

≤ (1− α) sup
q

p({X2M 
= si}|{XM = sq}) ≤ (1− α)2.

By a similar argument, it is clear that for each l > 1,

p({Tj > lM}|{X0 = i}) ≤ (1− α)l
l→+∞−→ 0.

It follows that
lim

N→+∞
p({Tj < N}|{X0 = si}) = 1.

Furthermore,

τij=E[Tj |{X0 = si}]=
∞∑

n=1

p({Tj ≥ n}|{X0 = si}) ≤
∞∑
l=0

(l+1)M−1∑
n=lM

p({Tj ≥ lM}|{X0 = si})

= M

∞∑
l=0

p({Tj > lM}|{X0 = si}) ≤ M

∞∑
l=0

(1− α)l = M

α
< +∞.

The lemma is proved. �
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Theorem 3.3 (The Markov Chain Convergence Theorem) Let X be an irreducible, ape-
riodic Markov chain with state space E = (s1, . . . , sk) and transition matrix P , with arbi-
trary initial distribution µ = (µ1, . . . , µk). Then for any distribution π = (π1, . . . , πk)

that is stationary for the transition matrix P ,

lim
n→+∞ max

j∈{1,...,k}
|µ(n)

j − πj | = 0,

where µ(n) = µP n (where µ, π and µ(n) are, as usual, taken as row vectors).

Proof of Theorem 3.3 The proof uses a coupling argument. Let X = (X0, X1, X2, . . .)

and Y = (Y0, Y1, Y2, . . .) denote two independent copies of the Markov chain. Let τ =
min{n ≥ 1 : Xn = Yn}, with τ = +∞ if the chains never meet. The aim is to show that
the random time τ satisfies p({τ < +∞}) = 1. Since the Markov chain is irreducible
and aperiodic, there exists an integer N < +∞ by Corollary 3.17 such that Pij (M) > 0
for all i, j ∈ {1, 2, . . . , k}. Let α = min{Pij (M), i, j ∈ {1, . . . , k}}> 0. It follows that

p({τ ≤ M}) =
M∑

j=1

p({Xj = Yj })

≥ p({XM = YM}) ≥ p({XM = YM = s1}) = p({XM = s1})p({YM = s1})

=
(

k∑
i=1

Pi1(M)p({X0 = si})
)(

k∑
i=1

Pi1(M)p({Y0 = si})
)

≥ α2.

It follows that p({τ >M}) ≤ 1− α2. Similarly,

p({τ > lM}) = p({τ >M})
l∏

j=1

p({τ >(j + 1)M}|{τ > jM})

and a similar argument to the one that shows p({τ >M}) ≤ 1− α2 also gives that
p({τ >(j + 1)M}|{τ > jM}) ≤ 1− α2 for each j . From this, it follows directly that

p({τ > lM}) ≤ (1− α2)l

and hence that limN→+∞ p(τ < N) = 1, so that limN→+∞ p(τ >N) = 0. It is also
straightforward to show from the bounds that E[τ ] < +∞.

For any j ∈ {1, . . . , k}, note that p({Yn = sj }|{τ ≤ n}) = p({Xn = sj }|{τ ≤ n}). It
follows that, for each j = 1, . . . , k,

|pXn(sj )− pYn(sj )| ≤ |(p({Xn = sj }|{τ ≤ n})− p({Yn = sj }|{τ ≤ n})|p({τ ≤ n})
+|p({Xn = sj }|{τ >n})− p({Yn = sj }|{τ >n})|p({τ >n})

≤ p({τ >n}) n→+∞−→ 0.

The result follows directly. �
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Time reversible Markov chains Several McMC algorithms require the Markov chain
to be time reversible. This is the case with the Metropolis-Hastings algorithm, discussed
in Section 3.7.3.

Definition 3.11 (Time Reversible Markov Chain) Let X = (X1, X2, . . .) be a time homo-
geneous Markov chain with state space E = (s1, . . . , sk). Let µ be the entrance law (that
is µj = pX0(sj )) and P be the transition matrix. The Markov chain is reversible if there
exists a distribution π (that is πj ≥ 0 for all j ∈ {1, . . . , k} and

∑k
j=1 πj = 1) such that

πiPij = πjPji (3.16)

for all 1 ≤ i ≤ k, 1 ≤ j ≤ k. A distribution π with this property is said to be a reversible
distribution.

Proposition 3.4 Let X be a Markov chain, with finite state space E, one step transition
matrix P and entrance law µ. Let π be a reversible distribution. Then π is a stationary
distribution for the chain.

Proof of Proposition 3.4 Since
∑k

j=1 Pij = 1, it follows by Equation (3.16) that

πi = πi

k∑
j=1

Pij =
k∑

j=1

πiPij =
k∑

j=1

πjPji

for all i ∈ {1, . . . , k}. In other words,

π = πP,

where π is taken as a 1× k row vector, so that π is a stationary distribution by
Lemma 3.2. �

3.7.3 The Metropolis-Hastings algorithm

Since direct sampling from a posterior distribution may not be possible, the
Metropolis-Hastings algorithm starts by generating candidate draws from a so-called
proposal distribution. These draws are then corrected so that they behave asymptotically
as random observations from the desired invariant or target distribution.

The MC constructed by the algorithm at each stage is therefore built in two steps: a
proposal step and an acceptance step. These two steps are associated with the proposal
and acceptance distributions, respectively.

The Metropolis problem Let f = (f1, . . . , fk) be an arbitrary probability function,
which is the target distribution, on a finite state space E = (s1, . . . , sk). That is,

• fj ≥ 0 for j ∈ {1, . . . , k},
• ∑k

j=1 fj = 1.
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The Metropolis problem is to construct a Markov chain with invariant distribution f . The
following discussion shows that it is always possible to construct an appropriate transition
matrix to solve the Metropolis problem. There are, in fact, infinitely many solutions to
the stated problem.

A solution of the Metropolis problem Let Q be a symmetric k × k matrix, that is

Qij = Qji, ∀(i, j) ∈ {1, . . . , k}2 (3.17)

such that Qij ≥ 0 for each (i, j) and
∑k

j=1 Qij = 1 for each i ∈ {1, . . . , k}.
The aim is to construct a Markov chain X with the state space E and the invariant

distribution f . Consider the following rules for transition:
For Xn = si , propose a value of Yn+1 = sj where sj is drawn with probability Qij ,

for j = 1, . . . , k, independently of X0, . . . , Xn−1. Then accept j with probability

αij = min

{
1,

fj

fi

}
. (3.18)

Acceptance means that the chain moves to Xn+1 = sj . Reject the proposed value j with
probability

1− αi,j . (3.19)

Rejection means that the chain stays at si . That is, Xn+1 = si . The procedure is imple-
mented in terms of an independent random toss of coin the probability function

(p(heads), p(tails)) = (αi,j , 1− αi,j

)
.

Heads means acceptance and tails means rejection.
The next task is to compute the transition probabilities Pij of the Markov chain X.

Let {ta} denote the event that the proposed transition is accepted, and let {ta}c denote
the complement. Then, for i 
= j ,

Pij = pXn+1|Xn(sj |si) = p
({Yn+1 = sj } ∩ ta|{Xn = si}

)
from the definition of proposal and acceptance. It follows that

= P ({Yn+1 = j}|ta ∩ {Xn = si}) P (ta|{Xn = si}) = p
({Yn+1 = sj }|{Xn = si}

)
αi,j .

since, conditioned on Xn proposal is generated independently of acceptance. In other
words,

Pij = Qij ·min

{
1,

fj

fi

}
= Qij · αi,j i 
= j. (3.20)

For i = j ,

Pii = pXn+1|Xn (si |si)

= p ({Yn+1 = si} ∩ ta|{Xn = si})+ p
({Yn+1 
= si} ∩ tac|{Xn = si}

)
= pYn+1|Xn (si |si) p ( ta|{Xn = si})+ pYn+1|Xn (si |si) p

(
tac|{Xn = si}

)
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= pYn+1|Xn (si |si) αi,i +
∑
j 
=i

pYn+1|Xn

(
sj |si

) (
1− αi,j

)
= Qiiαi,i +

∑
j 
=i

pYn+1|Xn

(
sj |si

) (
1− αi,j

)
= Qii +

∑
j 
=i

Qij

(
1− αi,j

)
.

The matrix P thus defined is a legitimate transition probability matrix; Pij ≥ 0 for each
(i, j) and

∑k
j=1 Pij = 1 for each k ∈ {1, . . . , k}.

It remains to show that f is an invariant distribution for Markov chain X with
transition matrix P and an arbitrary initial distribution µ.

The following argument shows that f satisfies the reversibility condition fiPij =
fjPji for all (i, j). Consider i 
= j such that

fi < fj .

Then, by Equation (3.20), and the symmetry of Q (which is assumed in the construction),

fiPij = fiQij min

{
1,

fj

fi

}
= fiQij

= Qij min

{
1,

fi

fj

}
fj

= Qjiαj,ifj

= Pjifj .

Now consider i 
= j such that
fj < fi,

Then

fjPji = Qji min

{
1,

fi

fj

}
fj .

Continuing in the same way as before gives the result. Hence the reversibility condition
(Equation (3.16)) holds for all (i, j), and therefore, by the result of Proposition 3.4, the
Metropolis problem is solved.

Example 3.8 Let

f =
(

1

4
,

1

4
,

1

6
,

1

3

)
,

and

Q =


1
6

1
6

1
6

1
2

1
6

1
2

1
6

1
6

1
6

1
6

2
3 0

1
2

1
6 0 1

3

 .
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Then the acceptance probabilities are

α =


1 1 2

3 1

1 1 2
3 1

1 1 1 0
3
4

3
4 0 1

 .

The transition matrix may be computed using MATLAB. It is

P =


0.2222 0.1667 0.1111 0.5

0.1667 0.5556 0.1111 0.1667

0.1667 0.1667 0.667 0

0.3750 0.125 0 0.5

 .

3.7.4 The one-dimensional discrete Metropolis algorithm

The solution of the Metropolis problem, as established above, can be used to simulate
a Markov chain X with preassigned stationary distribution f . The pertinent simulation
algorithm is known as the Metropolis algorithm.

Definition 3.12 (Metropolis Algorithm) Let Q be a symmetric transition probability
matrix. Given that Xn = si ,

1. Generate: Yn+1 = sj with probability Qij for j ∈ {1, . . . , k}.
2. Take

Xn+1 =
{

Yn+1 with probability αi,j

si with probability 1− αi,j

where

αi,j = min

{
1,

fj

fi

}
.

The distributions Qi,. are called the proposal distributions.

In W.K. Hastings [76], the algorithm of Metropolis was generalized by relaxing the
requirement that the matrix of proposal distributions Q be symmetric. The more general
simulation algorithm is known as the Metropolis-Hastings algorithm.

Definition 3.13 (Metropolis-Hastings Algorithm) Let Q be a transition probability
matrix. Given that Xn = si

1. Generate Yn+1 = sj with probability Qij , j ∈ {1, . . . , k}.
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2. Take

Xn+1 =
{

Yn+1 with probability αH
i,j

si with probability 1− αH
i,j ,

where

αH
i,j = min

{
1,

fjQji

fiQij

}
. (3.21)

The distributions Qi. for i ∈ {1, . . . , k} are called the proposal distributions.

Notes The ‘Chest Clinic Problem’ example is found in A.P. Dawid [68] and in S. Lau-
ritzen [77]. Conditional independence and sufficiency is discussed in [70] and [71].
McMC is a major computational workhorse in modern Bayesian inference. A thorough
introduction and treatment of McMC and its applications to Bayesian inference is found
in [26]. The software WinBUGS and BUGS for Bayesian statistical inference [78] on
a number of statistical models using McMC has a source code which is analogous to a
Bayesian network, and represents an application of Bayesian networks to computer soft-
ware. Simulation methods like McMC can, of course, be used for many other purposes
than computing expectations or probabilities by empirical averages; an example is found
in Pẽna [49]. The work in [79] presents a non-reversible McMC technique which has
turned out to be useful in, for example, learning of structures, as discussed in Chapter 6.
A study of sufficiency in machine learning is found in [80].
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3.8 Exercises: Evidence, sufficiency and Monte Carlo
methods

1. Jeffrey’s Rule In a certain country, people use only two car models, Volvo and Saab,
which come in two colours, red and blue. The sales statistics suggest p(Volvo) =
p(Saab) = 1/2. Furthermore, p(red|Volvo) = 0.7 and p(red|Saab) = 0.2. You are
on holiday in this region and you are standing outside a large underground garage,
which you may not enter. The attendant of the garage communicates his impression
that 40% of the cars in the garage are red. What is the probability that the first car
leaving the garage is a Volvo?

2. Pearl’s Method Let A denote an event that gives uncertain information (or vir-
tual/soft evidence) about the partition (that is a collection of mutually exclusive and
exhaustive events) {Gj }nj=1. Suppose that A satisfies

p
(
A | Gj,B

) = p
(
A | Gj

)
, j = 1, 2, . . . , n

for every event B. This is an assumption of conditional independence; the event A is
independent of all other events given the partition Gj . Set λj = p(A|Gj) and show
that

p (C | A) =
∑n

j=1 λjp
(
C ∩Gj

)∑n
j=1 λjp

(
Gj

) .

Check that p(.|A) satisfies the definition of the Pearl update (Definition 1.8).
The following two exercises are about converting soft evidence in a format where
Jeffrey’s rule is applicable, to a format where Pearl’s rule is applicable and vice
versa. They are taken from [81].

3. Let p denote a probability distribution before evidence is obtained and suppose
that a piece of evidence gives uncertain information about the partition (that is, the
collection of mutually exclusive and exhaustive events) {Gj }nj=1. Suppose that this
evidence is specified by the posterior probabilities

p∗
(
Gj

) = qj , j = 1, 2, . . . , n

and by
λj = qj

p
(
Gj

) , j = 1, 2, . . . , n.

For any event C, compute the probability p (C | A) using Pearl’s method of virtual
evidence and show that this gives the same result as Jeffrey’s rule of update.
Hint: Use the formula in the preceding exercise.

4. Suppose that p is a probability distribution before any new information has been
received and that the virtual evidence A gives uncertain information about the
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partition (that is, the collection of mutually exclusive and exhaustive events) {Gj }nj=1.
Suppose that this evidence is specified by likelihood ratios

p
(
A | Gj

)
p (A | G1)

= λj , j = 1, 2, . . . , n.

Assume that
p∗
(
Gj

) = qj = p
(
Gj | A

)
, j = 1, 2, . . . , n.

For any event C, compute the probability p∗ (C) using Jeffrey’s rule and show that
this gives the same result as Pearl’s method of virtual evidence.

5. Let X1,X2,X3 be three binary random variables, each taking values in {0, 1}, such
that

pX1,X2,X3 (x1, x2, x3) = 1

8
,

for (x1, x2, x3) ∈ {0, 1}3.
Now let V be an additional binary random variable and let E = {V = 1}. Here V

stands for virtual information. Suppose that the conditional probability function of
V given X3 satisfies

pV |X3 (1 | 1) = λpV |X3 (1 | 0) .

Let G1 and G2 be the two events

G1 =
{
(x1, x2, x3) ∈ {0, 1}3 | x3 = 0

}
and

G2 =
{
(x1, x2, x3) ∈ {0, 1}3 | x3 = 1

}
.

The events G1 and G2 are mutually exclusive and exhaustive. Use Pearl’s method
of virtual evidence to obtain the updated probability distribution

p̃X1,X2,X3 (x1, x2, x3) = pX1,X2,X3|V (x1, x2, x3|1) (x1, x2, x3) ∈ {0, 1}3.
Comment Virtual evidence is an event that is not accommodated by the statistical
model. In this case, the model is described by the probability function pX1,X2,X3 and
it does not accommodate V , in the sense that the event {V = 1} is not an event in the
event algebra generated by the model. Information of this type (that is, in terms of
events not in the event algebra generated by the model) can be expected to occur in
practice, since a model cannot be expected to consider all scenarios and all possible
sources of information. When virtual evidence arrives, some assessment has to be
made as to how it should be incorporated. Here, the additional modelling assumption
has been added that the likelihood of {V = 1} depends only on X3. That is, {V = 1}
is conditionally independent of X1,X2 given X3. The statistical model for V is not
complete, since only the ratio of the likelihoods has been specified. This adds to the
modelling capacities of Bayesian networks, as virtual nodes may be added, as shown
in Figure 3.3.
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6. Let (X1, X2) be discrete random variables, with joint probability function

pX1,X2(x1, x2|θ1, θ2)

=
{

n!
x1!x2!(n−x1−x2)!θ

x1
1 θ

x2
2 (1− θ1 − θ2)

n−x1−x2 x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ n

0 otherwise,

where θ1 ≥ 0, θ2 ≥ 0 and θ1 + θ2 ≤ 1. Suppose that the prior distribution over (θ1, θ2)

is taken from the class

π(θ1, θ2) = �(α1 + α2 + α3)∏3
j=1 �(αj )

θ
α1−1
1 θ

α2−1
2 (1− θ1 − θ2)

α3 θj ≥ 0,

j = 1, 2, θ1 + θ2 ≤ 1

where αj > 0, j = 1, 2, 3.
Let ψ = θ1 + θ2. Show that T = X1 +X2 is a sufficient statistic for ψ .

7. Let X = (X1, . . . , Xn) be a random sample from U(θ1, θ2) (uniformly distributed
between θ1 and θ2). That is, the density function is

π(x|θ1, θ2) =
{

1
θ2−θ1

θ1 ≤ x ≤ θ2

0 otherwise.

Let T (X) = (minj Xj , maxj Xj ). Find the distribution of T and show that it is a
sufficient statistic for θ = (θ1, θ2).

8. Bucket Elimination Suppose A, B,C, D,E,F and G are all binary variables (tak-
ing values 0 or 1) and that their joint probability may be factorized along the DAG
given in Figure 3.9.

A E

C D F

B G

Figure 3.9 Bucket elimination.

Suppose that pF,C(1|1) is to be computed.

(a) Suppose the elimination order E, A, B, G, D is chosen. Compute the sizes of
the tables that have to be manipulated at each stage in the computation. Compute
the sizes of the tables that have to be manipulated for an elimination order: D,
G, B, A, E.
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(b) Write a MATLAB code for the problem of finding an efficient bucket elimination
to compute pF |C(1|1) where the variables A, B, C, D, E, F , G are all binary
variables, the probability distribution p (A, B, C, D, E, F ,G) may be factorized
according to a directed acyclic graph, the input, for each variable A, B, C, D,
E, F , G is the set of parents and the programme returns the elimination order
that yields the smallest sum of table sizes.

9. Divorcing The following example considers a simple principle known as
divorcing , for reducing the sizes of the tables required. If the parent set �(X)

of a variable X contains variables A1, . . . , Am, B1, . . . , Bn, where (A1, . . . ,

Am) ⊥ (B1, . . . , Bn)‖GX, then there are circumstances where it may be possible to
introduce two divorcing variables C1 and C2, where C1 ⊥ C2‖GX, C1 and C2 are
parents of X, �(C1) = {A1, . . . , Am}, �(C2) = {B1, . . . , Bn} and the direct links
from A1, . . . , Am, B1, . . . , Bn to X are removed.

Consider a Bayesian network connected with a land search-and-rescue operation.
The purpose is to predict the condition of an individual when found. There are
a large number of variables that influence this: temperature, wind, precipitation,
mental and physical health, age (which influences mental and physical health). But
the most important feature about the weather is whether or not the combination of
wind, precipitation and temperature can cause a dangerous wind chill, which leads
to hypothermia. The various aspects of a person’s health may be summarized as his
condition when lost, and the extend to which a person’s health deteriorates depends
on the person’s age and condition.

Construct a full Bayesian network containing all the variables and, from this,
construct a Bayesian network with appropriate divorcing variables. Assuming all
variables are binary, compute the sizes of the tables for the full network and compute
the sizes of the tables for the network with the divorcing variables.

10. Hidden Variables Consider a situation where H is a hidden variable and observa-
tions are made on the variables (Ij )

n
j=1. Let p(H) denote the prior distribution of

H . Show that, given observations on the variables (Ij )
n
j=1, the posterior is given by

p(H |(Ij )
n
j=1) = µp(H)

n∏
j=1

p(Ij |H)

where µ is a normalization constant if and only if the variables satisfy the causal
relations shown in the diagram in Figure 3.10.

H

I1 I2 In
. . .

Figure 3.10 Hidden variables example.
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11. Monte Carlo Simulate the Markov chain X = (X0,X1,X2, . . .) with state space
{1, 2, 3, 4} and one-step transition matrix

P =


0 1

2 0 1
2

1
2 0 1

2 0

0 1
2 0 1

2

0 1
2 0 1

2

 .

Simulate it for n = 10, 100 and 1000 steps, with initial conditions X0 = 1 and X0 =
2. What are (p̂(1), p̂(2), p̂(3), p̂(4)) for each simulation? Is this chain aperiodic?

12. A Metropolis Algorithm for Probabilistic Inference in a Bayesian Network Let
X = (X1, . . . , Xd) be a random vector where each variable is binary. That is, X =
X1 × . . .× Xd where Xj = {0, 1} for each j ∈ Ṽ = {1, . . . , d}. An instantiation of
X is therefore a vector x = (x1, . . . , xd), where xi ∈ {0, 1} for i = 1, . . . , d .
Let Ṽ = {1, . . . , d} and Ũ = {i1, . . . , im} ⊆ Ṽ . Let XŨ = (Xi1 , . . . , Xim) and assume
that XŨ = y; that is, the variables XŨ are instantiated. as y. Let XṼ \Ũ denote the
uninstantiated variables and let xṼ \Ũ denote a generic element of XṼ \Ũ = {0, 1}t ,
where t is the number of uninstantiated variables.

The aim is to compute the probabilities

pXṼ \Ũ |XŨ

(
xṼ \Ũ | y

)
=

pXṼ \Ũ ,XŨ

(
xṼ \Ũ , y

)
pXŨ

(
y
) .

As will be shown in the later chapters, there are deterministic algorithms for prob-
abilistic inference, which compute the desired conditional probabilities exactly, but
since probabilistic inference in a Bayesian network is NP-hard in the number of
variables (G.F. Cooper [82]), these exact algorithms are not expected to run in poly-
nomial time. It therefore makes sense to run an approximate algorithm, if it converges
rapidly.
This exercise designs a Markov chain Monte Carlo method for approximate proba-
bilistic inference with pXṼ \Ũ |XŨ

(
xṼ \Ũ | y

)
as the target distribution, based on the

Metropolis algorithm. Firstly, define a random walk {Zn}n≥1 with values in {0, 1}t
as follows.

• Let xṼ \Ũ =
(
xṼ \Ũ ,i

)t
i=1

and assume that Zn = xṼ \Ũ .

• Proposal. Choose at random and independently of Zn an integer l in {1, . . . , t}
(For, convenience of writing, Ṽ \Ũ = {1, . . . , t} has been renumbered), i.e. q(l) =
1
t
. Then define a new vector x∗

Ṽ \Ũ in {0, 1}t by

x∗
Ṽ \Ũ ,l

= xṼ \Ũ ,l ⊕ 1
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where 1⊕ 1 = 0⊕ 0 = 0, 1⊕ 0 = 0⊕ 1 = 1, and

x∗
Ṽ \Ũ ,i

= xṼ \Ũ ,i , if i 
= l

In other words, x∗
Ṽ \Ũ differs from xṼ \Ũ only in the lth coordinate.

• Acceptance. Take

Zn+1 =
{

x∗
Ṽ \Ũ with probability αxṼ \Ũ ,x∗̃

V \Ũ
xṼ \Ũ with probability 1− αxṼ \Ũ ,x∗̃

V \Ũ

where

αxṼ \Ũ ,x∗̃
V \Ũ
= min

{
1,

f ∗

f

}
,

where for a potential φ,

f ∗

f
=

φ
(
XṼ \Ũ ,l = x∗

Ṽ \Ũ ,l
, Ml

)
φ
(
XṼ \Ũ ,l = xṼ \Ũ ,l , Ml

)
and where, finally, Ml is the Markov blanket of the variable XṼ \Ũ ,l in the DAG.
Here, the variable XṼ \Ũ ,l is the variable in XṼ \Ũ that was picked in the proposal
step of the algorithm and φ is a function of XṼ \Ũ ,l and the variables in Ml . Note
that this algorithm requires no operations of marginalization (required by bucket
elimination).

• The questions are:

(a) Show that {Zn}n≥1 is an irreducible, aperiodic Markov chain in {0, 1}t .
(b) Find the expression for the potential φ.

(c) Show that pXṼ \Ũ |XŨ

(
xṼ \Ũ | y

)
is the stationary distribution of {Zn}n≥1.

Hence {Zn}n≥1 is a sequence of samples from the target distribution, which is

pXṼ \Ũ |XŨ

(
. | y

)
, and any value pXṼ \Ũ |XŨ

(
xṼ \Ũ | y

)
may be computed by counting

the number of times xṼ \Ũ occurs in the samples.
This is a Metropolis algorithm based on Pearl [83].
The crucial thing to be investigated, but not requested here, is the run time of the
algorithm needed to approximate the target distribution with a given error bound.

13. The purpose of this exercise is to use the software technology from HUGIN Expert
A/S to make queries on the Bayesian network specified later, in Chapter 9 (The Wet
Pavement and the Sprinkler).
The Wet Pavement and the Sprinkler A simplified version of a standard example
of a Bayesian network is given by the DAG in Figure 3.11 and by the conditional
probability potentials given below. (In HUGIN, the term ‘conditional probability
table’, abbreviated CPT is used).

C = Cloudy, S = Sprinkler,

R = Rain, W = WetGrass.
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The joint probability distribution is assumed to factorize according to the graph as
product of the following conditional probability tables:

pS|C =
S\C 0 1

0 0.5 0.9

1 0.5 0.1

pR|C =
R\C 0 1

0 0.8 0.2

1 0.2 0.8

pW |R,S(1|., .) =
S\R 0 1

0 0.00 0.90

1 0.9 0.99

The prior distribution is
pC(0) = pC(1) = 0.5.

(a) Find pC|W (1 | 1) using HUGIN.

(b) Find pC|S (1 | 1) and pR|S (1 | 1) using HUGIN.

(c) What is the state of maximum probability for C if W = 1 ? This query can be
handled by using the max propagation button in the tool bar of the run mode
of HUGIN.

Using HUGIN Lite for propagating evidence and making queries Start the pro-
gramme by clicking on the icon. This opens a window with a command tool bar.
You are now in the edit mode of HUGIN. You use the tool bar to introduce your
DAG in the window.
The package includes a help file (click on Help in the tool bar of the starting window)
with a manual that explains how to use the software. The steps needed are outlined
below.

• Open the menu under ‘Network’, click on Auto propagate and choose Do not
auto propagate (this is more instructive for our aims than auto propagation).

• Draw your DAG :

(a) By clicking with left mouse button in the command tool bar at the button
depicting an ellipse with a single boundary choose first (discrete) nodes and
place them in the window. Then draw your DAG in the window by connecting
the nodes with arrows, press the left mouse button and move from the centre
of a parent node to the centre of the child node and release the mouse button.

(b) You may give names to nodes by double clicking on a node, thus opening an
appropriate window.
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C

R S

W

Figure 3.11 Sprinkler, Rain and Wet Pavement.

• Introduce your CPTs (CPT–Conditional Probability Table in HUGIN).

(a) Click on a node in the DAG you created in the edit mode.

(b) Then use ctrl + left (?) mouse click. A window should now open and you
may write the probabilities in the window as text. Note the correct order of
probabilities, where a column is a conditional probability distribution.

(c) Repeat the same for all nodes.

(d) The CPT windows may be closed/opened by clicking on the table button in
the tool bar.

• Click the yellow flash button in the tool bar, and you enter the run mode in
HUGIN. (You may get back to edit mode by clicking the yellow pen button.) The
network is now compiled.

• Introduce evidence:

(a) Check the initial marginal distributions on the nodes by using expand node
list in the tool bar. You will see the distribution in green coloured staples and
in digits.

(b) Collapse the node list using the button on the right hand side of the expand
button.

(c) Click on a node.

(d) Click then on the enter likelihood evidence button (three green bars) in the
tool bar.

(e) Write in the evidence (here 0 and 1).

(f) a tag with little red e inside a box should appear in the node where evidence
is introduced.

(g) repeat for all nodes where you want evidence to be inserted.

(h) expand the node list (a button in the tool bar). The nodes with evidence should
be shown and have red colour, and the other nodes have a grey colour.

• PROPAGATE (query: posterior probability): click in the tool bar (run mode) on
the sum propagate button (depicting a � under two arrows in each direction).
The posterior probabilities of the states will be emerge in green colour and will
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also be shown as digits in the left hand part of the window (expand this part if
necessary).

• PROPAGATE (query: state of maximum probability): with evidence inserted as in
the procedure above, click on the max propagate button The states with maximum
probabilities will be emerge with number 100 assigned in the left hand part of the
window (extend this part if necessary).

• Use the print button to dump down the result, i.e. the screen, on a printer.

By using the refresh button (indicated by a loop arrow) you can always restart with
the DAG initially specified. In the edit mode (yellow pencil) you may modify the
graph and the CPTs.





4

Decomposable graphs and
chain graphs

Having discussed the way that information and uncertainty about variables are represented
by a Bayesian network, the next task is to develop the graph theory that is used for learning
the graphical structure and for constructing a junction tree to enable the probability
distribution to be updated efficiently in the light of new information.

The second of these topics will be considered first. Once the graph structure has been
learned, there are many ways of updating the probability distribution in light of new
information, but attention is focused on the fact that Bayesian networks are ‘tree-like’,
or ‘almost trees’, in the sense that they exhibit many of the important properties of trees
that are useful for computations. This was the basic idea of Pearl, Lauritzen and Speed
in the 1980s, as pointed out by S. Arnborg in [84] and [85]. One key idea is that the
Bayesian network may be expressed as a junction tree, where the nodes are groups of
variables. Some selected edges are added in, and the edges made undirected, to form a
decomposable graph, from which the junction tree is constructed.

Next, the necessary structures for considering classes of Markov equivalent graphs
will be considered. Markov equivalent directed acyclic graphs were introduced in
Chapter 2 and it is convenient to develop a language to characterize them, in terms of
the essential graph , which will be introduced in this chapter and used in Chapter 6.
The essential graph is a graph that retains all the directed edges that are common to all
the Markov equivalent graphs, and removes the direction of the remaining edges, by
replacing them with undirected edges. The collection of essential graphs is important
when applying numerical methods to learn the graph structure, the topic of Chapter 6; if
a Markov chain Monte Carlo algorithm is to be efficient, then it should move between
graph structures that are essentially different. A brief outline of the basic ideas of

Bayesian Networks: An Introduction T. Koski, J. Noble
 2009 John Wiley & Sons, Ltd
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Markov chains is given in Chapter 3, the essential graph is introduced in this chapter
and a suitable Markov chain Monte Carlo algorithm for locating the essential graph is
discussed in Chapter 6.

4.1 Definitions and notations

Many of the basic notations and definitions necessary for the text have already been given
in Chapter 2, the remainder are given here.

Recall the definition of an induced sub-graph (Definition 2.6).

Definition 4.1 (Complete Graph, Complete Subset) A graph G is complete if every pair
of nodes is joined by an undirected edge. That is, for each (α, β) ∈ V × V with α �=
β, (α, β) ∈ E and (β, α) ∈ E. In other words, 〈α, β〉 ∈ U , where U denotes the set of
undirected edges.

A subset of nodes is called complete if it induces a complete sub-graph.

Definition 4.2 (Clique) A clique is a complete sub-graph that is maximal with respect to
⊆. In other words, a clique is not a sub-graph of any other complete graph.

Definition 4.3 (Simplicial Node) Recall the definition of family, found in Definition 2.3.
For an undirected graph, the family of a node β is F(β) = {β} ∪ N(β), where N(β)

denotes the set of neighbours of β. A node β in an undirected graph is called simplicial
if its family F(β) is a clique.

Definition 4.4 (Connectedness, Strong Components) Let G = (V, E) be a simple graph,
where E = U ∪ D. That is, E may contain both directed and undirected edges. Let α → β

denote that there is a path (Definition 2.8) from α to β. If there is both α → β and β → α

then α and β are said to be connected. This is written:

α ↔ β.

This is clearly an equivalence relation. The equivalence class for α is denoted by [α]. In
other words, β ∈ [α] if and only if β ↔ α. These equivalence classes are called strong
components of G.

Note that a graph is connected if between any two nodes there exists a trail (Definition
2.7), but any two nodes α and β are only said to be connected if there is path from α to
β and a path between β and α, where the definition of a ‘path’ is given in Definition 2.8.

Definition 4.5 (Separator) A subset S ⊆ V is called an (α, β) separator if every trail from
α to β intersects S. Let A ⊆ V and B ⊆ V , such that A, B and S are disjoint. The subset
S is said to separate A from B if it is an (α, β) separator for every α ∈ A and β ∈ B.

Definition 4.6 (Minimal Separator) Let A ⊆ V , B ⊆ V and S ⊆ V be three disjoint
subsets of V . Let S separate A and B. The separator S is said to be a minimal
separator of A and B if no proper subset of S is itself an (α, β) separator for any
(α, β) ∈ A × B.



DEFINITIONS AND NOTATIONS 125

root

g d

leaf leaf leaf

Figure 4.1 Illustration of a rooted tree.

Definition 4.7 (Rooted Tree) A rooted tree T is a tree graph with a designated node ρ

called the root. A leaf of a tree is a node that is joined to at most one other node. Figure 4.1
gives an illustration of a rooted tree.

Definition 4.8 (Diameter) The diameter of a tree is the length of the longest trail between
two leaf nodes.

Definition 4.9 (Moral Graph) Let G be a DAG. Then G is said to be moralized if all
undirected edges between all pairs of parents of each node which are not already joined
are added and then all edges are made undirected.

An example of a DAG is given in Figure 4.2. The result of moralizing is given in
Figure 4.3. The cliques of the moral graph are illustrated in Figure 4.4.

Definition 4.10 (Chord) Let G = (V, E) be an undirected graph. Let σ be an n cycle in
G. A chord of this cycle is a pair (αi, αj ) of non-consecutive nodes in σ such that αi ∼ αj

in G.

Definition 4.11 (Triangulated) An undirected graph G = (V, E) is triangulated if every
one of its cycles of length ≥ 4 possesses a chord.

a1 a2

a3 a5

a4

a7a6

Figure 4.2 A directed acyclic graph.

a1 a2

a3 a5

a4

a7a6

Figure 4.3 The graph in Figure 4.2, after moralizing.
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a1 a2

a3 a5

a3

a4

a7 a5a6

Figure 4.4 Cliques of the graph in Figure 4.3.

Lemma 4.1 If G = (V, E) is triangulated, then the induced graph GA is also triangulated.

Proof of Lemma 4.1 Consider any cycle of length ≥ 4 in the restricted graph. All the
edges connecting these nodes remain. If the cycle possessed a chord in the original graph,
the chord remains in the restricted graph. �

Definition 4.12 (Decomposition) A triple (A, B, S) of disjoint subsets of the node set V

of an undirected graph is said to form a decomposition of G or to decompose G if

V = A ∪ B ∪ S

and

• S separates A from B,

• S is a complete subset of V .

A, B or S may be the empty set. If both A and B are non-empty, then the decomposition
is proper.

Clearly, every graph can be decomposed to its connected components (Definition 2.7).
If the graph is undirected, then the connected components are the strong components
(Definition 4.4).

Definition 4.13 (Decomposable Graph) An undirected graph G is decomposable if either

1. it is complete, or

2. it possesses a proper decomposition (A, B, S) such that both sub graphs GA∪S and
GB∪S are decomposable.

This is a recursive definition, which is permissible, since the decomposition (A, B, S)

is required to be proper, so that GA∪S and GB∪S have fewer nodes than the original
graph G.

Example 4.1 A decomposable graph Consider the graph in Figure 4.5. In the first
stage, set S = {α3}, with A = {α1, α2} and B = {α4, α5, α6}. Then S is a clique and S

separates A from B. Then A ∪ S = {α1, α2, α3} and GA∪S is a clique. B ∪ S = {α3, α4,

α5, α6}.
The graph GB∪S is decomposable; take S2 = {α3, α5}, A2 = {α4} and B2 = {α6}. Then

GA2∪S2 and GB2∪S2 are cliques. �
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a1 a2

a3

a5a4

a6

Figure 4.5 Example of a decomposable graph.

4.2 Decomposable graphs and triangulation of graphs

Decomposable graphs provide the basis for one of the key methods for updating a prob-
ability distribution described in terms of a Bayesian network. The DAG is moralized and
then triangulated using the most efficient triangulation algorithms available. The triangu-
lated graph is then decomposed and organized to form a junction tree, which supports
effective algorithms, one of which will be described in Chapter 10.

Theorem 4.1 Let G = (V, E) be an undirected graph. The following conditions 1), 2)
and 3) are equivalent.

1. G is decomposable.

2. G is triangulated.

3. For every pair of nodes (α, β) ∈ V × V , their minimal separator is complete.

Proof of Theorem 4.1 The proof below follows the lines of Cowell, Dawid, Lauritzen
and Spiegelhalter in [67].

Proof of 1) �⇒ 2), Theorem 4.1

Inductive hypothesis: All undirected decomposable graphs with n nodes or less are
triangulated. This is true for one node.

Let G be a decomposable graph with n + 1 nodes. There are two alternatives:

Either G is complete, in which case it is triangulated,

Or: by the definition of decomposable, there are three disjoint subsets A, B, S such that
S is a complete subset, S separates A from B, V = A ∪ B ∪ S and GA∪S and GB∪S are
decomposable. The decomposition is proper, hence GA∪S and GB∪S have less than or
equal to n nodes. Therefore, by the inductive hypothesis GA∪S and GB∪S are triangulated.
Therefore, a cycle of length ≥ 4 without a chord, will be a cycle from A which passes
through B. By decomposability, S separates A from B and therefore any such cycle must
pass S at least twice. But then this cycle has a chord, since S is a complete subset. �

Proof of 2) �⇒ 3), Theorem 4.1 Assume that G = (V, E) is an undirected, triangulated
graph. Let S be a minimal separator for two nodes α and β. Let A denote the set such that
α ∈ A and GA is the largest connected sub-graph of GV \S such that α is in the node set.
Let B = V \(A ∪ S). For every node γ ∈ S, there is a node τ ∈ A such that 〈γ, τ 〉 ∈ E

and there is a node σ ∈ B such that 〈γ, σ 〉 ∈ E. Otherwise S\{γ } would be a separator
for α and β, contradicting the minimality of S. Hence, for any pair (γ, δ) ∈ S × S, there
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exist paths γ, τ1, . . . , τm, δ and γ, σ1, . . . , σn, δ where all the nodes {τ1, . . . , τm} are in A

and all the nodes {σ1, . . . σn} are in B. Then γ, τ1, . . . , τm, δ, σn, . . . , σ1, γ is a cycle of
length ≥ 4 and therefore has a chord. Assume that τ1, . . . , τm and σ1, . . . , σn have been
chosen so that the paths are as short as possible (that is, there is no shorter path from γ

to δ with all intervening nodes in A and no shorter path from γ to δ with all intervening
nodes in B).

The chord cannot be of the form 〈τi, τj 〉 for some (i, j) or 〈σk, σl〉 for any (k, l)

because of the minimality of the lengths of the chosen paths. Therefore, γ and δ are
adjacent for every pair (γ, δ) ∈ S × S. It follows that S is a clique. �

Proof of 3) �⇒ 2), Theorem 4.1 (This part is unnecessary for the argument, but the
direct proof is reasonably straightforward). Assume that for every pair of nodes (α, β),
their minimal separator is complete. Let α, γ, β, τ1, . . . , τr , α be a cycle of length ≥ 4
in G. If 〈α, β〉 is not a chord of the cycle, then denote by S the minimal separator that
puts α and β in different components of GV \S . Then S clearly contains γ and τj for
some j ∈ {1, . . . , r}. By hypothesis, S is a clique, so that 〈γ, τj 〉 ∈ E and 〈γ, τj 〉 is
a chord of the cycle. Therefore, any cycle of length ≥ 4 has a chord, therefore G is
triangulated.

Proof of 3) �⇒ 1), Theorem 4.1 If G is complete, then the result is clear. If G is
not complete, then choose two distinct nodes (α, β) ∈ V × V that are not adjacent. Let
S ⊆ V \{α, β} denote the minimal separator for the pair (α, β). Let A denote the node set
of the maximal connected component of GV \S and let B = V \(A ∪ S). Then (A, B, S) pro-
vides a decomposition. This procedure can be repeated on GA∪S and GB∪S , and repeated
recursively, hence the graph is decomposable. �

Definition 4.14 (Perfect Node Elimination Sequence) Let V = {α1, . . . , αd} denote the
node set of a graph G. A perfect node elimination sequence of a graph G is an ordering of
the node set {α1, . . . , αd} such that for each j in 1 ≤ j ≤ d − 1, αj is a simplicial node
of the sub-graph of G induced by {αj , αj+1, . . . , αd}

Lemma 4.2 Every triangulated graph G has a simplicial node. Moreover, if G is not
complete, then it has two non-adjacent simplicial nodes.

Proof of Lemma 4.2 The lemma is trivial if either G is complete, or else G has two or
three nodes. Assume that G is not complete. Suppose the result is true for all graphs with
fewer nodes than G. Consider two non-adjacent nodes α and β. Let S denote the minimal
separator of α and β. Let GA denote the largest connected component of GV \S such that
α ∈ A and let B = V \(A ∪ S), so that β ∈ B.

By induction, either GA∪S is complete, or else it has two non-adjacent simplicial
nodes. Since GS is complete, it follows that at least one of the two simplicial nodes is in
A. Such a node is therefore also simplicial in G, because none of its neighbours is in B.

If GA∪S is complete, then any node of A is a simplicial node of G.
In all cases, there is a simplicial node of G in A. Similarly, there is a simplicial node

in B. These two nodes are then non-adjacent simplicial nodes of G. �

Theorem 4.2 A graph G is triangulated if and only if it has a perfect node elimination
sequence.
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Proof of Theorem 4.2 Suppose that G is triangulated. Assume that every triangulated
graph with fewer nodes than G has a perfect elimination sequence. By the previous
lemma, G has a simplicial node α. Removing α returns a triangulated graph. (Consider
any cycle of length ≥ 4 with a chord. If the cycle remains after the node is removed,
then the chord is not removed). By proceeding inductively, it follows that G has a perfect
elimination sequence.

Conversely, assume that G has a perfect sequence, say {α1, . . . , αd}. Consider any
cycle of length ≥ 4. Let j be the first index such that αj is in the cycle. Let V (C)

denote the node set of the cycle and let Vj = {αj , . . . , αd}. Then V (C) ⊆ Vj . Since αj

is simplicial in GVj+1 , the neighbours of αj in the cycle are adjacent, hence the cycle has
a chord. Therefore G is triangulated. �

Definition 4.15 (Eliminating a Node) Let G = (V, E) be an undirected graph. A node α

is eliminated from an undirected graph G in the following way:

1. For all pairs of neighbours (β, γ ) of α add a link if G does not already contain
one. The added links are called fill ins.

2. Remove α.

The resulting graph is denoted by G−α .

Example 4.2 Consider the graph in Figure 4.6.
This graph is already triangulated. But suppose one did not notice this and decided to

eliminate node α3 from the graph in Figure 4.6. The resulting graph is given in Figure 4.7.

Definition 4.16 (Elimination Sequence) An elimination sequence of G is a linear ordering
of its nodes.

a1

a2 a3

a4 a5 a6

Figure 4.6 Example for Definition 4.5, eliminating a node.

a1

a2

a5 a6a4

Figure 4.7 Graph 4.6 with α3 eliminated.
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a1

a2

a3

a5

a4 a6

Figure 4.8 Gσ . Elimination sequence (α3, α2, α4, α1, α5, α6).

Let σ be an elimination sequence and let � denote the fill-ins produced by eliminating
a node of G in the order σ . Denote by Gσ the graph G extended by �.

Example 4.3 Consider the graph in Figure 4.6. Suppose the elimination sequence α3, α2,

α4, α5, α6 is employed. Then the fill-ins, for each stage, will be 〈α1, α6〉, 〈α1, α5〉, 〈α2, α6〉
for α3, then 〈α1, α4〉, 〈α4, α6〉 for α2. No further fill-ins are required. The graph Gσ is
given in Figure 4.8.

Definition 4.17 (Elimination Domains) Consider an elimination sequence σ ; that is a
linear ordering of the nodes, such that for any node α, σ(α) denotes the number assigned
to α. A node β is said to be of higher elimination order than α if σ(β) >σ(α). The
elimination domain of a node α is the set of neighbours of α of higher elimination order.

In Gσ , any node α together with its neighbours of higher elimination order form a complete
subset. The neighbours of α of higher elimination order are denoted by Nσ(α). The sets
Nσ(α) are the elimination domains corresponding to the elimination sequence σ .

An efficient algorithm clearly tries to minimize the number of fill-ins. If possible, one
should find an elimination sequence that does not introduce fill-ins.

Proposition 4.1 All cliques in a Gσ are a Nσ(α) for some α ∈ V .

Proof Let C be a clique in Gσ and let α be a variable in C of the lowest elimination
order. Then C = Nσ(α). �
An efficient algorithm ought to find an elimination sequence for the domain graph that
yields cliques of minimal total size.

The following proposition is clear.

Proposition 4.2 Any Gσ is a triangulation of G. �

It is known (proof omitted) that the algorithms for triangulating a graph are NP - complete;
i.e. a graph can be triangulated in a number of steps that is polynomial in the number of
nodes.

Recall that a graph is triangulated if and only if it has an elimination sequence without
fill-ins. This is equivalent to the statement that an undirected graph is triangulated if and
only if all nodes can be eliminated by successively eliminating a node α such that the
family Fα = {α} ∪ Nα is complete. From the definition, such a node α is a simplicial node.
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4.3 Junction trees

The purpose of this section is to define junction trees and to show how to construct them.
They provide a key tool for updating a Bayesian network.

Definition 4.18 (Junction Trees) Let C be a collection of subsets of a finite set V and T
be a tree with C as its node set. Then T is said to be a junction tree (or join tree) if any
intersection C1 ∩ C2 of a pair C1, C2 of sets in C is contained in every node on the unique
path in T between C1 and C2. Let G be an undirected graph and C the family of its cliques.
If T is a junction tree with C as its node set, then T is known as junction tree for the
graph G.

Theorem 4.3 There exists a junction tree T of cliques for the graph G if and only if G is
decomposable.

Proof of Theorem 4.3 The proof is by construction; a sequence is established in the
following way. Firstly, a simplicial node α is chosen; Fα is therefore a clique. The
algorithm continues by choosing nodes from Fα that only have neighbours in Fα . Let i

be the number of nodes in Fα that only have neighbours in Fα. The set of nodes Fα is
labelled Vi and the set of those nodes in Fα that have neighbours not in Fα is labelled
Si . This set is a separator .

Now remove the nodes in Fα that do not have neighbours outside Fα and name the
new graph G′. Choose a new node α in the graph G′ such that Fα is a clique. Repeat the
process, with the index j , where j is the previous index, plus the number of nodes in
the current Fα that only have neighbours in Fα .

When the parts have been established (as indicated in the diagram below), each
separator Si is then connected to a clique Vj with j > i and such that Si ⊂ Vj . This is
always possible, because Si is a complete set and, in the elimination sequence described
above, the first point of Si is eliminated when dealing with a clique of index greater
than i.

It is necessary to prove that the structure constructed is a tree and that it has the
junction tree property.

Firstly, each clique has at most one parent, so there are not multiple paths. The
structure is therefore a tree.

To prove the junction tree condition, consider two cliques, Vi and Vj with i > j and
let α be a member of both. There is a unique path between Vi and Vj .

Because α is not eliminated when dealing with Vi , it is a member of Si . It is also a
member of the parent of Vi , say Vk and is a member of the parent of Vk and, by induction
it is also a member of Vj and, of course, all the separators in between. �
Example 4.4 Consider the directed acyclic graph in Figure 4.9. The corresponding
moral graph is given in Figure 4.10.

An appropriate elimination sequence for this moral graph is

(α8, α7, α4, α9, α2, α3, α1, α5, α6).

There are two fill-ins; these are 〈α1, α5〉 corresponding to the elimination of α2 and
〈α1, α6〉, corresponding to the elimination of α3. The corresponding triangulated graph is
given in Figure 4.11.
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a1

a2

a5

a3

a9

a4

a7 a8a6

Figure 4.9 A directed acyclic graph for Example 4.3.

a1

a2 a3

a5

a9

a4

a7 a8a6

Figure 4.10 Moral graph corresponding to Figure 4.9.

a1

a2 a3

a5

a4

a7 a8a6

a9

Figure 4.11 The triangulated graph corresponding to Figure 4.10.
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{a4, a7, a8}

V2

{a4, a7}

S2

{a3, a4, a6}

V4

{a3, a6}

S4

{a1, a2, a5}

V6

{a1, a5}

S6

{a1, a5, a6}

V9

{a4, a6, a7}

V3

{a4, a6}

S3

{a5, a6, a9}

V5

{a5, a6}

S5

{a1, a3, a6}

V7

{a1, a6}

S7

Figure 4.12 The Cliques and Separators from Figure 4.11.

V4
{a3, a4, a6}

S4 = {a3, a6}

S3 = {a4, a6}S2 = {a4, a7}

S7 = {a1, a6}

S6 = {a1, a5}

S5 = {a5, a6}

V7
{a1, a3, a6}

V9
{a1, a5, a6}

V3
{a4, a6, a7}

V6
{a1, a2, a5}

V2
{a4, a7, a8}

V5
{a5, a6, a9}

Figure 4.13 A junction tree (or join tree) constructed from the triangulated graph in
Figure 4.11.

The junction tree construction may be applied. The cliques and separators, with the
labels resulting from the diagram, are shown in Figure 4.12 and put together to form the
junction tree, or join tree, shown in Figure 4.13.

4.4 Markov equivalence

Section 2.10 discussed the concept of Markov equivalence for directed acyclic graphs.
That is, two different directed acyclic graphs over the same set of variables V are said to
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X2 X3

X1

X2

X3

X1 X2 X3 X1

Figure 4.14 Three DAGs, each with the same independence structure.

X2

X1 X3

Figure 4.15 Not Markov equivalent to the graphs in Figure 4.14.

be Markov equivalent if they have exactly the same d-separation properties. The formal
definition of Markov equivalence for directed acyclic graphs is given by Definition 2.32.
When trying to fit a graphical model to data, the subject of Chapter 6, all the DAGs
in a Markov equivalence class will fit the data equally well and efficient algorithms for
finding the structure will therefore only examine the different equivalence classes, rather
than all the different possible DAGs. If there are direct causal dependencies between the
variables, additional information about the causal structure is needed to choose the DAG
from the equivalence class that has an appropriate causal interpretation.

Figure 4.14 shows three directed acyclic graphs, each with the same independence
structure; for any probability distribution that factorizes according to these DAGs, X1 ⊥
X3|X2. Markov equivalence is considered in Exercise 7. In that exercise, it is shown that
a distribution factorized along the DAG given in Figure 4.15 does not have the same
independence structure as those in Figure 4.14.

One key result in this section is Theorem 4.4, which states that two features of the
directed acyclic graph are necessary and sufficient to determine its Markov structure; its
immoralities and its skeleton . These are defined below.

Definition 4.19 (Immorality) Let G = (V, E) be a graph. Let E = D ∪ U , where D con-
tains directed edges, U contains undirected edges and D ∩ U = φ. An immorality in a
graph is a triple (α, β, γ ) such that (α, β) ∈ D and (γ, β) ∈ D, but (α, γ ) �∈ D, (γ, α) �∈
D and 〈α, γ 〉 �∈ U .

Definition 4.20 (Skeleton) The skeleton of a graph G = (V, E) is the graph obtained by
making the graph undirected. That is, the skeleton of G is the graph G̃ = (V, Ẽ) where
〈α, β〉 ∈ Ẽ ⇔ (α, β) ∈ D or (β, α) ∈ D or 〈α, β〉 ∈ U .

Theorem 4.4 states simply that two DAGs are Markov equivalent if and only if they have
the same skeleton and the same immoralities. The key to establishing this criteria will be
to consider the active trails (Definition 2.16) in the graph. The following two definitions
are also required.
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Definition 4.21 (S-active node) Let G = (V, E) be a directed acyclic graph and let S ⊂
V . Recall the definition of a trail (Definition 2.5) and the definition of an active trail
(Definition 2.16). A node α ∈ V is said to be S-active if either α ∈ S or there is a directed
path from the node α to a node β ∈ S.

Definition 4.22 (Minimal S-active trail) Let G = (V, E) be a directed acyclic graph and
let S ⊂ V . An S-active trail τ in G between two nodes α and β is said to be a minimal
S-active trail if it satisfies the following two properties:

1. If k is the number of nodes in the trail, the first node is α and the kth node is β,
then there does not exist an S-active trail between α and β with fewer than k nodes
and

2. There does not exist a different S-active trail ρ between α and β with exactly
k nodes such that for all 1 < j < k either ρj = τj or ρj is a descendant
of τj .

Theorem 4.4 was proved by P. Verma and J. Pearl; Corollary 3.2 in [62].

Theorem 4.4 Two DAGs are Markov equivalent if and only if they have the same skeleton
and the same immoralities.

The proof of Theorem 4.4 follows directly from Lemma 4.3.

Lemma 4.3 Let G1 = (V, E1) and G2 = (V, E2) be two directed acyclic graphs with the
same skeletons and the same immoralities. Then for all S ⊂ V , a trail is S-active trail in
G1 if and only if it is S-active in G2.

Proof of Lemma 4.3 Recall the notation from Definition 2.3: α ∼ β denotes that two
nodes (α, β) ∈ V × V are neighbours. That is, either (α, β) ∈ E or (β, α) ∈ E. Since G1

and G2 have the same skeletons, any trail τ in G1 is also a trail in G2. Let S ⊂ V . Assume
that τ is an S-active trail in G1. It is now proved, by induction on the number of collider
nodes along the path, that τ is also an S-active trail in G2. By definition, a single node
will be considered an S-active trail, for any S ⊂ V . The proof is in three parts: Let τ be
a minimal S-active trail in G1. Then

1. If τ contains no colliders in G1, then it is S-active in G2.

2. If τ contains at least one collider connection centred at node τj , then τ is S-active
in G2 if and only if τj is S-active in G2.

3. If τ contains at least one collider centred at node τj , then τj is an S-active node
in G2.

Part 1: If τ is an S-active trail in G1 and does not contain any collider connections in
G1, then none of the nodes on τ are in S. This can be seen by considering the Bayes ball
algorithm, which characterizes d-separation. It follows that the path is S-active in G2 if
and only if it does not contain a collider connection in G2.
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Let τ be a minimal S-active trail in G1 with k nodes and no collider connections in
G1. Suppose that a node τi is a collider node in G2, so that τi−1 and τi+1 are parents of
τi in G2. Then, so that no new immoralities are introduced, it follows that τi−1 ∼ τi+1.
Since τi is either a chain or a fork in G1, it follows that in G1, the connections between
nodes τi−2, τi−1, τi, τi+1, τi+2 take one of the forms shown in Figure 4.16 when τi a
chain node or those in Figure 4.17 when τi a fork node.

It is clear from Figure 4.16 and 4.17 that the trail of length k − 1 in G1, obtained
by removing τi and using the direct link from τi−1 to τi+1 is also an S-active trail in
G1, contradicting the assumption that τ was a minimal S-active trail. Hence τi is a chain
node or a fork node in G2.

It follows that there are no collider connections along the trail τ taken in G2 and
hence, since it does not contain any nodes that are in S, it is an S- active trail in G2.

ti

ti−2 ti−1 ti+1 ti+2

ti

ti−2 ti−1 ti+1 ti+2

ti

ti−2 ti−1 ti+1 ti+2

ti

ti−2 ti−1 ti+1 ti+2

Figure 4.16 Possible connections between the nodes when τi is chain node.

ti

ti−2 ti−1 ti+1 ti+2

ti

ti−2 ti−1 ti+1 ti+2

Figure 4.17 Possible connections between the nodes if τi is a fork node.
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Part 2: Assume that any minimal S-active trail in G1 containing n collider connections
is also S-active in G2. This is true for n = 0 by part 1. Let τ be a trail with k nodes
that is minimal S-active in G1 and with n + 1 collider connections in G1. Consider one
of the collider connections centred at τj , with parents τj−1 and τj+1. Let τ̃ (0,j−1) =
(τ0, τ1, . . . , τj−2, τj−1) and let τ̃ (j+1,k) = (τj+1, . . . , τk). Both τ̃ (0,j−1) and τ̃ (j+1,k) are
minimal S-active in G1 and they both have a number of collider connections less than or
equal to n. By the inductive hypothesis, they are therefore both S-active in G2.

Because the trail τ is minimal S-active in G1, it follows that τj−1 �∼ τj+1. This is
because both τj−1 and τj+1 are S- active nodes in G1 (they have a common descendant
in S to make the trail active), and neither is in S (neither is the centre of a collider along τ )
it follows that if τj−1 ∼ τj+1, then the trail on k − 1 nodes obtained by removing the node
τj would be S-active in G1, for the following reason: any chain or fork (τj−2, τj−1, τj+1)

or (τj−1, τj+1, τj+2) would be active because both τj−1 and τj+1 are uninstantiated. Any
collider (τj−2, τj−1, τj+1) or (τj−1, τj+1, τj+2) would be active because both τj−1 and
τj+1 have a descendant in S. It follows that τj−1 �∼ τj+1. This holds in both G1 and G2,
since the skeletons are the same.

Since τ̃ (1,i−1) and τ̃ (i+1,k) are both active, and τj−1 → τj ← τj+1 is a collider, the
trail τ is active if and only if τj is an active node. That is, it is either in S or has a
descendant in S.

Part 3: Let τ be a minimal S-active trail in G1 and let τj ∈ τ be a collider node in
G1. Since the trail τ is a minimal S-active trail in G1, it follows either that τj ∈ S or τj ,
considered in G1, has a descendant in S. That is, considered in G1, there is a directed
path from τj to a node w ∈ S. Let ρ denote the shortest such path. If τj ∈ S, then the
length of the path is 0 and τj is also an S-active node in G2.

Assume there is a directed edge from τj to w ∈ S in G1. If there are links from τj−1

to w or τj+1 to w, then these links are τj−1 → w or τj+1 → w respectively, otherwise
the DAG would have cycles. If both are present, then the trail τ violates the second
assumption of the minimality requirement. This is seen by considering the trail formed
by taking w instead of τj in τ . It follows that either τj−1 �∼ w or τj+1 �∼ w or neither of
the edges are present. Without loss of generality, assume τj−1 �∼ w (since the argument
proceeds in the same way if τj+1 �∼ w). The diagram in Figure 4.18 may be useful.

Since neither τj−1 nor w are parents of τj in G1, they cannot both be parents of τj

in G2, since both graphs have the same immoralities. Furthermore, τj−1 �∼ τj+1 (since
they are both uninstantiated, and, in G1 both have a common descendant in S, so that if
τj−1 ∼ τj+1 then the trail with τj removed would be active whether the connections at
τj−1 and τj+1 are chain, fork or collider, contradicting the minimality assumption). Since
both graphs have the same immoralities and τj−1 �∼ τj+1, it follows that (τj−1, τj , τj+1)

is an immorality in both G1 and G2 and hence that τj−1 is a parent of τj in G2. Therefore,
τj is a parent of w in G2 and is therefore w is an S- active node in G2.

w

tjtj−1 tj+1

Figure 4.18 Illustration where τj is an uninstantiated collider node.
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Assume that for the shortest directed path ρ from τj to w in G1, the first l links have
the same directed edges in G2. Now suppose that the shortest directed path is ρ, where
τj = ρ0, . . . , ρl+p = w and consider the links ρl ∼ ρl+1 and ρl+1 ∼ ρl+2. If ρl ∼ ρl+2,
then in G1, the directed edge ρl → ρl+2 is present, otherwise there is a cycle. If the
directed edge ρl → ρl+2 is present in G1, then the path ρ is not minimal. Therefore,
ρl �∼ ρl+2. This holds in both G1 and G2, because both graphs have the same skeletons.
By a similar argument, ρl−1 �∼ ρl+1. (there would be a cycle in G1 if (ρl+1, ρl−1) were
present; ρ would not be minimal in G1 if (ρl−1, ρl+1) were present. Since the skeletons
are the same, ρl−1 �∼ ρl+1 in either G1 or G2). Since ρl �∼ ρl+2, it follows that ρl and ρl+2

are not both parents of ρl+1 in G2; otherwise G2 would contain an immorality not present
in G1. Similarly, since ρl−1 �∼ ρl+1, the edge ρl → ρl+1 is present in G2, otherwise G2

would have either the immorality (ρl−1, ρl, ρl+1), since the edge (ρl−1, ρl) is present in
G2 by assumption. It follows that the directed edges (ρl, ρl+1) and (ρl+1, ρl+2) are both
present in G2. By induction, therefore, the whole directed path ρ is also present in G2

and hence τj is an S-active in both G1 and G2. �

Proof of Theorem 4.4 This follows directly: let G1 and G2 denote two DAGs with the
same skeleton and the same immoralities. For any set S and any two nodes Xi and Xj ,
it follows from the lemma, together with the definition of d-separation, that

Xi ⊥ Xj‖G1S ⇔ Xi ⊥ Xj‖G2S; (4.1)

if there is an S-active trail between the two variables in one of the graphs, then there
is an S-active trail between the two variables in the other. If there is no S-active trail
between the two variables in one of the graphs then there is no S-active trail between
the two variables in the other. By definition, two variables are d-separated by a set of
variables S if and only if there is no S-active trail between the two variables. Two graphs
are Markov equivalent, or I -equivalent (Definition 2.32), if and only if Equation (4.1)
holds for all (Xi,Xj , S) ∈ V × V × V. �

4.5 Markov equivalence, the essential graph
and chain graphs

Consider the DAG in Figure 4.19. Using the characterization given by Theorem 4.4, the
DAG in Figure 4.19 is equivalent to the DAGs in Figure 4.20.

a2

a1 a4

a3

Figure 4.19 A DAG on four nodes.
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a2

a1 a4

a3

a2

a1 a4

a3

Figure 4.20 The equivalent DAGs.

For the DAG in Figure 4.19, all the DAGs with the same skeleton can be enumerated,
and it is clear that those in Figure 4.20 are the only two that satisfy the criteria. To find
the DAGs equivalent to the one in Figure 4.19, the immorality (α2, α4, α3) has to be
preserved and no new immoralities may be added. The directed edges (α1, α4), (α2, α4)

and (α3, α4) are therefore essential , the directed edges (α2, α4) and (α3, α4) to form the
immorality, the directed edge (α1, α4) because the connection (α2, α1, α3) is either a fork
or chain, forcing (α1, α4) to prevent a cycle. These three directed edges will be present
in any equivalent DAG. The other three edges may be oriented in 23 different ways, but
only five of these lead to DAGs (the other graphs contain cycles) and of these five, only
the three shown in Figures 4.19 and 4.20 have the same immoralities.

A useful starting point for locating all the DAGs that are Markov equivalent to a
given DAG is to locate the essential graph , given in the following definition.

Definition 4.23 (Essential Graph) Let G be a directed acyclic graph. The essential graph
G∗ associated with G is the graph with the same skeleton as G, but where an edge is
directed in G∗ if and only if it occurs as a directed edge with the same orientation in every
DAG that is Markov equivalent to G. The directed edges of G∗ are the essential edges of G.

Once the essential graph is located, if it has k undirected edges, then there are 2k directed
graphs to be checked for possible Markov equivalence to G. They are equivalent if they
are acyclic, with the same immoralities. The essential graph contains both directed and
undirected edges, and is an example of a chain graph . The following material gives the
definition of a chain graph and deals mainly with the properties that will be used when
considering the essential graph, with some extensions.

Definition 4.24 (Chain Graph) A chain graph is a graph G = (V, E) containing both
directed and undirected edges, where the node set V can be partitioned into n disjoint
subsets V = V1 ∪ . . . ∪ Vn such that

1. GVj
is an undirected graph for all j = 1, . . . , n

2. For any i �= j , and any α ∈ Vi , β ∈ Vj , there is no cycle in G = (V, E) (Definition
2.10) containing both α and β.

The chain graph consists of components where the edges are undirected, which are
connected by directed edges. The components with undirected edges are known as chain
components , which are defined below.
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Definition 4.25 (Chain Component) Let G = (V, E) be a chain graph. Let Ĝ = (V, Ê)

denote the graph obtained by removing all the directed edges from E. Each connected
component of G̃ is known as a chain component.

The chain components (Vj , Fj ), j = 1, . . . , n of G therefore satisfy the following con-
ditions:

1. Vj ⊆ V and Fj is the edge set obtained by retaining all undirected edges 〈α, β〉 ∈
E such that α ∈ Vj and β ∈ Vj .

2. There is no undirected edge in E from any node in V \Vj to any node in Vj .

Theorem 4.5 states any essential graph is necessarily a chain graph and presents the addi-
tional features required to ensure that a chain graph is an essential graph corresponding
to a directed acyclic graph. One of the features is that the directed edges in a chain graph
have to be strongly protected .

Definition 4.26 (Strongly Protected) Let G = (V, E) be a chain graph, where E = D ∪
U . A directed edge (α, β) ∈ D is said to be strongly protected if it occurs in at least one
of the configurations in Figure 4.21.

The following theorem, stated here without proof, characterizes essential graphs. The
statement has been included, because it is a vital step in the Monte Carlo algorithm
presented later, in Section 6.4 for locating the graph structure.

Theorem 4.5 Let G = (V, E) be a graph, where E = D ∪ U . There exists a directed
acyclic graph G∗ for which G is the corresponding essential graph if and only if G satisfies
the following conditions:

1. G is a chain graph,

2. Each chain component of G is triangulated,

a b

g1

g1

a b

g2

g1 b

a

a g1

b

Figure 4.21 The directed edge (α, β) is strongly protected (Definition 4.26).
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a1 a3

a2

Figure 4.22 A forbidden sub-graph on {α1, α2, α3} in an essential graph.

3. The configuration shown in Figure 4.22 does not occur in any induced sub-graph of
a three variable set {α1, α2, α3} ⊂ V (that is, a directed edge (α1, α2), an undirected
edge 〈α2, α1〉 and no edge between α1 and α3), and

4. Every directed edge (α1, α2) ∈ D is strongly protected in G.

Proof of Theorem 4.5 Omitted. �

It is useful to extend the definition of faithfulness to the essential graph, since all the
DAGs with the same immoralities and skeleton as the essential graph preserve the same
independence structure. The following discussion extends the definition of faithfulness
to the chain graph which, in view of Theorem 4.5 covers the essential graph.

Recall definition of parents, directed and undirected neighbours, from Definition 2.3.
Since the chain graph contains both directed and undirected edges, the notion of the
‘parents’ of a node has to be extended to ‘ancestral boundary’, which will play a similar
role. It is simply the collection of parents together with the undirected neighbours.

Definition 4.27 (Ancestral Boundary) The ancestral boundary of a node α in a graph G
is defined as

�G(α) = 
(α) ∪ N(u)(α) (4.2)

and the ancestral boundary of a subset A ⊆ V is defined as

�G(A) = 
(A) ∪ N(u)(A). (4.3)

The closure of a subset A ⊆ V in G is defined as

�G(A) = A ∪ �G(A). (4.4)

Crucial to the extension of the definition of faithfulness is the definition of ancestral set .
For a directed acyclic graph, the minimal ancestral set of a node α is simply the set of
all nodes β such that there is a directed path from β to α.

Definition 4.28 (Ancestral Set, Minimal Ancestral Set) A subset A ⊆ V is said to be
ancestral if �G(α) ⊆ A for each α ∈ A, where �G(α) is defined in Equation (4.2). For any
subset A ⊆ V , the minimal ancestral set is defined as the smallest ancestral set containing
A and is denoted An(A).

For a chain graph, in many situations, a complex , defined below, plays the same role as
an immorality in a directed acyclic graph.
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g

a2

b

a1

Figure 4.23 A simple chain graph; here S = {α1, α2} and (β, γ, S) is a minimal
complex.

Definition 4.29 (Complex, Minimal Complex) Recall that (β, α) denotes the directed
edge β → α. Let G = (V, E) be a chain graph. Let α, β ∈ V and let S ⊆ V . The triple
(α, β, S) is known as a complex in G if S is a connected subset of a chain component C of
G and α, β are two non-adjacent nodes in �G(S) ∩ �G(C). The triple (α, β, S) is known
as a minimal complex in G if there is no strict subset S′ ⊂ S such that (α, β, S′) forms a
complex in G.

It follows directly from the definition that if S contains a single node, then the complex
(α, β, S) is an immorality, where the node in S is a collider.

An example of a simple chain graph, where S = {α1, α2} and (β, γ, S) is a minimal
complex, is given in Figure 4.23.

The following concepts and results have been established. For directed acyclic graphs,
Markov equivalence is defined in Definition 2.32. That is, two DAGs are Markov equiva-
lent if they have the same d-separation properties. Theorem 4.4 states that two DAGs are
Markov equivalent if and only if they have the same skeleton and the same immoralities.
The essential graph (Definition 4.23) is the partially directed graph that retains the same
skeleton as a given directed acyclic graph and where the set of directed edges is simply
the set of all those directed edges that are common to all the DAGs that are Markov
equivalent; all the other edges are undirected. The resulting essential graph is a chain
graph.

The notion of local Markov property, the moral graph, and global Markov property
(faithfulness) are now extended to chain graphs.

The definitions of descendants and ancestors are given in Definition 2.9; the definition
of ancestral boundary is given in Definition 4.27. The definition of the local Markov
condition (given in Definition 2.28) may be defined for a chain graph:

Definition 4.30 (Local Markov Condition for a Chain Graph) Let G = (V, E) be a chain
graph. A probability distribution p over a set of variables V = {X1, . . . , Xd} is said to
be local G-Markovian, or satisfies the local Markov condition if for each j ∈ {1, . . . , d}

Xj ⊥ (V \(D(Xj ) ∪ �G({Xj }))|�G({Xj }),
where �G and �G are defined by Equations (4.4) and (4.3) respectively.

In other words, p satisfies the local Markov condition for a graph G = (V, E) if for each
j , Xj is conditionally independent, conditioned on the ancestral boundary (which is the
generalization to chain graphs of the set of parents) of all the other variables that are
not either descendants or belonging to the ancestral boundary. It is left as an exercise
(Exercise 9) to see that this reduced to the local directed Markov condition of Definition
2.28 when the G is a directed acyclic graph.
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g

a2

b

a1

Figure 4.24 The moralized graph for the chain graph in Figure 4.23.

The definition of faithfulness (Definition 2.30) may also be extended to chain graphs.
The following definitions are necessary to make the extension.

Definition 4.31 (Moral Graph for a Chain Graph) Let G = (V, E) be a chain graph. The
moral graph Gm is defined as the graph (V, Em), where Em contains the edge 〈β, γ 〉 if
and only if either

1. (β, γ ) ∈ E or (γ, β) ∈ E or 〈α, β〉 ∈ E, or

2. There exist nodes α1 and α2 (not necessarily distinct) in the same chain component
such that (β, α1) ∈ E and (γ, α2) ∈ E.

For example, the moral graph for the chain graph of Figure 4.23 is shown in Figure 4.24.
The global Markov property (defined below) generalizes the definition of faithfulness

to probability distributions represented by chain graphs.

Definition 4.32 (Global Markov Property) Recall the definition An(C), the minimal
ancestral set of a subset C ⊆ V , given in Definition 4.28 and recall the Definition 4.5,
where a separator is defined. Let G = (V, E) be a chain graph, where V = {X1, . . . , Xd}
and let p be a probability function over the variable set V , then p is said to be globally
G-Markovian if for any sets A,B, S ⊂ V such that S separates A and B in Gm

An(A∪B∪S)

(the moralized graph restricted to the set An(A ∪ B ∪ S)), it holds that A ⊥ B|S.

It is left as an exercise (Exercise 10) to show that this definition is equivalent to the
definition of faithfulness when G = (V, E) is a directed acyclic graph.

The definition of Markov equivalence (Definition 2.32) for directed acyclic graphs,
may be extended to chain graphs.

Definition 4.33 (Markov Equivalence for Chain Graphs) Two chain graphs G1 = (V, E1)

and G2 = (V, E2) are Markov equivalent if for any three sets A, B and S, S separates A

from B in Gm
1 if and only if S separates A from B in Gm

2 .

Definition 4.34 (Graphical Equivalence for Chain Graphs) Two chain graphs are said to
be graphically equivalent if they have the same skeleton and the same minimal complexes.

The following basic result about Markov equivalence of chain graphs was first proved by
M. Frydenberg [86] in a special case (Theorem 5.6 in that article) and then by Madigan,
Andersson and Perlman [87] for the general case.

Theorem 4.6 Two chain graphs G1 = (V, E1) and G2 = (V, E2) are Markov equivalent
if and only if they have the same skeleton and the same minimal complexes. That is, G1

and G2 are Markov equivalent if and only if they are graphically equivalent.

This result extends Theorem 4.4. The proof is omitted.
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Notes This chapter presents the basic graph theory necessary for the treatment of
Bayesian networks covered in this text. The theory of decomposable graphs is stan-
dard material from algorithmic graph theory [88]. Some specialized additional material
on the algorithms for Bayesian networks is found in Chapter 4 of [67]. A rigorous and
up-to-date research treatise covering chain graphs is [89] (M. Studený).
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4.6 Exercises: Decomposable graphs and chain graphs
1. Determine the simplicial nodes of the graph in Figure 4.25. Is the graph triangulated?

a2

a1 a4

a3

a5

a7

a6

Figure 4.25 Graph for Example 1.

2. Determine the simplicial nodes for the graph in Figure 4.26. Is the graph triangulated?
If not, state a single edge which, if added, would triangulate the graph.

a2

a1 a4

a3

a5

a6

Figure 4.26 Graph for Exercises 2 and 3.

3. Consider the graph in Figure 4.26. Determine the cliques and construct a junction
tree for the graph.

4. Consider the graph in Figure 4.27. Is it decomposable? Justify your answer.

5. Consider the Bayesian network shown in Figure 4.28.

(a) Moralize the graph.

(b) By finding an appropriate elimination sequence, show that the moral graph tri-
angulated.

(c) Find a junction tree.

a1 a2

a4a3 a5

a6

Figure 4.27 Graph for Exercise 4.
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X4 X5 X7

X9X8

X1 X2 X3

X6 X13

X10 X11

X12

Figure 4.28 Bayesian network for Exercise 5.

6. A directed acyclic graph is singly connected if the graph obtained by dropping the
directions of the links is a tree. For example, the Bayesian network in Figure 4.28
is singly connected.

(a) Prove that the moral graph of a singly connected graph is triangulated.

(b) Prove that the separators in a junction tree for a singly connected graph consist
of exactly one node.

7. Let G = (V, E) be a triangulated graph, let A ⊂ V and let GA = (A, EA), where
EA = E ∩ A × A is the graph restricted to A. Prove (formally) that GA is triangulated.

8. Consider the Bayesian network given in Figure 4.29.

(a) Find the moral graph G(m)

(b) Find a triangulation of the moral graph, adding in as few edges as possible.

(c) Find a junction tree for the triangulated graph in (b).

a1

a2

a4 a6

a3

a5

Figure 4.29 Graph for Exercise 8.

9. Prove that Definition 4.30 is equivalent to Definition 2.28 if G = (V, E) is a directed
acyclic graph.
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10. Let G = (V, E) be a directed acyclic graph. Prove that if a probability distribution
over the variables V is Globally G-Markovian (Definition 4.32), then p and G are
faithful (Definition 2.32).

11. Let T be a junction tree of cliques constructed from an undirected triangulated graph
G = (V, E). Let α be a node in G. Show that if all nodes not containing α are
removed from T, then the remaining tree is connected.





5

Learning the conditional
probability potentials

In most applications of artificial learning, a machine is expected, using a database of
instantiations, to ‘learn’ (in other words estimate) both the structure of the DAG (in
other words, which directed edges should be used and which should be omitted) and,
once the structure of the DAG has been established, the conditional probability potentials
(CPPs). Let V = {X1, . . . , Xd} then, provided the graph structure has been established,
the probability potentials are {(pXv |�v)

d
v=1} where �v (as usual) denotes the parent set

of variable Xv .
Chapter 5 considers the second of these problems; how to learn the CPPs given a DAG

structure, while Chapter 6 considers the problem of learning a suitable DAG structure
from a set of instantiations.

In the analysis given below, it is assumed that the prior distribution over the condi-
tional probability potentials may be expressed as a product of Dirichlet distributions. The
analysis in [90] illustrates that under rather broad modelling assumptions, the Dirichlet
prior is inevitable.

5.1 Initial illustration: maximum likelihood estimate
for a fork connection

Consider a network with three variables, U = (X, Y, Z), where the distribution factorizes
as pU = pX|ZpY |ZpZ . Suppose that the variables X, Y and Z are binary, and sup-
pose there are four complete and independent instantiations of U ; namely, (u(i))i=1,2,3,4,

Bayesian Networks: An Introduction T. Koski, J. Noble
 2009 John Wiley & Sons, Ltd
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given by
x y z

u(1) 0 1 0
u(2) 1 1 0
u(3) 0 0 1
u(4) 0 1 0

Definition 5.1 (Complete Instantiation) An instantiation of a set of variables U =
(X1, . . . , Xd) is said to be complete if there are no missing values.

The probability of the four instantiations listed above from independent observations is

pU(u(1))pU (u(2))pU(u(3))pU (u(4)),

where
pU(u(i)) = pX|Z(x(i)|z(i))pY |Z(y(i)|z(i))pZ(z(i)).

The probabilities of success, conditioned on the state of the parents, are given by

θx|0 = pX|Z(1|0) θx|1 = pX|Z(1|1),

θy|0 = pY |Z(1|0) θy|1 = pY |Z(1|1),

θz = pZ(1).

The CPPs are fully specified by these five parameters in this example.
Expressed in these parameters, the probabilities of getting the four instantiations

u(1), u(2), u(3), u(4) are:

pU(u(1)) = (1− θx|0)θy|0(1− θz)

pU(u(2)) = θx|0θy|0(1− θz)

pU(u(3)) = (1− θx|1)(1− θy|1)θz

pU (u(4)) = (1− θx|0)(1− θy|0)(1− θz).

This gives

pU(u(1))pU (u(2))pU (u(3))pU (u(4)) = θx|0(1− θx|0)2(1− θx|1)θ3
y|0(1− θy|1)θz(1− θz)

3.

This is to be maximized as a function of the five parameters in the expression. The
maximization splits into the maximization of five separate likelihoods, which have already
been considered in the thumb-tack example in Section (1.8). These are

L(θx|0) = θx|0(1− θx|0)2,

L(θx|1) = 1− θx|1,

L(θy|0) = θ3
y|0,

L(θy|1) = 1− θy|1,

L(θz) = (1− θz)
3θz.
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Maximizing these gives

θ̂x|0 = 1

3
, θ̂x|1 = 0, θ̂y|0 = 1, θ̂y|1 = 0, θ̂z = 1

4
.

The following terminology is used: (X, Z) is called a family (child, parent). An instan-
tiation (x, z) is a family configuration . z is called a parent configuration . Note, in the
above example, that z = 0 appears three times and (x, z) = (1, 0) appears once. Note
that

θ̂x|z=0,MLE = 1

3
= frequency of family configuration (x, z) = (1, 0)

frequency of parent configuration z = 0
.

5.2 The maximum likelihood estimator for multinomial
sampling

Consider a DAG over a set of variables V = {X1, . . . , Xd}, where �j denotes the set of
parent variables of Xj . Suppose that for each j = 1, . . . , d , the variables Xj takes values

in the set Xj := {x(1)
j , . . . , x

(kj )

j }, and that the parent configurations �j take values in

the set {π(q1)

j , . . . , π
(qj )

j } for j = 1, . . . , d , for j such that �j is non-empty. Let

θij l := p({Xj = x
(i)
j }|{�j = π

(l)
j }).

In Section 5.3, it is shown that in any DAG with a set of complete instantiations, for all
(i, j, l), the maximum likelihood estimate of θij l will be of the form

θ̂MLE;ij l =
frequency of the family configuration (x

(i)
j , π

(l)
j )

frequency of the parent configuration π
(l)
j

.

To prepare the way, Section 5.2 considers multinomial sampling. Let X1, . . . , Xn be
independent, identically distributed random variables, each with the same distribution as
X, where X takes values in a set X = {x(1), . . . , x(k)}. (Consider, for example, an urn
containing 25 balls of which six are red, six are blue and 13 are green. The random
variable X denotes the resulting colour if one pulls out a ball at random, notes its colour
and then puts it back. Let x(1) denote a red selection, x(2) a blue selection and x(3) a
green selection, so here k = 3). Let

θi = pX(x(i)),

so that θ1 + · · · + θk = 1. Set
θ = (θ1, . . . , θk).

Let X = (X1, . . . , Xn), and let x = (x(i1), . . . , x(in)) denote the sequence drawn in n

independent trials that are conditionally independent, given θ . Let

nl = number of times x (l) appears in x , l = 1, . . . , k

so that n = n1 + · · · + nk, then

pX(x|θ) = θ
n1
1 . . . , θ

nk

k .
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Maximum likelihood Let

�̃k =
(θ1, θ2, . . . , θk) | θj ≥ 0, j = 1, . . . , k,

k∑
j=1

θj = 1


denote the parameter space.

Definition 5.2 (Likelihood function, Likelihood Estimate, Log Likelihood Function)
The likelihood function of the parameters θ is defined as

L(θ |x) = pX(x|θ).

The maximum likelihood estimate θ̂ME is defined as the value of θ that maximizes L(θ |x).
The log likelihood function l is defined as:

l (θ1, θ2, . . . , θk) = log pX

(
x | θ) ,

where log is used to denote the natural logarithm.

The computation of θ̂ME is a maximization problem with constraints. Equivalently, the
maximum of l (θ1, θ2, . . . , θk) may be computed, subject to the constraint θ1 + θ2 + · · · +
θk = 1. This is best achieved by introducing the auxiliary function in the k − 1 free
variables

l̃ (θ1, θ2, . . . , θk−1) = l (θ1, θ2, . . . , 1− (θ1 + θ2 + · · · + θk−1)) .

This gives

l̃(θ1, θ2, . . . , θk−1)= n1 · log θ1+ n2 · log θ2+ · · · + nk · log(1− (θ1+ θ2+ · · · + θk−1)).

The partial derivatives of l̃ (θ1, θ2, . . . , θk−1) are taken with respect to each of θ1,
θ2, . . . , θk−1 and the critical points occur at the values for which the partial derivatives
are all equal to zero. This gives the system of equations

∂

∂θ1
l̃ (θ1, θ2, . . . , θk−1) = n1

θ1
− nk

1− (θ1 + θ2 + . . .+ θk−1)
= 0,

...

∂

∂θk−1
l̃ (θ1, θ2, . . . , θk−1) = nk−1

θk−1
− nk

1− (θ1 + θ2 + . . .+ θk−1)
= 0.

These equations are equivalent to the equalities

n1

θ1
= n2

θ2
= . . . = nk

1− (θ1 + θ2 + · · · + θk−1)
.

To simplify notation, the common value of these ratios is denoted as λ. This gives

θ1 = n1

λ
, θ2 = n2

λ
, . . . , θk = nk

λ
.
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The constraint θ1 + θ2 + · · · + θk = 1 is now employed, giving

1 = θ1 + θ2 + · · · + θk = n1

λ
+ n2

λ
+ · · · + nk

λ
,

and
λ = n1 + n2 + · · · + nk = n.

This gives the solution
θ̂i = ni

n
, i = 1, . . . , k.

It remains to show that this critical point yields a maximum. This could be achieved by
checking the matrix of second order partial derivatives of l̃. There is a simpler way to
prove that the estimate found above maximizes the likelihood function, which requires
the following two definitions and a lemma.

Definition 5.3 (Shannon Entropy) The Shannon entropy, or entropy of a probability dis-
tribution θ = (θ1, . . . , θk), where θj ≥ 0, j = 1, . . . , k and θ1 + · · · + θk = 1 is defined as

H(θ) = −
k∑

j=1

θj log θj .

Natural logarithms are used. In the definition of H(θ), the definition 0 log 0 = 0 is used,
obtained by continuous extension of the function x log x, x > 0.

Note that H(θ) ≥ 0.

Definition 5.4 (Kullback-Leibler Divergence) The Kullback-Leibler divergence between
two discrete probability distributions f and g with the same state space X is defined as

D(f |g) =
∑
x∈X

f ({x}) log
f ({x})
g({x}) .

If g({x}) = 0 for f ({x}) 
= 0, then f ({x}) · log 0 = +∞. If D(f |g) = +∞, then there
is at least one outcome x such that f and g may be distinguished without error.

Lemma 5.1 For any two discrete probability distributions f and g, it holds that

D(f |g) ≥ 0.

Proof of Lemma 5.1 The proof uses Jensen’s inequality,1 namely, that for any
convex function φ, E[φ(X)] ≥ φ(E[X]). Note that f ({x}) ≥ 0 for all x ∈ X and
that

∑
x∈X f ({x}) =∑x∈X g({x}) = 1. Using this, together with the fact that − log is

convex, yields

D(f |g) = −
∑
x∈X

f ({x}) log

(
g({x})
f ({x})

)
≥ − log

(∑
x∈X

f ({x}) g({x})
f ({x})

)
= − log 1 = 0.

�

1 J.L. Jensen (1859–1925) published this in Acta Mathematica 1906 30(1).



154 LEARNING THE CONDITIONAL PROBABILITY POTENTIALS

It is now proved that the candidate estimate given above maximizes the likelihood
function.

Proposition 5.1 The maximum likelihood estimate θ̂ML of θ is

θ̂ML =
(n1

n
,
n2

n
, . . . ,

nk

n

)
.

Proof of Proposition 5.1 The candidate solution θ̂ML belongs to �̃k and is therefore
feasible. Since pX

(
x(n) | θ) =∏k

i=1 θ
ni

i , the following identity follows directly:

H
(
θ̂ML

) = −1

n
log pX

(
x | θ̂ML

)
, (5.1)

where

H
(
θ̂ML

) = − k∑
i=1

θ̂i log θ̂i (5.2)

is the Shannon entropy (for an empirical distribution) in natural logarithm, given in
Definition 5.3.

For arbitrary θ ∈ �̃k , the following identity follows directly from Equation (5.2):

pX

(
x | θ) = k∏

i=1

θ
ni

i = exp

{
k∑

i=1

ni log θi

}

= exp

{
n

k∑
i=1

θ̂i log θi

}
(5.3)

= exp

{
n

k∑
i=1

θ̂i log θ̂i − n

k∑
i=1

θ̂i log
θ̂i

θi

}
= exp

{−n
(
H
(̂
θML

)+D
(̂
θML|θ

))}
. (5.4)

Thus, from Lemma 5.1, together with the fact that D(f |f ) = 0 for any admissible f , it
follows that

L(θ) := pX

(
x | θ) = exp

{−n
(
H
(̂
θML

)+D
(̂
θML|θ

))} ≤ exp
{−nH

(̂
θML

)}
= pX

(
x | θ̂ML

) = L(̂θML)

for every θ ∈ �̃k and Proposition 5.1 is proved. �

Mean posterior estimate The approach that has just been presented is the maximum
likelihood method. An estimator derived from the Bayesian posterior distribution is now
considered. First, a prior distribution is put over the parameter space. The Dirichlet
distribution is useful here, because the integral can be computed explicitly to give a
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posterior density which is again a Dirichlet distribution. The definition of the Dirichlet
distribution was given in Definition 1.13.

The maximum posterior estimate, the value of the parameter value which gives the
maximum value for the posterior distribution, has already been discussed. The mean
posterior estimate is the expected value of the posterior distribution. Here,

θ̂i,MEP =
∫

θiπ(θ1, . . . , θk|x, α)dθ1 . . . dθk = ni + αi∑k
j=1 nj +

∑k
j=1 αj

.

This computation is left as an exercise.

Remarks The following remarks are applicable to learning CPPs for any DAG G =
(V, E) where V = {X1, . . . , Xd} and the distribution of p(Xi |�i) (i,e, of Xi conditioned
on the parent set) is multinomial for each i = 1, . . . , d .

1. The aim of statistics is to predict future outcomes based on past information.
The parameters are only a tool to help this. In a fully Bayesian approach to
statistics, the only estimate of the parameter, given data x, is the entire posterior
distribution π�|X(.|x), which is then used to compute the predictive distribution.
But this approach, although intellectually satisfying, is not always practical, and
with Bayesian networks it is often useful to have a point estimator. There are
some situations where the MEP turns out to be more useful than the MLE. One
example may be the situation of learning using information from a very large data
warehouse. Even though the warehouse is large, it may happen that the size of
the entire set of possible cases is very much larger (i.e. data is sparse). In other
words, it is suspected that there may be positive cases, even if the data warehouse
does not contain any examples. In such a situation, the sample yields ni = 0. This
would yield θ̂i,MLE = 0, but if the a priori supposition that there may exist positive
cases is modelled into the prior, then θ̂i,MEP > 0. The strict positivity of the MEP
sometimes turns out to be a valuable property in the mining of very large data
sets, which are usually sparse. This makes it preferable to the MLE.

2. Comparing with θ̂i,MLE = ni

n
, note that

lim
n→+∞

θ̂iMEP

θ̂iMLE

= 1.

This is an asymptotic result and in the situation envisaged above, n may not be
sufficiently large for the ratio to be close to 1.

5.3 MLE for the parameters in a DAG: the general setting

Notations Firstly, the necessary notation is developed. V = {X1, . . . , Xd} denotes the
collection of random variables under consideration and X denotes the set of all possible
outcomes for the experiment. �̃ denotes the parameter space and � = �̃× X denotes the
context of the experiment. G = (V, E) denotes the directed acyclic graph along which
the probability function pX1,...,Xd

is factorized.
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In the situation considered here, the sample space for variable Xj is denoted

Xj = {x(1)
j , . . . , x

(kj )

j },
so that

X = X1 × · · · × Xd .

That is,
X = {(x(j1)

1 , . . . , x
(jd )

d ) |j1 ∈ (1, . . . , k1), . . . , jd ∈ (1, . . . , kd)}.

A complete instantiation is an outcome x = (x
(i1)

1 , . . . , x
(id )

d ). Note that here the vectors
are taken as rows . This is because in a database of instantiation, it is usual that each
column represents a variable and each row represents an instantiation. A sample of cases
(also called records in the data mining literature) is given by a matrix

x =

 x(1)

...

x(n)

 ,

where x(i) = (x
(j1)

i,1 , . . . , x
(jd )

i,d ) denotes the ith instantiation. Usually, when data is stored,
each column represents the outcomes for one particular variable. The CPPs of a Bayesian
network are to be estimated on the basis of this data.

For each variable Xj , consider all possible instantiations of the parent set �j and
label them (π

(l)
j )

qj

l=1. That is, π
(l)
j denotes that the parent configuration of variable Xj is

in state π
(l)
j and there are qj possible configurations of �j .

Example 5.1 For the DAG shown in Figure 5.1, where A, B, C are all binary variables,
�(B) = (A, C) has four possible sets of instantiations:

π
(1)
B = (0, 0), π

(2)
B = (0, 1), π

(3)
B = (1, 0), π

(4)
B = (1, 1).

Set

nk(x
(i)
j |π(l)

j ) =
{

1 (x
(i)
j , π

(l)
j ) is found in x(k)

0 otherwise,

where (x
(i)
j , π

(l)
j ) is a configuration of the family (Xj , �j). Let θ denote the set of

parameters defined as
θjil = p({Xj = x

(i)
j }|{�j = π

(l)
j }).

A B C

Figure 5.1 A collider.
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for j = 1, . . . , d , i = 1, . . . , kj , l = 1, . . . , qj , with given graph structure G = (V, E).
Then the joint probability of a case x(k) occurring may be written as

pX|�(x(k)|θ,E) =
d∏

j=1

qj∏
l=1

kj∏
i=1

θ
nk(x

(i)
j
|π(l)

j
)

j il .

The following is a summary of the notation:

• d is the number of variables ( = the number of nodes).

• kj is the number of possible states that the variable Xj can take.

• qj is the number of possible parent configurations for variable Xj .

• θjil := p({Xj = x
(i)
j }|{�j = π

(l)
j }). (5.5)

That is, θjil is the conditional probability that variable Xj is in state i, given
that the parent configuration is configuration l. The notation π

(l)
j denotes that the

parents of variable j are in state l.

Let X =

 X(1)

...

X(n)

. The cases x =

 x(1)

...

x(n)

 are considered to be independent obser-

vations, giving

pX|�(x|θ,G)

=
n∏

k=1

pX|�(x(k)|θ,G) =
d∏

j=1

qj∏
l=1

kj∏
i=1

n∏
k=1

θ
nk(x

(i)
j
|π(l)

j
)

j il =
d∏

j=1

qj∏
l=1

kj∏
i=1

θ

∑n
k=1 nk(x

(i)
j
|π(l)

j
)

j il .

Set

n(x
(i)
j |π(l)

j ) =
n∑

k=1

nk(x
(i)
j |π(l)

j ).

This is simply the number of times the configuration (x
(i)
j , π

(l)
j ) appears in x =

 x(1)

...

x(n)

.

The likelihood is therefore

L(θ) =
n∏

k=1

pX|�(x(k)|θ,G) =
d∏

j=1

qj∏
l=1

kj∏
i=1

θ
n(x

(i)
j
|π(l)

j
)

j il .

The likelihood factorizes into local parent child factors and additionally to d × qj separate
maximum likelihood estimations all of the basic form treated in the preceding section. It
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follows that

θ̂MLE,jil =
n(x

(i)
j |π(l)

j )

n(π
(l)
j )

,

where

n(π
(l)
j ) =

kj∑
i=1

n(x
(i)
j |π(l)

j )

is the frequency of configuration π
(l)
j in X. The maximum likelihood estimate of θjil is

therefore as advertized:

θ̂j il = frequency of the family configuration

frequency of the parent configuration
.

Posterior distribution of the CPPs The approach of computing the maximum like-
lihood estimator is now contrasted with the Bayesian approach. For convenience of
writing,

θj.l =
(
θj1l , . . . , θjkj l

)
is used to denote the probability distribution over the states of Xj , given that π

(l)
j is the

parent configuration. The prior distribution over θj.l is taken to be

Dir(αj1l , . . . , αjkj l).

A standard computation using the Dirichlet integral yields that the posterior density is
the Dirichlet density

θj.l|(x(1), . . . , x(n)) ∼ Dir(n(x
(1)
j |π(1)

j )+ αj1l , . . . , n(x
(kj )

j |π(1)
j )+ αjkj l).

The tables of counts of family configurations at node j , e.g.

n(x
(1)
j |π(l)

j ), . . . , n(x
(kj )

j |π(l)
j )

is stored as a memory of past experience. The posterior distribution of θj.l depends only
on counts of family configurations at node j and not on configurations at any other node.
Therefore it follows from the discussion in Section 3.5.1 that(

n(x
(1)
j |π(l)

j ), . . . , n(x
(kj )

j |π(l)
j )
)qj

l=1

is a predictive sufficient statistic for (θj1l , . . . , θjkj l).
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Predictive distribution The predictive distribution of a new case x(n+1) may be com-
puted using the posterior density. The basic idea was given in the thumb-tack modelling
of Section 1.8. In the presence of a set of instantiations x, θjil , defined in Equation (5.5),
will be estimated by:

θ̃j il = p({Xn+1,j = x
(i)
j }|{�j = π

(l)
j }, {X = x}). (5.6)

This is the predictive conditional probability that variable Xj attains value x
(i)
j , given

the parent configuration π
(l)
j and the cases stored in x. Then, by computations as before,

with θ̃j il defined by Equation (5.6),

θ̃j il = p({Xn+1,j = x
(i)
j }|{�jπ

(l)
j }, {X = x})

=
∫

Sjl

p({Xn+1,j = x
(i)
j }|{� = θ})π�(θ |{�j = π

(l)
j }, {X = x})dθj.l

=
∫

Sjl

θjilπ�j.l |X(θj.l |x;αj.l)dθj.l

=
∫

Sjl

θjil

�(n(π
(l)
j )+ αj.l)∏kj

m=1 �(n(x
(m)
j |π(l)

j )+ αjml)

kj∏
i=1

θ
n(x

(i)
j |π

(l)
j )+αjil

j il dθj.l

= �(n(π
(l)
j )+ αj.l)∏kj

m=1 �(n(x
(m)
j |π(l)

j )+ αjml)

∫
Sjl

∏
m
=l

θ
n(x

(m)
j
|π(l)

j
)

jml θ
n(x

(i)
j
|π(l)

j
)+1

j il dθj.l

= �(n(π
(l)
j )+ αj.l)∏kj

m=1 �(n(x
(m)
j |π(l)

j )+ αjml)

×�(n(x
(i)
j |π(l)

j )+ αjil + 1)
∏

m
=i �(n(x
(i)
j |π(l)

j )+ αjil)

�(n(π
(l)
j )+ αj.l + 1)

= n(x
(i)
j |π(l)

j )+ αjil

n(π
(l)
j )+∑kj

i=1 αjil

,

where Sjl is defined as

Sjl =
(θjil)

kj

i=1|θjil ≥ 0, i = 1, . . . , kj ,

kj∑
i=1

θjil = 1

 .
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5.4 Updating, missing data, fractional updating

Updating Suppose the cases x(1), . . . , x(n) are complete. Suppose next that x
(i)
j and

π
(l)
j are observed in x(n+1). Then, by Bayes’ rule,

θj.l|(x(1), . . . , x(n), (x
(i)
n+1,j , π

(l)
n+1,j ))

∼ Dir(n∗(x(1)
j |π(l)

j )+ αj1l , . . . , n
∗(x(kj )

j |π(l)
j )+ αjkj l),

where

n∗(x(r)
j |π(l)

j ) =
{

n(x
(r)
j |π(l)

j ) r 
= i

n∗(x(i)
j |π(l)

j ) = n(x
(i)
j |π(l)

j )+ 1 r = i.

The virtual sample size is updated as

s∗ = n(π
(l)
j )+ 1+

kj∑
i=1

αjil .

A missing instantiation Suppose the instantiation at node j is missing in the new case;
the parent configuration π

(l)
j is present. Set

e∗ = (x(1), . . . , x(n), x(n+1)).

The distribution of the random variable θj.l|e∗ is expressed as the mixture of distributions

kj∑
i=1

wiDir(n(x
(i)
j |π(l)

j )+ αj1l , . . . , n(x
(i)
j |π(l)

j )+ 1+ αjil, . . . , n(x
(kj )

j |π(l)
j )+ αjkj l),

where wi = pX({(Xj , �j) = (x
(i)
j , π

(l)
j )}|e∗).

Updating: parent configuration and the state at node j are missing Consider a new
case x(n+1) where both the state and the parent configuration of node j are missing. Then
the distribution of θj.l |e∗ is given as the mixture of distributions

kj∑
i=1

viDir(n(x
(1)
j |π(l)

j )+ αj1l , . . . , n(x
(i)
j |π(l)

j )+ 1+ αjil, . . . , n(x
(kj )

j |π(l)
j )+ αjkj l)

+Dir(n(x
(1)
j |π(l)

j )+ αj1l , . . . , n(x
(kj )

j |π(l)
j )+ αjkj l)v

∗,

where
vi = p({(Xj , �j) = (x

(i)
j , π

(l)
j )}|e∗), i = 1, . . . , kj

and
v∗ = 1− p({�j = π

(l)
j }|e∗).
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Fractional updating The preceding shows that adding new cases with missing values
results in dealing with increasingly messy mixtures, with increasing numbers of compo-
nents. One, perhaps naive, way of approximating this is to use only one Dirichlet density,
with the parameters updated by

n∗(x(i)
j |π(l)

j ) = n(x
(i)
j |π(l)

j )+ p({(Xj , �j) = (x
(i)
j , π

(l)
j )}|e∗), i = 1, . . . , kj .

This is known as fractional updating .

Fading If the parameters change with time, then information learnt a long time ago
may not be so useful. A way to make the old cases less relevant is to have the sample
size discounted by a fading factor qF , a positive number less than one.

The fading update is

n→ qF n(x(j)
r |π(j)

l ) = n∗(x(r)
j |π(l)

j ), r 
= i

and
n→ qF n(x

(i)
j |π(l)

j )+ 1 = n∗(x(i)
j |π(l)

j ).

The virtual sample size is updated as

sn−1 → qF

n(π
(l)
j )+

kj∑
i=1

αjil

+ 1 = sn.

The above may be written as

sn = qF sn−1 + 1, s0 = s.

Iteration gives

sn = qn
F s +

n∑
i=0

qi
F = qn

F s + 1− qn+1
F

1− qF

.

The limiting effective maximal sample size is therefore

s∗ = 1

1− qF

.

Notes Chapter 5 on learning of parameters (or estimation of parameters) is largely based
on ‘A Tutorial on Learning with Bayesian Networks’ by D. Heckerman [25] and also
[72]. Learning from incomplete data (Section 5.4) is discussed in [91]. Another treatment
of learning is found in R.E. Neapolitan [34].
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5.5 Exercises: Learning the conditional probability
potentials

1. Kullback-Leibler divergence Let X = {x1, · · · , xL} denote a space with L elements
and let

f := (f (x1), · · · , f (xL))

and
g := (g(x1), · · · , g(xL))

be two probability distributions defined on X. Recall that the Kullback-Leibler diver-
gence between f and g is defined by

D (f | g) =
L∑

i=1

f (xi) log
f (xi)

g(xi)
, (5.7)

with the conventions 0 · log 0
g(xi )

= 0 and f (xi) log f (xi)

0 = ∞. The logarithm is the
natural logarithm unless otherwise stated.

Let X = {0, 1} and 0 ≤ p ≤ 1 and 0 ≤ g ≤ 1. Let f = (1− p,p) and g = (1−
g, g) be the two Bernoulli distributions Be(p) and Be(g), respectively. Find the
Kullback-Leibler divergence between them.

2. Jensen’s inequality Let φ(x) be a convex function and X finite discrete real valued
random variable, defined on a finite space X. Prove, by induction, that

E [φ (X)] ≥ φ (E [X]) .

3. Calibration of Kullback-Leibler divergence Let D (f | g) = k be the value of
the Kullback distance between any two probability distributions defined on X =
{x1, . . . , xn}. Let h(x) solve

D (Be (1/2) | Be (h(x))) = x. (5.8)

The function h is known as the calibration. The Kullback distance between f and g is
the same as between a fair Bernoulli distribution Be (1/2) and a Bernoulli distribution
Be (h(k)). Prove that

h(k) = 1

2

(
1±

√
1− e−2k

)
. (5.9)

4. Let
π�(θ) =

∏
j,l

π�j.l (θ
j.l)

denote the prior distribution over a Bayesian network, where

π�j.l = Dir(αj1l , . . . , αjkj l).
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Let X =

 X(1)

...

X(n)

 denote the random matrix corresponding to n independent instan-

tiations and let Xn+1 denote a random vector corresponding to an instantiation,
independent of X.
Prove that

p
({Xn+1,j = xi

j }|{�j = πl
j }, {X = x}) = ∫

Sj.l

θj ilπ�| X
(
θj.l |x;αj,l

)
dθj.l

= n(xi
j |πl

j )+ αijl

n(πl
j )+

∑kj

i=1 αijl

.

5. This exercise is taken from [92]. The idea of using Kullback-Leibler in this way
for a database is due to Jensen. Suppose one has a database C with n cases of
configurations over a collection of variables V . Let Sp(V ) denote the set of possible
configurations over V and let #(v) denote the number of cases of configuration v.
Define P C(v) = #(v)

n
. Let P M denote a probability distribution over Sp(V ). Assume

that P C(v) = 0 if and only if P M(v) = 0 and discount these configurations. Define
SM(C) = −∑c∈C log P M(c).
Let dK denote the Kullback-Leibler distance (namely, dK(f|g) =∑i fi log fi

gi
). Show

that
SM(C)− SC(C) = ndK(P C |P M).

6. Suppose that p(A, B, C,D) factorizes along the DAG in Figure 5.2, where A, B,C

and D are each binary variables, taking the values 1 or 0. Suppose there are 10
instantiations:

U(1) U(2) U(3) U(4) U(5) U(6) U(7) U(8) U(9) U(10)

A 1 1 0 1 0 0 0 0 1 1
B 1 1 0 0 1 0 1 1 1 1
C 0 0 1 0 0 1 0 0 1 0
D 0 1 1 0 0 1 1 0 1 1

C

A D

B

Figure 5.2 DAG for A,B, C,D.
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(a) Find the maximum likelihood estimates for θB := pB|A(1|0) and θD :=
pD|B,C(1|1, 0).

(b) Suppose that θD has prior distribution Be( 1
2 , 1) (Beta distribution with parameters

( 1
2 , 1)). That is,

π(θD) =
{

�(1.5)
�(1)�(0.5)

θ−0.5
D 0 ≤ θD ≤ 1

0 θD 
∈ [0, 1]

Show that the posterior density π(θD|U) is given by

π(θD|U) =
{

(6.5).(5.5).(4.5).(3.5)
3! θ2.5

D (1− θD)3 0 ≤ θD ≤ 1

0 θD 
∈ [0, 1].

7. Consider the following model for the two variables A and B, where both A and B

are binary variables, each taking values y/n (yes or no).
Let θa = pA(y), θb|y = pB|A(y|y) and θb|n = pB|A(y|n). Suppose the parameters
have prior distributions

π(θa) = 11!

7!3!
θ7
a (1− θa)

3

π(θb|y) = 9!

6!2!
θ6
b|y(1− θb|y)2

π(θb|n) = 6!

2!3!
θ2
b|n(1− θb|n)3

Now suppose that a sequence of 20 instantiations is observations, with results

A y y y y n n n y y n y y y y y n n y y y

B n y n y n n y y n n n y y y y y n n y y

(a) Find the posterior distributions over the parameters where the updating is carried
out without fading.

(b) Find the posterior distributions over the parameters for the same sequence, using
a fading factor of 0.9.

8. Consider a Bayesian network over two binary variables A and B, where the directed
acyclic graph is given in Figure 5.3 and A and B each take the values 0 or 1.

A B

Figure 5.3 Directed acyclic graph on two variables.
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Let θa = pA(1), θb|y = pB|A(1|1), pB|A(1|0). Let the prior distributions over the
parameters be

πa(θ) =
{

3θ2 0 ≤ θa ≤ 1

0 θ 
∈ [0, 1],

πb|y(θ) =
{

12θ2(1− θ) 0 ≤ θ ≤ 1

0 θ 
∈ [0, 1],

πb|n(θ) =
{

12θ(1− θ)2 0 ≤ θ ≤ 1

0 θ 
∈ [0, 1],

Suppose that there is a single instantiation, where B = 1 is observed, but A is
unknown. Perform the approximate updating.

9. Consider a Bayesian network, with variables X1, X2, X3, X4, X5, where all the vari-
ables are binary; variable Xj has state space Xj = {0, 1} for j = 1, 2, 3, 4, 5. Suppose
the conditional probability tables are

pX1(1) = 0.4

pX2|X1 =
X2\X1 1 0

1 0.3 0.8
0 0.7 0.2

pX3|X1 =
X3\X1 1 0

1 0.7 0.4
0 0.3 0.6

pX4|X2 =
X4\X2 y n

y 0.5 0.1
n 0.5 0.9

pX5|X3,X4(1|., .) =
X4\X3 1 0

1 0.9 0.999
0 0.999 0.999

Suppose 100 trials are made on a network which is thought to have these probability
tables. The numbers of times the corresponding configurations occurred is given
below. Calculate the marginals from the observed probabilities below and compare
with the ‘theoretical’ probabilities.

X1X2\X3X4X5 111 110 101 100 011 010 001 000
11 4 0 5 0 1 0 2 0
10 2 0 16 0 1 0 8 0
01 9 1 10 0 14 0 16 0
00 0 0 4 0 0 0 7 0
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10. Let the likelihood for θ = (θ1, . . . , θL) with data x be given by

L
(
θ; x) = L∏

j=1

θ
nj

j ,

where nj is the number of times the symbol xj (in a finite alphabet with L symbols)
is present in x and

∑L
j=1 θj = 1. For the prior distribution over θ , a finite Dirichlet

mixture is taken, given by

π� (θ) =
k∑

i=1

λiDir
(
α(i)q

(i)
1 , . . . , α(i)q

(i)
L

)
,

where λi ≥ 0,
∑k

i=1 λi = 1 (the mixture distribution), α(i) > 0, q
(i)
j

> 0,
∑L

i=1 q
(i)
j =

1 for every i. Compute the mean posterior estimate θ̂j ;MP for j = 1, . . . , L.



6

Learning the graph structure

As stated in the introduction to Chapter 5, there are two basic learning problems in
Bayesian networks: learning the structure of the Bayesian network from the data; and,
when the structure is established, learning the conditional probability potentials. Chapter 5
considered the second of these problems (under the assumption that the graph structure
was given); Chapter 6 considers the first.

In real life applications, expert prior knowledge may often be incorporated when
learning the structure. For example, in many domains of study there is a huge journal
literature available in electronic form and an automated search of the literature may
be carried out to derive text-based priors for Bayesian network structures, as described
in [93].

This chapter restricts attention to methods of learning structures of networks known
as ‘tabula rasa’, or ‘blank slate’ methods. This means that only data samples are available
for estimating the structure. These methods fall generally into two categories: method
that employ a score function and methods that are constraint based. After a cursory
glance at possible prior distributions, the chapter considers a score function, the the data
likelihood for the possible graph structures. The straightforward approach of maximizing
the likelihood leads to a problem is, in general, not computationally feasible. There are
two reasons for this: firstly, the number of possible DAGs grows super-exponentially
in the number of nodes. Secondly, there are equivalence classes of network structures
where, without additional information, each DAG within the equivalence class represents
the data equally well. To tackle the first problem, the Chow-Liu tree may be used, where
an effective solution for learning the best structure from a restricted class of DAGs is
found by Kruskal’s algorithm. The K2 algorithm presents another approach. The study
then moves on to constraint based methods, which are based on the notions of faithful
distributions, and testing for conditional independence.

Bayesian Networks: An Introduction T. Koski, J. Noble
 2009 John Wiley & Sons, Ltd
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6.1 Assigning a probability distribution
to the graph structure

For a Bayesian network with a directed acyclic graph G = (V, E), the edge set E is often
referred to as the structure of the network. Let Ẽ denote the set of all possible edge sets
that give a directed acyclic graph with node set V . In this chapter, it is assumed that E is
unknown and has to be inferred from data, where the individual cases are assumed to be
observations on random vectors that are independent, conditioned on the graph structure
E and the parameters θ . The prior distribution over the parameter vectors θj.l are taken
from the family Dir(αj1l , . . . , αjkj l) for all nodes and parent configurations (j, l). As

usual, X =

 X(1)

...

X(n)

 denotes the matrix where each row is an independent copy of X

and E denotes the structure of the DAG. This has a prior distribution pE, which is the
probability function for a random variable E which takes values in Ẽ, the set of possible
graph structures.

The prior distribution for the graph structure There are several possible ways of con-
structing a prior distribution pE, as discussed in [94]. If it is known a priori that the graph
structure lies within a subset A ⊆ Ẽ, then an obvious choice is the uniform prior over A:

pE(E) =
{

1
|A| if E ∈ A

0 otherwise

where |A| is the number of elements in a subset A ⊆ Ẽ.
Another simple choice is to assign to each pair of nodes Xi and Xj a probability

distribution with three values such that

p
({(Xi,Xj

) ∈ E})+ p
({(Xj, Xi

) ∈ E})+ p
({(Xi, Xj

) 
∈ E}, {(Xj ,Xi

) 
∈ E}) = 1.

Here again, uniform distribution over the three possibilities may be chosen. Then, for
a given structure E, the prior probability is obtained by multiplying the appropriate
probabilities over all the edges in E and normalizing to give pE(E).

The likelihood for the graph structure The likelihood for the graph structure, given
data x, is given by

pX|E(x|E) =
∫

pX|�,E(x|θ, E)π�|E(θ |E)dθ,

where π�|E(.|E) denotes the prior distribution over the parameters θ , conditioned on the
graph structure, and using the structure of the prior as the product of Dirichlet distribu-
tions,

pX|E(x|E) =
∫ n∏

k=1

pX|�,E(x(k)|θ, E)

d∏
j=1

qj∏
l=1

φ(θj.l, αj.l)dθj.l
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where φ(θj.l, αj.l) is a compact way of referring to the Dirichlet density
Dir(αj1l , . . . , αjkj l).

Because pX|�,E(x|θ, E) has a convenient product form, computing the Dirichlet inte-
gral is straightforward and gives

pX|E(x|E) =
d∏

j=1

qj∏
l=1

�(
∑kj

i=1 αjil)

�(n(πl
j )+

∑kj

i=1 αjil)

kj∏
i=1

�(n(xi
j |πl

j )+ αjil)

�(αjil)
. (6.1)

This is the Cooper-Herskovitz likelihood for the graph structure. It was introduced and
discussed by G.F. Cooper and E. Herskovitz in [95].

The Bayesian selection rule for a graph G = (V, E) uses the graph which maximizes
the posterior probability

pE| X(E|x) = pX|E(x|E)pE(E)

pX(x)
, (6.2)

where pE is the prior probability over the space of edge sets. The prior odds ratio for
two different edge sets E1 and E2 is defined as pE(E1)

pE(E2)
and the posterior odds ratio is

defined as
pE|X(E1|x)

pE|X(E2|x)
. Equation (6.2) may then be expressed as

Posterior odds = Likelihood ratio× Prior odds.

At a first glance, the learning procedure may appear fairly straightforward: there is only
a finite number of different possible DAGs G = (V, E) with d nodes and hence only
a finite number of values pE|X(E|x) have to be computed. The edge set E that yields
the maximum value is chosen. Let N(d) denote the number of possible directed acyclic
graphs on d nodes. Then, enumerating all possible graphs (Er)

N(d)
r=1 gives

pX(x) =
N(d)∑
r=1

pX|E(x|Er)pE(Er).

In [96], R.W. Robinson gave the following recursive function for computing the number
N(d) of acyclic directed graphs with d nodes:

N(d) =
d∑

i=1

(−1)i+1
(

d

i

)
2i(d−1)N(d − i). (6.3)

This number grows super-exponentially. For d = 5 it is 29 000 and for d = 10 it is
approximately 4.2× 1018. Here N(d) is a very large number, even for small values of
d . Therefore, it is clearly not feasible to compute this sum, even for modest values of
d . Computing the posterior distribution is an NP-hard problem; G.F. Cooper [82] proves
that the inference problem is NP-hard. That means, worse than an NP-problem. This is
discussed in [74]. Recently, M. Koivisto and K. Sood [97] constructed the first algorithm
that had a complexity less than super-exponential for finding the posterior probability of
a network.
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Aside: P-, NP- and NP-hard problems A problem is assigned to the NP (non-
deterministic polynomial time) class if it is verifiable in polynomial time by a
non-deterministic Turing machine. (A non-deterministic Turing machine is a ‘parallel’
Turing machine which can take many computational paths simultaneously, with the
restriction that the parallel Turing machines cannot communicate.) A P-problem (whose
solution time is bounded by a polynomial) is always also NP. If a problem is known
to be NP, and a solution to the problem is somehow known, then demonstrating the
correctness of the solution can always be reduced to a single P (polynomial time)
verification. A problem is NP-hard if an algorithm for solving it can be translated into
one for solving any other NP-problem (non-deterministic polynomial time problem).
NP-hard therefore means ‘at least as hard as any NP-problem’ although it might, in fact,
be harder.

The prediction problem Given an n× d data matrix x representing n independent
instantiations of a random vector X = (X1, . . . , Xd), the prediction problem is to com-
pute the distribution pX(n+1)|X(x|x), the conditional probability distribution of the next
observation. The article [98] introduces the stochastic complexity distribution .

Firstly, the maximum likelihood estimate E(x) is defined as the value of E that
maximizes

p̂X|E(x|E) =
d∏

j=1

qj∏
l=1

kj∏
i=1

θ̂
nk(x

(i)
j
|π(l)

j
)

j il ,

where θ̂j il = n(x
(i)
j

,πl
j
)

n(πl
j
)

; n(x
(i)
j , π l

j ) denotes the number of times that the configuration

(x
(i)
j , π l

j ) appears in the data and n(πl
j ) denotes the number of times that the ‘parent’

configuration πl
j appears.

In principle, the likelihood has to be computed for all possible graph structures and
the graph that maximizes it chosen. As discussed, locating the graph structure that obtains
the maximum is an NP-hard problem.

The stochastic complexity predictive distribution PSC based on n observations is then
defined as

P(n)
SC(x) = p̂X|E(x|E(x))∑

y∈X(n) p̂X|E(y|E(y))
= 1

Fn

p̂X|E(x|E(x)).

This motivates the definition of the stochastic complexity of x with respect to Ẽ, where
Ẽ is the set of edge sets (or models) under consideration. It is defined as

S(x|Ẽ) = − logP(n)
SC(x) = − log pX|E(x|E(x))+ kn,

where kn = log Fn is a constant. The aim is to predict the next observation xn+1 given the
previous n observations. The stochastic complexity predictive distribution is defined as

P(n+1)
SC (x|x) = C

d∏
j=1

qj∏
l=1

kj∏
i=1

θ̃
nk(x

(i)
j
|π(l)

j
)

j il ,
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where n(x
(i)
j , π

(l)
j ), n(π

(l)
j ) and θ̃j il are computed from the extended data set, the n+

1× d data matrix

(
x

x

)
.

6.2 Markov equivalence and consistency

Given a set of conditional independence relations, perhaps derived from data, this section
describes how to determine whether or not there is a directed acyclic graph that is faithful
(Definition 2.30) to the underlying probability distribution; that is, consistent with the
set of independence relations. The method is constructive, in the sense that if there is a
faithful directed acyclic graph, then the method constructs one particular faithful directed
acyclic graph and indicates how to determine all the other DAGs that are faithful to the
set of conditional independence statements. Different graphs that share exactly the same
d-separation properties are said to be Markov equivalent (Definition 2.32).

Let M denote the complete set of conditional independence statements. That is, let
V denote the set of all subsets of V (including φ and V ) and let

M = {(X, Y, S) ∈ V × V × V | X ⊥ Y |S, X, Y 
∈ S}.
Suppose that a set of conditional independence relations M has been obtained empirically
from data. This section addresses two issues: firstly, whether or not there exists a directed
acyclic graph G that is consistent with M (Definition 2.31), that is, whether or not there
exists a directed acyclic graph G such that X ⊥ Y‖GS ⇔ (X, Y, S) ∈M; and secondly,
how to find all the directed acyclic graphs that are consistent with a set of independence
statements M.

A set of conditional independence statements M for which there exists such a directed
acyclic graph is said to be DAG isomorphic.

Definition 6.1 (DAG Isomorphic Conditional Probability Statements) Let V = {X1, . . . ,

Xn} be a collection of random variables and let M denote the entire collection of
conditional independence statements: for all (Xi, Xj , S) ∈ V × V × V : Xi, Xj 
∈ S,
(Xi, Xj , S) ∈M⇔ Xi ⊥ Xj |S. The collection M is said to be DAG isomorphic if
there exists a DAG G = (V, E) such that G is consistent with M (Definition 2.31).

The second of these issues is considered first; if a set of conditional independence state-
ments M is DAG isomorphic, the following theorem gives a criterion for establishing
whether or not M is consistent with a particular DAG G.

Theorem 6.1 Let V = {X1, . . . , Xn} be a collection of random variables and let M
denote the entire collection of conditional independence statements; for all (Xi,Xj , S) ∈
V × V × V : Xi,Xj 
∈ S, (Xi, Xj , S) ∈M if and only if Xi ⊥ Xj‖GS. Assume that M
is DAG isomorphic (Definition 6.1). A DAG G = (V, E) is consistent with M (Definition
2.31) if and only if:

1. ∀S ∈ V, Xi ∼ Xj ⇔ (Xi, Xj , S) 
∈M.
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2. (Xi,Xj ,Xk) forms an immorality in G if and only if (Xi 
∼ Xk , and Xi ⊥ Xk|S �⇒
Xj 
∈ S).

If there is a probability distribution p, for which every conditional independence state-
ment in M holds for p and no others, then Theorem 6.1 gives necessary and sufficient
conditions for a graph G to be faithful to p (Definition 2.30); the terms ‘faithful’ and
‘consistent’ are equivalent.

Proof of Theorem 6.1 The proof consists of three parts: Part 1 shows that the first
condition is necessary, Part 2 shows that the second condition is necessary and Part 3
shows that both conditions taken together are sufficient.

Part 1: If G is consistent with M, then ∀S ∈ V : Xi,Xj 
∈ S, Xi ∼ Xj ⇔ (Xi,

Xj , S) 
∈M. Definition 2.31 states that G is consistent with M if and only if
(Xi, Xj , S) ∈M⇔ Xi ⊥ Xj‖GS. It is therefore sufficient to show that for any two
distinct nodes Xi and Xj ∈ G, Xi ∼ Xj if and only if they cannot be d-separated by
any set of nodes S ⊂ V .

Clearly, if Xi ∼ Xj , then following Definitions 2.17 and 2.18, there does not exist
a set S that d-separates Xi from Xj . It remains to show that if (Xi, Xj , S) 
∈M for all
S ⊂ V : Xi, Xj 
∈ S, then Xi ∼ Xj .

Let
S = {Y | Y is an ancestor of Xi or Xj }\{Xi, Xj }.

Since Xi,Xj are not d-separated by any set, it follows that (Xi, Xj , S) 
∈M. Therefore,
there is an S-active trail τ (Definition 2.16) connecting Xi and Xj in G. Since the trail
τ is active, all the collider connections along τ are either in S or have a descendant in S

and all the fork or chain nodes are not in S. By the definition of S, every node that has
a descendant in S is itself in S. Thus every collider node on the trail τ is in S. Every
other node on τ (fork or chain) is an ancestor either of Xi or Xj or one of the collider
nodes of the path. Hence every node on τ is in S with the exception of Xi and Xj and
hence every node (other than Xi and Xj ) is a collider node. It follows that the trail is
either Xi → Xj or Xj → Xi , or Xi → Y ← Xj , where Y ∈ S. But, by construction of
S, the third possibility implies that the graph has a cycle – since Y is a child of both Xi

and Xj , there is a cycle if it is an ancestor of Xi and there is a cycle if it is an ancestor
of Xj . It follows that Xi ∼ Xj .

Part 2: Assume that G is consistent with M, then (Xi,Xj, Xk) forms an immorality
in G if and only if (Xi 
∼ Xk , and ∀S ⊂ V : Xi,Xk 
∈ S, Xi ⊥ Xk|S �⇒ Xj 
∈ S)

Suppose (Xi, Xj , Xk) forms an immorality, then by definition Xi 
∼ Xk and, by the
basic separation properties of colliders, Xi ⊥ Xk‖GS ⇔ Xj 
∈ S.

For the other direction, suppose Xi 
∼ Xk and ∀S ⊂ V, Xi ⊥ Xk|S �⇒ Xj 
∈ S. Con-
sider any trail τ between Xi and Xk containing Xj , where all the variables along the trail,
except for Xi and Xk are instantiated. Let S denote the set containing all the variables
along the trail except for Xi and Xk and no other variables, so that no other variables
are instantiated. Then, since Xi is not independent of Xk given S, it follows from basic
properties of instantiated connections that all connections along the trail are colliders and
hence that S contains exactly one variable, Xj . It follows that (Xi,Xj ,Xk) forms an
immorality in G.
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Part 3: If the two conditions hold for a DAG G = (V, E), then it is consistent with
M. Since it is assumed that M is DAG isomorphic, there exists a DAG G̃ that is
consistent with M. By parts 1) and 2), G̃ satisfies both the conditions and hence has the
same immoralities and skeleton as G By Lemma 4.3, it follows that for any S, a trail τ

is S-active in G if and only if it is S-active in G̃, so that G is consistent with M. �

A criterion for determining a collection of DAGs that are Markov equivalent has been
established and this was used to determine conditions to characterize the set of directed
acyclic graphs that are consistent with a given set of conditional probability statements,
if such a directed acyclic graph exists.

6.2.1 Establishing the DAG isomorphic property

The last task of this section is to construct an algorithm that determines whether or
not a given set of conditional probability statements is DAG isomorphic. The method
is constructive; an algorithm is proposed that will return a DAG consistent with the
conditional probability statements if the statements are DAG isomorphic and will declare
that there is no such DAG otherwise. The algorithm is in three stages.

• Stage 1 examines the independence statements in M and tries to construct a con-
sistent graph. If this stage fails to find a graph, then M is not DAG isomorphic.

• Stage 2 turns the graph into a directed acyclic graph, if this is possible.

• Stage 3 verifies whether or not the resulting directed acyclic graph is consistent
with M. If it is, then M is clearly DAG isomorphic, but if it is not, then there
does not exist a consistent DAG.

Stage 1: Generate a graph from M if possible This stage has three steps.

1. Consider all (Xi, Xj , S) ∈ V × V × V, where V denotes the set of all subsets of V ,
such that Xi 
= Xj and S ⊆ V \{Xi, Xj }. Recall that (by definition) φ ∈ V, where
φ denotes the empty set. Then set

Xi ∼ Xj ⇔
 ∃S ∈ V | (Xi, Xj , S) ∈M.

Let G = (V, E) denote the undirected graph formed in this way. Let

S(Xi,Xj ) = {Xk : Xi ⊥ Xj |Xk}.
2. For every pair of nodes Xi and Xj such that Xi 
∼ Xj , test whether or not there

is a node Xk such that Xi ∼ Xk and Xj ∼ Xk and Xk 
∈ S(Xi, Xj ).
If there is such a node, then direct the edges 〈Xi,Xk〉 and 〈Xj , Xk〉 by removing
them and replacing them with the directed edges (Xi, Xk) and (Xj ,Xk) from E, so
that Xk is a collider node, UNLESS the algorithm has already modified sufficient
edges so that this involves changing the direction of a directed edge. If this is
happens, then Stage 1 FAILS; the set of conditional independence statements is
not DAG isomorphic. The proof of this follows the statement of the algorithm.

3. If the orientation of Step 2 is completed, then phase 1 SUCCEEDS and returns a
graph G̃, which is partially directed.



174 LEARNING THE GRAPH STRUCTURE

Stage 2: Turn G into a Directed Graph The algorithm is as follows: Start with the
partially directed graph obtained from Stage 1, call it G̃. Let G denote the current state
of the graph. While G contains undirected edges, repeat the following three steps.

1. Direct the graph G according to the following algorithm: run through all variables,
labelled {1, . . . , n}. For j = 1 to n, do:

(a) Rule 1: If variable Xj is part of a structure shown in Figure 6.1 (that is if
Xj takes the position of either A, B or C), where A 
∼ C; that is, if there is
a structure A→ B ↔ C and A 
∼ C, then replace B ↔ C with the directed
edge B → C.

B

A C

Figure 6.1 Structure for Rule 1.

(b) Rule 2: If the variable Xj is part of a structure between the three variables
(A, B,C) given in Figure 6.2, then replace A↔ C with the directed edge
A→ C.

B

A C

Figure 6.2 Structure for Rule 2.

(c) Rule 3: If the variable Xj is part of an edge structure given in Figure 6.3,
then replace B ↔ D with B → D.

B

A C

D

Figure 6.3 Structure for Rule 3.

(d) Rule 4: If Xj is part of an edge structure given in Figure 6.4, then replace
A↔ B with A→ B, and replace C ↔ B with C → B.

IF any of pair of directed edges form a collider not present from the directed
edges in G̃, then the algorithm is terminated, and returns the value ‘FAIL’; the set
of conditional independence statements is not DAG isomorphic.
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B

A C

D

Figure 6.4 Structure for Rule 4.

Repeat step 1 of Stage 2 until either a directed acyclic graph is formed, or until
no edges are directed during a full run, or until an additional collider connection
or cycle is formed.
If a directed acyclic graph is returned, then the algorithm SUCCEEDS. Go to
Stage 3.

2. If the resulting graph still has directed edges, then perform the following: Copy
the current graph G and call the copy G̃∗. Select one of the undirected edges of
G and choose a direction for it that does not introduce any directed cycles or
new colliders. If this is possible, then TERMINATE with the resulting directed
acyclic graph; the algorithm SUCCEEDS; go to Stage 3. If this is not possible,
then discard G̃∗ and choose the opposite direction for the edge, then continue.

Stage 3: Check the Answer Check that for every statement (Xi, Xj , S) ∈M, Xi ⊥
Xj‖GS holds for the resulting directed acyclic graph G. This may be carried out using
the algorithm to check for d-separation. If it does, then M is DAG isomorphic and G is
a consistent DAG; otherwise M is not DAG isomorphic.

Proof that the Algorithm Determines the DAG Isomorphism Property The following
additional lemma is needed.

Lemma 6.1 Let M be a DAG isomorphic set of conditional independence statements.
Suppose that Xi and Xk are two nodes such that Xi 
∼ Xk , but there is node Xj such that
(Xi, Xj , Xk) is a trail. If there is an S ⊂ V such that Xj 
∈ S and (Xi, Xk, S) ∈M, then
for any T ⊂ V , (Xi, Xk, T ) ∈M �⇒ Xj 
∈ T .

Proof of Lemma 6.1 Suppose that Xj is a collider, chain or fork node between Xi and
Xk and suppose that Xi ⊥ Xk‖GS, with Xj 
∈ S. It follows that the connection is Xi →
Xj ← Xk . It follows that any set that contains Xj will activate the trail (Xi,Xj ,Xk)

between Xi and Xk . Hence, for any T ⊂ V , if (Xi, Xk, T ) ∈M, then Xj 
∈ T . �

The next task is to show that the algorithm given above determines whether or not a set
of conditional independence statements M is DAG isomorphic. That is, to show that if
the algorithm fails to return a consistent DAG, then M is not DAG isomorphic.

Stage 1: Theorem 6.1 shows that if M is DAG isomorphic, then any directed acyclic
graph consistent with M will have the same skeleton and the same colliders as the graph
produced by Stage 1. The first part of this stage produces the skeleton, the second part
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identifies the colliders that are present in all consistent graphs, if M is DAG isomorphic.
It identifies a collider Xi → Xj ← Xk as soon as it finds a single S ⊂ V such that
(Xi, Xk, S) ∈M with Xj 
∈ S. This decision is justified by Lemma 6.2.

The failure condition in Stage 1, Part 2 is necessary to prevent the algorithm from
switching edges that are essential for a DAG consistent with M; at each stage in the
algorithm, the directions of all the edges that have already been directed are necessary.

Stage 2: The second stage is to locate a directed acyclic graph that retains the same
colliders and skeleton as the graph constructed in Stage 1. This is purely a task of graph
theory and does not involve M.

To show that the first part this part of the process is sound, it is sufficient to show
that edges directed by the four rules are a logical consequence of the requirement that
Stage 1 gives the skeleton and all the colliders.

• Rule 1 The alternative directed edge B ← C would create a new collider.

• Rule 2 The alternative directed edge A← C would create a cycle.

• Rule 3 Since A ∼ B and B ∼ C, the edge B → D is permitted. If D → B were
chosen, it would be necessary to also have both A→ B and C → B, to prevent
a cycle. But then (A, B,C) would form a new immorality, so D → B is not
permitted. Therefore the directed edge B → D is forced.

• Rule 4 Firstly, A→ B is forced to prevent the formation of a new immorality
(D, A,B). If the edge B → C is used, this forces C → D to prevent formation of
a new immorality (B, C, D), which results in a directed cycle (A, B,C,D, A). It
follows that B → B ← C is forced.

Stage 3: By the definition of ‘consistency’, any graph constructed from Stage 2 will
be consistent with M, if M is DAG isomorphic. Therefore, it is sufficient to check the
statements in M. If there is a statement (Xi, Xj , S) ∈M such that Xi and Xj are not
d-separated by S, then M is not DAG isomorphic.

Any graph G satisfying Part 1 of Stage 3 is therefore a perfect I -map for any prob-
ability distribution p satisfying the set of conditional independence statements M. Part
2 of Stage 3 checks that the DAG does indeed satisfy the local directed Markov con-
dition (Definition 2.28); this is necessary and sufficient to conclude that G is consistent
with M. �

6.3 Reducing the size of the search

Finding the optimal structure from among all possible structures is (as stated earlier)
an NP-hard problem. Furthermore, not only does one have to estimate the underlying
probability distribution from a finite number of samples, one also has to store the resulting
probability potentials in a limited amount of machine memory. In general, it is therefore
not possible to consider all possible dependencies. Two methods of reducing of the
problem, the Chow-Liu tree and the K2 algorithm, are now considered. These seem to
have worked quite well in practice and applications of these approaches are discussed to
illustrate this.
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6.3.1 The Chow-Liu tree

The Chow-Liu tree assumes that each variable has at most one parent. Suppose there are
d variables and possible dependencies between the variables. The Chow-Liu approach is
to find d − 1 first order dependencies between the variables. That is, the distribution p

over the random vector X = (X1, . . . Xd) is considered to be of the form

pX1,...,Xd
=

d∏
j=1

pXmi
|Xmi(j)

,

where (m1, . . . , md) is a permutation of (1, . . . , d) and 0 ≤ i(j) ≤ j . Each variable may
be conditioned on at most one of the variables; hence the term first order tree dependence.

When estimating the tree, the Kullback-Leibler divergence is used to determine how
close two distributions are to each other. To compute the best fitting Chow-Liu tree, the
potentials p̂Xi,Xj

, p̂Xi
and p̂Xj

have to be computed, where p̂Xi ,Xj
, p̂Xi

and p̂Xj
denote

the empirical estimates of the potentials pXi,Xj
, pXi

and pXj
from data. The definition

of mutual information is based on the Kullback-Leibler divergence.

Definition 6.2 (Mutual Information) The mutual information between two variables X

and Y is defined as

I (X, Y ) =
∑
x,y

pX,Y (x, y) log
pX,Y (x, y)

pX(x)pY (y)
.

This is, of course, the Kullback-Leibler divergence between pX,Y and pXpY :

I (X, Y ) = DKL(pX,Y |pXpY ).

Let Î denote the estimate of the mutual information from data; that is,

Î (X, Y ) =
∑
x,y

p̂X,Y (x, y) log
p̂X,Y (x, y)

p̂X(x)p̂Y (y)
. (6.4)

The idea is to find the maximum weight dependence tree; that is, a tree σ such that for
any other tree σ ′,

d∑
j=1

Î (Xj ,Xσ(j)) ≥
d∑

j=1

Î (Xj , Xσ ′(j)).

This uses Kruskal’s algorithm, described below. Here (j, σ (j))dj=1 denotes the edge set
of the maximal weight tree; (j, σ ′(j))dj=1 denotes the edge set of any other admissible
tree.

The optimization procedure Kruskal’s algorithm runs as follows:

1. The d variables yield d(d − 1)/2 edges. The edges are indexed in decreasing order,
according to their weights b1, b2, b3, . . . , bd(d−1)/2.

2. The edges b1 and b2 are selected. Then the edge b3 is added, if it does not form a
cycle.
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3. This is repeated, through b4, . . . bd(d−1)/2, in that order, adding edges if they do
not form a cycle and discarding them if they form a cycle.

This procedure returns a unique tree if the weights are different. If two weights are equal,
one may impose an arbitrary ordering. From the d(d − 1)/2 edges, exactly d − 1 will be
chosen.

Lemma 6.2 Kruskal’s algorithm returns the tree with the maximum weight.

Proof of Lemma 6.2 The result may be proved by induction. It is clearly true for two
nodes. Assume that it is true for d nodes and consider a collection of d + 1 nodes,
labelled (X1, X2, . . . , Xd+1), where they are ordered so that for each j = 1, . . . , d + 1,
the maximal tree from (X1, . . . , Xj ) gives the maximal tree from any selection of j

nodes from the full set of d + 1 nodes. Let b(i,j) denote the weight of edge (i, j) for
1 ≤ i < j ≤ d + 1. Edges will be considered to be undirected. Let T (d+1)

j denote the

maximal tree obtained by selecting j nodes from the d + 1 and consider T (d+1)
d+1 .

Let Z denote the leaf node in T (d+1)
d+1 such that among all leaf nodes in T (d+1)

d+1 the
edge (Z, Y ) in T (d+1)

d+1 has the smallest weight. Removing the node Z gives the maximal
tree on d nodes from the set of d + 1 nodes. This is seen as follows. Clearly, there is no
tree with larger weight that can be formed with these d nodes, otherwise the tree on d

nodes with larger weight, with the addition of the leaf (Z, Y ) would be a tree on d + 1
nodes with greater weight than T d+1

d+1. It follows that Z = Xd+1 and hence that Xd+1 is
a leaf node of T (d+1)

d+1 .
By the inductive hypothesis, T (d+1)

d may be obtained by applying Kruskal’s algorithm
to the weights (b(i,j))1≤i<j≤d . Now consider an application of Kruskal’s algorithm to the
weights (b(i,j))1≤i<j≤d+1 and note that for any (i, j) with i < j such that the undirected
edge (Xi, Xj ) forms part of the tree T (d+1)

d , b(i,d+1) < b(i,j) and b(j,d+1) < b(i,j). There-
fore, if the edges (b(i,j))1≤i<j≤d+1 are listed according to their weight and the Kruskal
algorithm applied, then all the edges used in T (d+1)

d will appear further up the list than
any edge (b(k,d+1))

d
k=1 and therefore all the edges of T (d+1)

d will be included by the algo-
rithm before the edges (b(k,d+1))

d
k=1 are considered. It follows that T (d+1)

d+1 is the graph
obtained by applying Kruskal’s algorithm to the nodes (X1, . . . , Xd+1). �

Application to pattern recognition The example given in the article [99] considers the
problem of machine recognition of handwritten numerals, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. There
are c = 10 pattern classes. Let ai denote the numeral i. There is a prior distribution
p = (p0, p1, . . . , p9) over the numerals. The number is written on a 12× 8 rectangle
and 96 binary measurements are used to represent the numeral; 1 if the cell contains
writing and 0 otherwise. In the example given in [99], 19 000 numerals produced by
four inventory clerks were scanned. 7000 of these were employed as training examples,
to find the best fitting trees and estimate the probabilities p0, . . . , p9. The optimal trees
for each of the 10 numerals were obtained. For the remaining numerals, the observation
x = (x1, . . . , x96) was considered. Using Bayes’ rule,

p(ak|x) = p(x|ak)p(ak)

p(x)
= p(x|ak)pk

p(x)
,
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the following classification rule was used: the numeral was declared to be of class ak

if pkp(x|ak) ≥ pip(x|ai) for all i 
= k. Using the trees, the error rate was reduced from
0.09 to 0.04 compared with the model produced by assuming independence between the
contents of the 96 cells.

6.3.2 The Chow-Liu tree: A predictive approach

The following predictive approach (and the computations) in the section are due to M.
Gyllenberg and T.Koski [100], but the work turns out to be a special case of J. Suzuki
[101]. Recall the definition of the prior predictive distribution (Definition 1.9). The pre-
dictive approach considers the prior distribution and a set of parameters so that it may be
expressed in the form given in Equation (1.12), and uses this to construct the posterior
distribution, conditioned on the observations.

The prediction problem for a given Chow-Liu tree is now considered. This is inter-
preted as the likelihood function for the tree structure and is used as part of a predictive
technique for learning the optimal Chow-Liu tree.

Consider a Chow-Liu tree with d nodes, where X1 is the root variable and (Xm(2), . . . ,

Xm(d)) are the parent variables for (X2, . . . , Xd). That is, �j = {Xm(j)}, j = 2, . . . , d .
The distribution along a tree T factorizes as follows:

pX(.|T ) = pX1

d∏
j=2

pXj |Xm(j)
.

Set

θj = pXj |Xm(j)
(1|1) j = 2, . . . , d

φj = pXj |Xm(j)
(1|0) j = 2, . . . , d

and
θ1 = pX1(1).

Now consider t complete, independent instantiations x1, . . . , xt of the variables in the
tree network, where for each j = 1, . . . , t , the row vector xj = (xj1, . . . , xjd) denotes

instantiation j . Let the matrix x =

 x1
...

xt

 denote the complete set of independent

instantiations and let X denote the random matrix where each row Xj , j = 1, . . . , t is
an independent copy of X = (X1, . . . , Xd). Then

pX(x|T ) =
t∏

l=1

pX(xl |T )

= θ
n1
1 (1− θ1)

t−n1

d∏
j=2

θ
nj (1,1)

j (1− θj )
nj (0,1)φ

nj (1,0)

j (1− φj )
nj (0,0),
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where, for j ≥ 2,

nj (1, 1) =
t∑

l=1

xlj xl,m(j), nj (1, 0) =
t∑

l=1

xlj (1− xl,m(j))

nj (0, 1) =
t∑

l=1

(1− xlj )xl,m(j), nj (0, 0) =
t∑

l=1

(1− xlj )(1− xl,m(j)).

and

Nj(1) =
t∑

l=1

xlj , Nj (0) = t −Nj(1), j = 1, . . . , d.

Set n = {(Nj (0), Nj (1))dj=1, (nj (1, 1))dj=2, (nj (1, 0))dj=2, (nj (0, 1))dj=2, (nj (0, 0))dj=2}.
Note that

Nm(j)(0) = nj (0, 0)+ nj (1, 0) and Nm(j)(1) = nj (1, 1)+ nj (0, 1).

The interpretation of these quantities is clear; for example, nj (1, 1) counts the number of
rows of x in which the family configuration (xkj , xk,m(j)) = (1, 1) appears. Regarded as
a function of (θ, φ), where θ = (θ1, . . . , θd) and φ = (φ2, . . . , φd), this is the likelihood
function:

L(θ, φ; x) =
t∏

l=1

pX(xl |T )

= θ
N1
1 (1− θ1)

t−N1

d∏
j=2

θ
nj (1,1)

j (1− θj )
nj (0,1)φ

ni (1,0)

i (1− φi)
ni (0,0). (6.5)

When the parameters (θ, φ) are included in the notation, the probability distribution may
be written as

pX|θ,φ(x) =
d∏

j=1

pXj |Xm(j),θj ,φj
(xj |xm(j)).

To compute the predictive distribution for a fixed tree, a prior distribution g(θ, φ) is
required over the parameter space. Then, using T to denote the tree structure, the prior
predictive distribution for X, defined in Equation (1.12), is given by

pX(x|T ) =
∫

�×�

t∏
l=1

pX|θ,φ(xl)g(θ, φ)dθdφ,

where �×� denotes the parameter space for (θ, φ). It is convenient to choose

g(θ, φ) =
d∏

i=1

h(θi)

d∏
i=2

k(φi),

where the parameters are taken to be independent, the variables (θi)
d
i=1 identically dis-

tributed and the variables (φi)
d
i=2 are identically distributed. Such a model is known as
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local meta independence ([67] p. 191). For this model, it is clear that the probability
distribution factorizes as

pX(x|T ) = I1I2I3,

where

I1 =
∫ 1

0
θ

N1
1 (1− θ1)

t−N1h(θ1)dθ1,

I2 =
d∏

j=2

∫ 1

0
θ

n(1,1)
j (1− θj )

n(0,1)h(θj )dθj

I3 =
d∏

j=2

∫ 1

0
φ

nj (1,0)

j (1− φj )
nj (0,0)k(φj )dφj .

If h = k, and h has a Beta density

h(θ) =
{

�(α1+α2)

�(α1)�(α2)
θα1−1(1− θ)α2−1 θ ∈ [0, 1]

0 θ 
∈ [0, 1],

the integrals may be computed in the usual way;

I1 = �(α1 + α2)�(N1 + α1)�(t −N1 + α2)

�(α1)�(α2)�(t + α1 + α2)
,

I2 =
d∏

j=2

�(α1 + α2)�(nj (1, 1)+ α1)�(nj (0, 1)+ α2)

�(α1)�(α2)�(α1 + α2 + nj (1, 1)+ nj (0, 1))
,

I3 =
d∏

j=2

�(α1 + α2)�(nj (1, 0)+ α1)�(nj (0, 0)+ α2)

�(α1)�(α2)�(α1 + α2 + nj (1, 0)+ nj (0, 0))
.

The learning of the tree structure T now involves finding the tree that maximizes pX(x|T )

or, equivalently, minimizes − log pX(x|T ). This is equivalent to minimizing

F(n) = − log �(N1(1)+ α1)− log �(t −N1(1)+ α2)

−
d∑

j=2

log �(nj (1, 1)+ α1)−
d∑

j=2

log �(nj (0, 1)+ α2)

+
d∑

j=2

log �(α1 + α2 +Nm(j)(1))

−
d∑

j=2

log �(nj (1, 0)+ α1)−
d∑

j=2

log �(nj (0, 0)+ α2)

+
d∑

j=2

log �(α1 + α2 +Nm(j)(0)).
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Now consider, for example, the Jeffreys’ prior [24], where α1 = α2 = 1
2 and recall the

standard formula:
�(n+ 1) = (2π)1/2nn+ 1

2 e−nea(n)/12n,

where 0 ≤ an ≤ 1. If n is a non-negative integer, this is simply Stirling’s formula. It
follows that, for any n ≥ 1,

log �

(
n+ 1

2

)
= 1

2
log(2π)+ n log

(
n− 1

2

)
−
(

n− 1

2

)
+ c1(n)

n

and

log �(n+ 1) =
(

n+ 1

2

)
log n− n+ c2(n)

n
,

where 0 ≤ ci(n) ≤ 1. To good approximation, therefore, the optimal tree is found by
minimizing

F̃ (n) = C(n)−N1(1) log

(
N1(1)− 1

2

)
−N1(0) log

(
N1(0)− 1

2

)

−
d∑

j=2

nj (1, 1) log

(
nj (1, 1)− 1

2

)
−

d∑
j=2

nj (0, 1) log

(
nj (0, 1)− 1

2

)

+
d∑

j=2

(
Nm(j)(1)+ 1

2

)
log Nm(j)(1)

−
d∑

j=2

nj (1, 0) log

(
nj (1, 0)− 1

2

)
−

d∑
j=2

nj (0, 0) log

(
nj (0, 0)− 1

2

)

+
d∑

j=2

(
Nm(j)(0)+ 1

2

)
log Nm(j)(0)

where C is bounded and the bound depends only on d . Now, for j = 1, . . . , d set q̂j = Nj

t

and, for j ≥ 2, p̂j (a, b) = nj (a,b)

N�(j)(b)
for a = 0, 1 and b = 0, 1 and p̂j (a) = Nj (a)

t
. Recall

the definition of the empirical mutual information, Equation (6.4). Let Îj,�(j) denote the
empirical mutual information between the variable Xj and its parent, so that

Îj,�(j) =
1∑

a=0

1∑
b=0

p̂j (a, b) log
p̂j (a, b)

q̂j (a)q̂�(j)(b)

and let H denote the function

H(x) = −x log x − (1− x) log(1− x).

Then, after a little computation,

−log p(Xt |T ) = C̃ + t

d∑
j=1

H(q̂j )− t

d∑
j=2

Îj,�(j) + 1

2

d∑
j=2

(
log N�(j)(1)+ log N�(j)(0)

)
,
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where C̃ is a bounded function. The problem therefore reduces to maximizing

t

d∑
j=2

Îj,�(j) − 1

2

d∑
j=2

(
log N�(j)(1)+ log N�(j)(0)

)
. (6.6)

Recall that for the maximum likelihood approach, the problem was to maximize the
mutual information,

∑d
j=2 Îj,�(j), and this was carried out using Kruskal’s algorithm.

The problem of maximizing the Equation (6.6) may be tackled by a similar use of
Kruskal’s algorithm. �

6.3.3 The K2 structural learning algorithm

This example is taken from the paper [102]. It shows an application to Bayesian network
learning techniques for task execution in mobile robots. The task here is for the robot to
locate an open door and travel through it.

The robot emits sonar pulses and is equipped with eight detectors, which detect the
echoes. From this information, it has to decide where the door is located.

An action has to be taken: step to left, right, or straight ahead. This is the class
variable and the class has to be determined by the signals received by the eight detectors.
Since the signals are not independent of each other (the echoes may be created by the
same object), the model is improved by incorporating a dependence structure.

In this experiment, the problem is to learn the structure of the Bayesian network and
to estimate the probability potentials from the training database.

The K2 algorithm is employed to establish a suitable structure. The algorithm has to
take into account that the number of parents of a node should not be high, since the size
of the associated probability potentials increases exponentially according to the number
of parents of a node. Therefore, the algorithm limits the number of parents a node can
take. For the robot learning example, the maximum number is set to four, which is a
value widely used. The size of the probability potentials cannot be too large, since the
robot is expected to find the door and travel through it in real time.

The algorithm assumes that an order has been established for the d nodes X1, . . . , Xd

so that, for each i, the parent nodes �i for variable Xi are established among the nodes
X1, . . . , Xi−1. For j = 1, . . . , i − 1, the empirical Kullback-Leibler divergence between
the two empirical probability distributions of (X1, . . . , Xi), one determined by the graphs
with and the other determined by the graph without the directed edge (i, j), is measured
and the edge is retained if a) the divergence is sufficiently large and b) node i does not
already have four parents.

The resulting algorithm is a greedy algorithm and therefore it cannot ensure that the
net resulting from the learning process is the best fit.

The intensity of an echo may be modelled as a continuous random variable, but the
variables are discretised for computational convenience. In general, it is not convenient
to use a variable with more than 20 different values. For this reason, the multinomial
distribution is by far the most useful in Bayesian networks.

When the K2 algorithm is used, the learnt structure depends completely on the
random order of the variables generated before the learning process starts. This may
have unfortunate consequences if an unfortunate order is used. In the Bayesian robotics
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Figure 6.5 Network produced by the K2 algorithm. Here the nodes Sj represent the
signals received by the sensors and C denotes the class variable, the action to be per-
formed.

experiment therefore, in order to reduce the impact of the random order in the net struc-
tures learnt, the experiments were repeated 1000 times and nets with optimal values
selected.

The Bayesian network learnt using the K2 algorithm and entropy evaluation met-
rics (i.e. the Kullback-Leibler divergence) provided the best classification accuracy. The
resulting network for the eight variables is shown in Figure 6.5.

6.3.4 The MMHC algorithm

The maximum minimum hill climbing (MMHC) algorithm was introduced in [103]. It
finds a directed acyclic graph structure for a probability distribution p, where there exists
a graph G, such that p and G are faithful to each other, following Definition 2.30. The
problem is that it requires that there exists a graph faithful to the distribution, so there
are situations where it will not work. The example of the trek (Section 2.10.1) gives an
example of a relatively simple distribution over four binary variables for which there
does not exist a faithful graph. The graph located will satisfy Definition 2.30, assuming
that there are sufficient instantiations to determine that there is a significant association
between two variables when an association exists. The key identity used is that, for
a faithful Bayesian network (G, p), X and Y d-separated by a set of variables Z is
equivalent to the statement that X and Y are conditionally independent given Z. The
algorithm then works by locating the conditional independence structure.

The maximum minimum parents and children algorithm The MMPC algorithm,
when run on a target variable T , identifies the existence of edges to and from T . It
cannot determine the direction of the edges; it determines the skeleton . The algorithm
works in three stages. Firstly, a forward stage starts with an empty graph, and adds
in all possible edges. There are possibly too many edges after this stage. Secondly, a
backward stage removes some of the edges. The resulting graph, after the second stage,
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will contain no false negatives, but may still contain some false positives. A third stage
is implemented to remove the false positives. The algorithm runs as follows:

Stage 1:
• Order the variables Xi ∈ V \{T }, (Xi)

d
i=1. Start with Z1 = φ, the empty set.

• For i = 1, . . . d , Xi ∈ V , Xi 
= T , check whether Xi ⊥ T |Z. If it is not, let Zi+1 =
Zi ∪ {Xi}. Otherwise, Zi+1 = Zi .

Set Z = Zd .

Stage 2: Suppose that Z contains k variables. Label them X1, . . . , Xk . Let Zk = Z. For
i = 0, . . . , k − 1, check whether there exists a set S ⊆ Zk−i \{Xk−i} such that T ⊥ Xk−i |S.
If there is, then Zk−i−1 = Z\{Xk−i}, otherwise Zk−i−1 = Zk−i .

Let ZT = Z1. This set contains all the variables which have an edge either to or from
the variable T .

The algorithm may return false positives. Suppose a probability distribution may be
represented by the DAG in Figure 6.6. Working from T , the node C may enter the output,
and remain in the output.

This is because C is dependent on T , conditioned on all subsets of T s parents and
children; namely, φ (the empty set) and {A}. Note that the collider connection T AB, is
opened when A is instantiated so that, when A is instantiated and B is uninstantiated, T

is d-connected with C. For φ (the empty set), T AC is a chain connection, where A is
uninstantiated, so that T is d-connected to C.

T and C are d-separated if and only if A and B are simultaneously instantiated; that
is, T ⊥ C|{A, B}. But if B is independent from T given the empty set, so it will be
removed from Z. Therefore, the link T C will not be removed.

This is corrected by considering the parent/child sets of the other variables. When
working from C, both A and B will be in the parent/child set, and T ⊥ C|{A,B}. This
leads to the third stage of the algorithm.

Stage 3: Let (ZX)X∈V denote the parent/child sets for all the variables arrived at after
Stage 2. Let X1, . . . , Xj denote the set of variables in ZT , the parent child set for T

arrived at after Stage 2.
Set Y0 = ZT . For i = 1, . . . , j , set

Yi =
{

Yi−1\{Xi} T 
∈ ZXi

Yi−1 T ∈ ZXi
.

Now set YT = Yj . This returns the complete parent/child set for T .

T A C

B

Figure 6.6 Min max parent child: A false positive.
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Testing for conditional independence Testing for conditional independence is carried
out, quite simply, using the usual χ2 test. To test whether or not X ⊥ Y |Z, let n(x, y, z)

denote the number of times (X, Y, Z) = (x, y, z) appears in the data, n(x, z), n(y, z),
n(z) the number of instances of (X, Z) = (x, z), (Y, Z) = (y, z), Z = z respectively.
The G2 statistic, which is standard, is defined as

G2 = 2
∑
x,y,z

n(x, y, z) log
n(x, y, z)n(z)

n(x, z)n(y, z)
.

Asymptotically, this is distributed as a χ2 distribution on (jx − 1)(jy − 1)jz degrees of
freedom, where jx , jy and jz are the number of values that the random variables X, Y

and Z respectively can take. Note that G tests independence based on characterization 4
of conditional independence, listed in Theorem 2.1.

Maximum minimum Hill Climbing algorithm Having located the parent/child sets,
the algorithm advocated by [103] works as follows: The nodes in V are labelled (Xi)

d
i=1

and, for i = 1, . . . , d , ZXi
denotes the edge set for node Xi obtained from the MMPC

algorithm. Let E = ∪d
i=1ZXi

. The algorithm is as follows: denoting the current graph
by G,

• Start with the empty graph.

• At each stage, either add an edge in E to G, or delete an edge from G, or reverse an
edge in G, or leave the graph unaltered. From all the possibilities of ‘add an edge’,
‘delete an edge’, ‘reverse an edge’, ‘leave the graph unaltered’, choose the one that
gives the greatest score; that is, the operation that produces the greatest reduction in
the Kullback-Leibler divergence between the probability modelled along the graph
and the empirical probability.

• Repeat until the score is not changed.

The algorithm may be modified as follows: instead of the best change, make the best
change that results on a graph that has not already appeared. When 15 changes occur
without an increase in the best score ever encountered during the search, the algorithm
terminates. The DAG that produced the best score is then returned.

6.4 Monte Carlo methods for locating the graph structure

As usual, let V = {X1, . . . , Xd} denote the set of variables. This section describes a
Markov chain Monte Carlo method for locating the essential graph. If there is a large
number of variables, the graph returned by the Markov chain Monte Carlo method may
not necessarily be ‘optimal’, but it should represent the dependence structure to a good
approximation.

A Monte Carlo algorithm generates a stochastic process that moves through the graph
structures under consideration. Let x denote the data and let E∗ denote the set of possible
edge sets for essential graphs, then the idea is to generate a time homogeneous Markov
chain {M(t) : t = 0, 1, 2, . . .}, where M(t) ∈ E∗ for each t ≥ 0, with an equilibrium dis-
tribution pE(.|x) : E∗ → [0, 1], defined by modifying Equation (6.2), to take into account
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the fact that E∗ is the space of essential graphs. That is, a directed acyclic graph within
the equivalence class is chosen, the probability given by Equation (6.2) is computed and
then multiplied by the number of graphs in the equivalence class to give the probability
of the essential graph.

The necessary results about Markov chains and Monte Carlo methods were discussed
in Section 3.7. The Monte Carlo method finds constructs an irreducible aperiodic Markov
chain that has pE(.|x) (or a suitable approximation) as its invariant measure. By running
the chain, an approximation p̂E(.|x) to this distribution may be computed and the edge
set E that maximizes p̂E(.|x) is selected.

The Markov chain Monte Carlo model composition algorithm The Markov chain
Monte Carlo model composition algorithm, known as MC3, and the augmented Markov
chain Monte Carlo model composition (AMC3) algorithm were introduced by Madigan
and York, and Madigan, Andersson, Perlman and Volinsky in 1995 and 1996 respec-
tively. They are described in [87]. The MC3 algorithm constructs an aperiodic irreducible
Markov chain {M(t), t = 1, 2, . . .} with state space E∗ with an equilibrium distribution
that approximates pE(.|x), where x denotes the data matrix.

The difficulty with constructing Markov chains over the set of essential graphs is that
if only a single edge is modified at a time, the chain is not irreducible. This is seen rather
simply with the immorality A→ B ← C. This is an essential graph on three variables.
Any alteration of a single edge (either by adding in one of (A, C), (C, A) or 〈A, C〉,
or un-directing one of the directed edges, or changing the direction of an edge) gives
a graph that is not an essential graph. It is therefore not possible to move in a single
step from the immorality (A, B,C) (where B is the collider node) to a different essential
graph on the variables (A, B,C). Filling in the details is left as an exercise (Exercise
2). Therefore, any Markov chain with state space the possible essential graphs for three
variables will not be irreducible if at most one edge is altered at each transition.

The (MC)3 algorithm therefore considers triples of nodes and works as follows. Let
M(0) be an edge set of an arbitrarily chosen essential graph. To move from M(t) to
M(t + 1), do the following:

• Choose three nodes (Xi, Xj , Xk) at random, where Xi 
= Xj , Xj 
= Xk , Xi 
= Xk ,
taking any possible triple of nodes each with equal probability.

• Let E denote the current edge set. As usual, E = D ∪ U where D denotes the
directed edges and U denotes the undirected edges. 〈α, β〉 ∈ U if and only if
both (α, β) ∈ E and (β, α) ∈ E. (α, β) ∈ D if and only if both (α, β) ∈ E and
(β, α) 
∈ E. For Fij and Fjk where Fpq is defined below, consider the 16 possible
graphs generated by keeping all other edges the same and modifying any edges
between the two pairs [Xi, Xj ] and [Xj, Xk] (where [α, β] simply denotes the
ordered pair of vertices) according to the four possibilities for each pair:

Fpq =



1 (Xp, Xq) 
∈ E (Xq,Xp) 
∈ E (i.e.(Xp, Xq) 
∈ D,

(Xq,Xp) 
∈ D, 〈Xp,Xq〉 
∈ U)

2 (Xp, Xq) 
∈ E (Xq,Xp) ∈ E (i.e.(Xq, Xp) ∈ D)

3 (Xp, Xq) ∈ E (Xq,Xp) 
∈ E (i.e.(Xp, Xq) ∈ D)

4 (Xp, Xq) ∈ E (Xq,Xp) ∈ E (i.e.〈Xp, Xq〉 ∈ U).
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Suppose the current state is E0. Check each of the 16 graphs E0, E1, . . . , E15 (the
current graph will be one of the possibilities) generated by all the possibilities of
Fij and Fjk. For each graph, check whether it is an essential graph, using the
criteria of Theorem 4.5.

This part takes a fair amount of computation. It is necessary to keep track of
both U and D, the undirected and directed nodes respectively. By keeping track
of the chain components, it should be relatively easy to check

1. whether the graph is still a chain graph following the alteration of the two edges,

2. if it is, whether the chain components are still triangulated after alteration of the
two edges,

3. that the alteration of the two edges has not introduced any induced sub-graph
of three variables of the type shown in Figure 4.22 and

4. that every directed edge is strongly protected (the protection has not been
removed from unaltered edges and that new directed edges are strongly pro-
tected).

For graph Ek, k = 0, . . . , 15, assign a probability 0 if it is not a chain graph, other-
wise compute a quantity proportional to pE|X(Ek|x), or a suitable approximation to this
quantity.

One way to do this is to find a directed acyclic graph within the equivalence class of
the essential graph with edge set Ek. If a uniform prior is considered over all possible
directed acyclic graphs, then, from Equation (6.2), it is sufficient to use Equation (6.1)
and multiply by the number of directed acyclic graphs within the equivalence class. In
general, computing the exact number of directed acyclic graphs within an equivalence
class is not straightforward; either all possible equivalent DAGs have to be constructed,
or else a suitable approximation to this number has to be found. Let xk = pX|E(Dk|x)

using Equation (6.1), where Dk is a directed acyclic graph within the equivalence class.
Set

PE0,Ek
= xk∑15

m=0 xm

k = 0, 1, . . . , 15.

These are the one-step transition probability values for moving from M(t) = E0 to M(t +
1).

At first sight, this may look unpleasant. But the programming can be made more
efficient by observing that graph M(t) is already essential and that only two edges
are being altered. This observation may be used both to help determine which of the
16 possibilities for M(t + 1) are essential graphs and also to reduce the number of
new quantities n(xi

j |πl
j ) and n(πl

j ) that have to be computed at each stage. Writing the
programme to run a Monte Carlo on directed acyclic graphs, changing a single edge at
a time, is easier, but the problem with this is that the algorithm may run through several
different DAGs that are all Markov equivalent. The selection procedure for the (MC)3

algorithm ensures that the process moves between graphs that have essentially different
Markov structures and hence improves ‘irreducibility’.

To keep track of the number of DAGs within an equivalence class, the following
modification of the MC3 algorithm may be used:
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1. Start with an empty graph.

2. It is required to store M(t) for each t = 1, . . . , N (where N is the length of the
Markov chain that is to be run) and at each stage it is required to store each DAG
for which M(t) is the essential graph.

3. For l = 1, . . . , 1
2d(d − 1)(d − 2) (where d is the number of nodes) do:

(a) Choose a triple of nodes (Xi,Xj ,Xk) where i < k, i 
= j , j 
= k at random,
among the triples that have not been chosen before in the current cycle.

(b) Consider all 16 possibilities of (Fij , Fjk) (defined above) when applied to the
essential graph and record those for which the new graph is an essential graph.
For each of those that is an essential graph, apply each of the possible directed
edge arrangements corresponding to (Fij , Fjk) (exactly one if both Fij and
Fjk contain either no edge or a directed edge, two if one of them contains
an undirected edge and the other either no edge or a directed edge and four
if both of them contain undirected edges) and retain those that are directed
acyclic graphs. This keeps track of the DAGs in the equivalence class.

(c) For E0, . . . , E16, set xk = 0 if Ek is not a chain graph. Otherwise, choose
a directed acyclic graph Dk within the equivalence class and compute xk =
n(k)pX|E(x|Dk), where n(k) is the number of DAGs in the equivalence class
of Ek and pX|E(Dk|x) is computed using Equation (6.1).

(d) Set
PE0,Ek

= xk∑15
m=0 xk

, k = 1, . . . , 15.

These are the one-step transition probabilities for moving from M(t) to M(t +
1).

4. M(t) is a Markov chain, but not time homogeneous, because the edges have not
been chosen in the same way at each stage. But Nn = M(n

2 d(d − 1)(d − 2)+ k)

is a time homogeneous Markov chain for any choice of k ∈ {0, . . . , 1
2d(d − 1)(d −

2)− 1}. The whole sequence M(t) : t = 1, 2, 3, . . . , N may be taken to compute
the estimate for the graph structure.

The (MC)3 algorithm is computationally expensive, because it has to check whether each
graph is an essential graph. The (AMC)3 algorithm introduced by D. Madigan, S.A.
Andersson and M.D. Perlman [87] makes more use of the graph structure in an attempt
to reduce the computational complexity. Details are found in [87].

The number of DAGs per equivalence class was investigated by Pẽna in [104]. There
does not exist a general method for exact computation of this; Pẽna develops Markov
chain Monte Carlo techniques to estimate numbers of DAGs in an equivalence class in
some situations.

6.5 Women in mathematics

The following example is taken from [87], concerning the attitudes of New Jersey high
school students towards mathematics. The (MC)3 algorithm applied to the ‘Women in
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B E C

A D F

Figure 6.7 Essential graph for the ‘Women in Mathematics’ data, produced by AMC3

algorithm.

Mathematics’ data given below returned the graph shown in Figure 6.7. It was well known
that female students of high school age tended to take fewer mathematics courses than
males. The Woman and Mathematics (WAM) Secondary School Lectureship Programme
was designed both to encourage more interest in mathematics by females and to show
‘positive role models’1 by presenting lectures, all given by women in the mathematical
sciences. A survey was carried out to evaluate one aspect of the WAM lectures. A total of
1190 students at eight high schools (four urban and four suburban) responded to a ques-
tionnaire inquiring about attitudes towards mathematics achievement and related topics.
Although care was taken both in the selection of schools and in the assignment of students
to either attendance or non attendance of lectures, this was not a formal experiment. The
variables were: A – lecture attendance, B – gender, C – school type (suburban or urban),
D – ‘I’ll need mathematics in my future work’ (agree/disagree), E – subject preference
(mathematical science/liberal arts), F – future plans (higher education/immediate job).
The data obtained is given in Table 6.1, which may be found in [105]; the data is taken
from [106].

This is an example with six variables, each binary, which may be implemented in
MATLAB, using the algorithms outlined in the chapter; the computational requirements
for a complete search are not too demanding.

The following results were obtained using a Markov chain Monte Carlo approaches.
The essential graph selected by the Augmented Markov chain Monte Carlo model com-
position scheme, known as AMC3, is given in Figure 6.7. Note that this graph has two
connected components; one component containing the variable A (whether or not the

Table 6.1 Data for ‘Women in Mathematics’. Source: C.B. Lacampagne (1979) [106].

suburban urban
school gender female male female male

lecture y n y n y n y n

future preference ‘need mathematics’
college mathematical y 37 27 51 48 51 55 109 86

n 16 11 10 19 24 28 21 25
arts y 16 15 7 6 32 34 30 31

n 12 24 13 7 55 39 26 19
job mathematical y 10 8 12 15 2 1 9 5

n 9 4 8 9 8 9 4 5
arts y 7 10 7 3 5 2 1 3

n 8 4 6 4 10 9 3 6

1 A person who serves as a model in a particular behavioural or social role for another person to emulate.
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B E C

A D F

Figure 6.8 Moral graph for the ‘Women in Mathematics’ data, produced by an McMC
algorithm.

students heard a lecture) and the other component containing the variables B,C, D, E

and F .
This example illustrates that the optimal graph will not be connected if two sets of

variables are independent of each other. The algorithm gives a graph where the variable
A (lecture attendance) is independent of all the other variables in the model. The essential
graph indicates that C ⊥ D, but that C 
⊥ D|F .

The Markov chain Monte Carlo algorithm, introduced by J. Corander and T. Koski
[107], returns the moral graph . It is computationally less expensive and therefore can be
applied to larger sets of variables. The graph returned using this algorithm is given in
Figure 6.8. It is the moral graph corresponding to the graph in Figure 6.7.

Notes The Cooper-Herskovitz likelihood is taken from [95]. Statistical learning of
graphical models from databases has been extensively discussed both in the computer
science and statistics literature. Generally, the vast number of existing works agree on
the main challenges related to such tasks, first of which is the super-exponential increase
in the number of potential model structures as a function of the number of nodes, and
the second obstacle being the equivalence of statistical models determined by different
networks. The equivalence of Bayesian networks creates a set of equivalence classes in
the space of DAGs. This constitutes a difficulty for efficiency of algorithms for structure
learning, as an algorithm may be wasting resources searching within an equivalence class.
For a study and references in this topic, the reader is referred to [107]. The Chow-Liu tree
is taken from [99] and the robotics experiment is taken from [102]. The maximum min-
imum hill climbing algorithm is found in [103]. The treatise [89] contains an advanced
treatment of the learning of graph structures and several new concepts for this.
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6.6 Exercises: Learning the graph structure
1. Consider the DAGs in Figure 6.9. For each DAG in the figure, find all the equivalent

DAGs. and find the essential graph for the equivalent graphs.

B

A D

C

B

A D

C

B

A D

C

B

A D

C

Figure 6.9 Four DAGs (see Exercise 1).

2. Consider a collider connection A→ B ← C. Is this an essential graph? List all
the essential graphs on three variables. List all the graphs that may be obtained by
altering one edge of the graph A→ B ← C through either adding or removing a
directed edge or an undirected edge, or from directing an undirected edge, or from
‘un-directing’ a directed edge. Which of these graphs are essential graphs?

3. a(a) Let φ(θj.l , αj.l) denote the Dirichlet density Dir(αj1l , . . . , αjkj l). By performing
the required integration, prove that the likelihood function for the graph structure,
defined by

pX|E(x|E) =
∫ n∏

k=1

pX(k)|�,E(x(k)|θ, E)

d∏
j=1

qj∏
l=1

φ(θj.l , αj.l)dθj.l

is given by

pX|E(x|E) =
d∏

j=1

qj∏
l=1

�(
∑kj

i=1 αjil)

�(n(π
(l)
j )+∑kj

i=1 αjil)

kj∏
i=1

�(n(x
(i)
j |π(l)

j )+ αjil)

�(αjil)
.

In your answer, state clearly the meaning of all the notation. You may use the
identity: for any a1 > 0, . . . , an > 0,
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∫ 1

0

∫ 1−θ1

0
. . .

∫ 1−(θ1+...+θn−2)

0

n−1∏
j=1

θ
aj−1
j


×
1−

n−1∑
j=1

θj

an−1

dθn−1 . . . dθ1 =
∏n

j=1 �(aj )

�(
∑n

j=1 aj )
.

(b) What parameters αj.l are used if a uniform prior is taken on every θj.l? What does
this give for the Cooper-Herskovitz likelihood? You may use �(n) = (n− 1)!.

4. Chow-Liu Tree: MATLAB exercise. Generate three columns, c1, c2 and c3, each
containing random samples of 50 Be(1/2) observations. Here Be(1/2) means
Bernoulli trials, returning 0 with probability 1/2 and 1 with probability 1/2.
Let c4 = c1+ c2 and let c5 = c3+ c4. Implement the Kruskal algorithm on the
variables c1, c2, c3, c4, c5 and see which edges are chosen.

5. Chow-Liu Tree: MATLAB exercise. Download the data set from the URL address
http://archive.ics.uci.edu/ml/machine-learning-databases/zoo/zoo.data
A description of the data is found at the address http://archive.ics.uci.edu/ml/datasets/
Zoo

The data set presents animal attributes: hair type, feather type, egg type, milk
type; whether it is airborne, aquatic, a predator; has teeth, has a backbone, breathes,
is venomous, has fins, legs, tail; is domestic, or cat-size. The last variable is a
classification of the type of animal.
Firstly, compute the estimated probability distribution for the 17 variables, assum-
ing that they are independent. What is the Kullback-Leibler distance between the
empirical distribution and the estimate using the independence model? Secondly,
use MATLAB to perform Kruskal’s algorithm, to determine the optimal Chow-Liu
tree. Calculate the estimated probability distribution, assuming that the distribution
factorizes according to the Chow-Liu tree. Calculate the Kullback-Leibler distance
between this estimate and the empirical probability distribution.

6. The K2 structural learning algorithm allows each variable to have at most four
parents. It starts with an ordering of the nodes and, working through each node,
chooses the best parents for that node, out of the nodes with a lower order, up to
maximum of four parents. Write a MATLAB code to implement this on the ‘zoo’
data set.

There are 17! � 3.56× 1014 ways to choose an ordering for the nodes. It is clearly
not feasible to try all of them. Choose 100 at random. Compute the estimates of the
probability distribution assuming that it may be factorized along the resulting trees.

Does the K2 algorithm give a significantly better approximation than the Chow-Liu
tree?

7. Write a MATLAB code to implement an MMPC (Maximum Minimum Parents Chil-
dren Algorithm) on the zoo data set. Next, try to implement the Maximum Minimum



194 EXERCISES: LEARNING THE GRAPH STRUCTURE

Hill Climbing algorithm to find the graph structure. Is the resulting factorization sig-
nificantly better than the factorizations obtained using the K2 algorithm or Chow-Liu
algorithm? Use the Kullback-Leibler distance and an appropriate χ2 test.

8. Download the Bayes Nets Toolbox for MATLAB from http://www.cs.ubc.ca/
∼murphyk/Software/BNT/bnt.html and see what results it gives for structure
learning with the ‘zoo’ data set.

9. Women in Mathematics The ‘Women in Mathematics’ data provides an example
on six variables to which the algorithms presented in the chapter may be applied.

(a) Write a MATLAB code to establish the complete set of conditional independence
statements of the form X ⊥ Y or X ⊥ Y |Z that seem to be supported by the data.

The independence statements are obtained by computing for all variables
(X, Y,Z) p̂X, p̂X,Y , p̂X,Y |Z . Since there are multiple hypothesis tests, the nom-
inal significance level may be much lower than the true significance level, but
we will ignore that problem in this example. Since all the variables are binary,
the data supports the assertion X 
⊥ Y if

Î (X, Y ) :=
∑
x,y

p̂X,Y log
p̂X,Y (x, y)

pX(x)pY (y)
>

1

2
χ1(0.95)

(where the nominal significance level for each test is 5%) and the data supports
the assertion X 
⊥ Y |Z if

Î (X, Y |Z = z) :=
∑
x,y

p̂X,Y |Z log
p̂X,Y |Z(x, y|z)

pX|Z(x|z)pY |Z(y|z) >
1

2
χ1(0.95)

for either of z.
This is a ‘toy’ example, on only six binary variables. The conditional inde-
pendence relations from conditioning only on no variables or a single vari-
able, illustrates that the algorithm is unworkable in practice. There are already
6× 5+ 6× 5× 4× 2 = 270 tests required to establish only those conditional
independence relations that involve conditioning on zero or one variable.

(b) Write a MATLAB code that implements the following steps:

• For each pair (X, Y ), add an undirected edge 〈X, Y 〉 if either X 
⊥ Y or if
there is a node Z 
= X or Y such that X 
⊥ Y |Z.

• For each (X, Y ), determine the sets

S(X, Y ) = {Z | X ⊥ Y |Z}.
• For each pair X, Y such that X 
∼ Y , determine whether there is a node Z

such that X ∼ Z and Y ∼ Z and Z 
∈ S(X, Y ). If there is such a node, then
direct the edges X → Z and Y → Z, so that Z is a collider node.

(c) Does the algorithm SUCCEED or FAIL? If it succeeds, is the graph in Figure 6.7
obtained?
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10. In MATLAB, implement the Minimum Maximum Parent Child and Minimum Max-
imum Hill Climbing algorithms on the ‘Women in Mathematics’ data.

11. In MATLAB, implement a Markov chain Monte Carlo algorithm on the ‘Women in
Mathematics’ data set, where the search space is the space of directed acyclic graphs.
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Parameters and sensitivity

Having specified the structure of a Bayesian network and the conditional probability
potentials, the parameters of the network are the conditional probability values (θjil)

kj

i=1
defined by Equation (5.5), or the update by Equation (5.6) if there is a data base of
instantiations. These satisfy the condition 0 ≤ θjil ≤ 1 for all (j, i, l) and the constraints∑kj

i=1 θjil = 1 for each (j, l), so that for each j, l variable/parent configuration, there are
kj − 1 free parameters.

In many practical applications, the full parameter set is too large for efficient updating.
There are several ways to approach this problem. In Chapter 6, methods to find a reduced
DAG (for example, the Chow-Liu tree) that describes the network adequately were dis-
cussed. In some situations there may be modelling constraints that make it inappropriate to
remove any of the directed edges to assist computation. Instead, it may be appropriate to
parametrize the conditional probabilities (θjil)

kj

i=1 by a set of parameters (t
(j l)

1 , . . . , t
(j l)
mjl

)

where mjl ≤ kj − 1 which model the conditional probability distributions as functions of
these parameters; θjil(t

(j l)

1 , . . . , t
(j l)
mjl

). There are other situations where it may be appro-
priate to reduce the graph and parametrize the conditional probability potentials for the
reduced graph.

After a suitable parametrization, a set of queries (defined in Section 3.3) may be
processed and the parameters adjusted until the response of the Bayesian network to the
test queries is in line with any constraints that are to be imposed.

Having parametrized the network in a suitable way, sensitivity analysis aims to
describe changes in the network associated with small changes in parameter values.

The sensitivity of the network to the parameters strongly influences the accuracy and
rates of convergence of numerical methods for estimating probability values associated
with a Bayesian network.

Bayesian Networks: An Introduction T. Koski, J. Noble
 2009 John Wiley & Sons, Ltd
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7.1 Changing parameters in a network

There are several types of parameter change that can be made. The simplest is where
there is one free parameter under consideration. Alternatively, a single CPP may be
varied. That is, all probabilities in one of the CPPs (conditional probability potentials),
using the notation given by Equation (5.5) may be varied subject to the constraint that∑kj

i=1 θjil = 1, while the other CPPs are kept fixed. A query constraint may be satisfied
more efficiently if several of the CPPs are varied. The problem may be reduced using
proportional scaling techniques, where the entries of a CPP depend linearly on a single
parameter.

As usual, let �j denote the parent set for variable j and let π
(l)
j denote configuration

l of the parent set for variable j .

Definition 7.1 (Proportional Scaling Property) A Bayesian network satisfies the propor-
tional scaling property if for each conditional probability distribution θj.l , where θjil =
p(Xj = x

(j)

i |�j = π
(j)

l ), there is a parameter t (j l) such that

pXj |�j
(.|π(j)

l ) = (αj1l + βj1l t
(j l), . . . , αjkj l + βjkj l t

(j l)),

where
∑kj

m=1 αjml = 1 and
∑kj

m=1 βjml = 0.

Theorem 7.1 Let BN be a Bayesian network over a collection of variables U . Let t

be a single parameter and let e be a collection of hard evidence potentials (Definition
3.1) entered into the BN; p(e) the probability that this evidence is obtained. Assuming
proportional scaling in that single parameter, then

p(e)(t) = αt + β

for two constants α and β.

Proof of Theorem 7.1 Let X = {X1, . . . , Xd}. Let pXj |�j
(.|π(l)

j ) denote the conditional
probability distribution with parameter t . Let the evidence potentials be e = (e1, . . . , em).
Recall that the (ek)

m
k=1 are potentials containing 1s and 0s and recall the notation: for

j = 1, . . . , d , variable Xj takes values in state space Xj = (x
(1)
j , . . . x

(kj )

j ) and X takes
values in state space X = X1 × · · · × Xd . Recall the notation

pX;e = pX

m∏
k=1

ek,

where pX is the joint probability potential of X and multiplication is taken in the sense
of multiplication of potentials (Definitions 2.23, 2.25 and 2.26). Then

p(e) =
∑
x∈X

pX;e =
∑
x∈X

pXj |�j

∏
k 
=j

pXk |�k

m∏
l=1

el. (7.1)



CHANGING PARAMETERS IN A NETWORK 199

It is clear from the definition of proportional scaling, and from Equation (7.1), that t

enters linearly. It therefore follows that

p(e)(t) = αt + β.
�

Because the event ‘{A = a}’ can be treated as hard evidence, it follows that p({A = a}, e)
is also a linear function in t , say p({A = a}, e) = γ t + δ. It follows that

p({A = a}|e)(t) = p({A = a}, e)
p(e)

= γ t + δ

αt + β
.

Example 7.1 Consider the Bayesian network called Fire.1 The model is shown in
Figure 7.1.

The network models the scenario of whether or not there is a fire in the building. Let
F denote ‘fire’, T denote ‘tampering’, S ‘smoke’, A ‘alarm’, L ‘leaving’ and R ‘report’.
Now consider the following evidence e = {report = true, smoke = false}. That is, the
fire department receives a report that people are evacuating the building, but no smoke is
observed. This evidence should make it more likely that the fire alarm has been tampered
with than that there is a real fire. Let t denote ‘true’ and f denote ‘false’. Suppose that
the CPPs for this network are given by

pF = t f

0.01 0.99
, pT = t f

0.02 0.98
,

pR|L =
L\R t f

t 0.75 0.25
f 0.01 0.99

pS|F =
F \S t f

t 0.9 0.1
f 0.01 0.99

, pL|A =
A\L t f

t 0.88 0.12
f 0.001 0.999

Fire tamper

smoke alarm

leaving report

Figure 7.1 The DAG for the Bayesian Network ‘Fire’.

1 This Bayesian network is distributed with the evaluation version of the commercial HUGIN Graphical
User Interface, by HUGIN Expert.
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pA|F,T (t |., .) =
F \T t f

t 0.5 0.99
f 0.85 0.0001.

Here,

pT (t |e) = pT,R,S(t, t, f )

pR,S(t, f )
.

Using the notation XZ to denote the state space of a variable Z,

pT,R,S(t, t, f ) = pT (t)
∑
XL

pR|L(t |.)
∑
XA

pL|A
∑
XF

pA|T ,F (.|t, .)pS|F (f |.)pF

and
pR,S(t, f ) =

∑
XT

pT

∑
XL

pR|L(t |.)
∑
XA

pL|A
∑
XF

pA|T ,F pS|F (f |.)pF .

Similarly,

pF (t |e) = pF,R,S(t, t, f )

pR,S(t, f )
,

and

pF,R,S(t, t, f ) = pF (t)pS|F (f |t)
∑
XT

pT

∑
XA

pA|T ,F (.|., f )
∑
XL

pL|ApR|L(t|.)

The computations are straightforward and give

pT (t |e) = 0.501, pF (t|e) = 0.0294.

Suppose that it is known from experience that the probability that the alarm has been
tampered with should be no less than 0.65 given this evidence. The network should
therefore be adjusted to accommodate. It is simplest to try changing only one network
parameter. Suppose that the potential pT is to be adjusted. Let θ = pT (t). Let

α =
∑
XL

pR|L(t |.)
∑
XA

pL|A
∑
F

pA|T ,F (.|t, .)pS|F (f |.)pF

so that
p({T = t}, e) = pT,R,S(t, t, f ) = θα

and
β =

∑
XL

pR|L(t |.)
∑
XA

pL|A
∑
XF

pA|T ,F (.|f, .)pS|F (f |.)p(.),

so that
p(e) = pR,S(t, f ) = θα + (1− θ)β.

Then α and β may be computed numerically and

pT (t |e) = p({T = t}, e)
p(e)

= αθ

(α − β)θ + β
.
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The solution to the equation
αθ

(α − β)θ
= 0.65

is θ = 0.0364.
Similarly, let ψ = pR|L(t |t). Keeping all other potentials fixed, pT (t|e) may be com-

puted as a function of ψ and the equation pT (t |e)(ψ) = 0.65 has solution ψ = 0.00471.
For all other single parameter adjustments, the equation does not have a solution

in the interval [0, 1]. Therefore, if only one parameter is to be adjusted, the constraint
p({tampering = t}|e) = 0.65 can be dealt with in either of the following two ways:

1. Increase pT (t) from 0.02 to greater than 0.0364, or

2. Decrease the probability of a false report, given that there is an evacuation, from
0.01 to less than 0.00471.

It turns out for this example that it is not possible to enforce the desired constraint by
adjusting a single parameter in any of the CPPs of the variables fire, smoke, alarm and
leaving .

7.2 Measures of divergence between probability
distributions

In the ‘fire’ example, two suggestions were made for changing the parameters to accom-
modate the constraint. Firstly, it was proposed to raise θ from 0.02 to 0.0364, an increase
of 0.0164, or a factor of 1.82. The other possibility for a single parameter adjustment
was to reduce ψ from 0.01 to 0.00471. That is a difference of 0.00529, or a factor of
0.471 = 1

2.12 . Clearly, the magnitude of the adjustment will depend on the way that the
divergence between two probability distributions is computed.

A distance is a more specific measure of divergence, which satisfies the properties
given in the following definition.

Definition 7.2 (Distance) A measure of divergence d between probability distributions is
a distance if it satisfies the following three properties: for any three probability distribu-
tions p1, p2 and p3 over the same space X = (x1, . . . , xk),

• Positivity: d(p1, p2) ≥ 0. Furthermore, d(p1, p2) = 0 ⇔ p1 ≡ p2

• Symmetry: d(p1, p2) = d(p2, p1)

• Triangle Inequality: d(p1, p3) ≤ d(p1, p2)+ d(p2, p3).

Consider two common measures of divergence between probability distributions. Let p

and q be two probability distributions over the same finite state space X = (x1, . . . , xk)

(Definition 1.2) and let pj = p({xj }) and qj = q({xj }) for j = 1, . . . , k. The familiar
quadratic or Euclidean distance is defined as

d2(p, q) =
√√√√ k∑

j=1

(pj − qj )2.
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The Kullback-Leibler divergence between two probability distributions p and q over the
same state space X is defined in Definition 5.4. In this case, it may be written as

dKL(p|q) =
k∑

j=1

pj log
pj

qj

.

The Kullback-Leibler divergence is not a distance in the sense of Definition 7.2; it does
not, in general, satisfy dKL(p|q) = dKL(q|p). Let p(1) = (0.02, 0.98), q(1) = (0.0364,

0.9636), p(2) = (0.01, 0.99), q(2) = (0.00471, 0.99529). Then

d2(p
(1), q(1)) =

√
(0.02− 0.0364)2 + (0.98− 0.9636)2 = 0.0232

d2(p
(2), q(2)) =

√
(0.00471− 0.01)2 + (0.99529− 0.99)2 = 0.00748,

so the change represented by the second adjustment is less than one third of the change
represented by the first if the change is measured using the quadratic distance measure.

dKL(p(1)|q(1)) = 0.02 log
0.02

0.0364
+ 0.98 log

0.98

0.9636
= 0.004562,

dKL(p(2)|q(2)) = 0.01 log
0.01

0.00471
+ 0.99 log

0.99

0.99529
= 0.00225,

so the change represented by the second adjustment is approximately one half of the
change represented by the first. Clearly, different distance measures give different impres-
sions of the relative importance of parameter changes. Furthermore, it is important to have
a reference point ; for example, if the Kullback-Leibler distance is being used, it is useful
to know what a particular value of the Kullback-Leibler distance means in terms of a
well known family of distributions.

7.3 The Chan-Darwiche distance measure

The problem with both the Kullback-Leibler and the quadratic distance measure is that
they do not emphasize the proportional difference between two probability values when
they are close to zero. In [66], the following distance measure is proposed.

Definition 7.3 (Chan-Darwiche Distance) Let p and q be two probability functions over
a finite state space X. That is, p : X→ [0, 1] and q : X→ [0, 1],

∑
x∈X p(x) = 1 and∑

x∈X q(x) = 1. The Chan-Darwiche distance is defined as

DCD(p, q) = log max
x∈X

q(x)

p(x)
− log min

x∈X
q(x)

p(x)
,

where, by definition, 0
0 = 1 and +∞

+∞ = 1. If p and q are two probability distributions
(Definition 1.2) over a finite state space X, then the Chan-Darwiche distance is defined
as DCD(p, q), where p and q are taken as the probability functions in Definition 1.3.

Unlike the Kullback-Leibler divergence, the Chan-Darwiche distance is a distance; it
satisfies the three requirements of Definition 7.2.
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The support of a probability function defined on a finite state space; namely, those
points where it is strictly positive (relating to outcomes that can happen) is important
when comparing two different probability functions over the same state space.

Definition 7.4 (Support) Let p be a probability function over a countable state space X;
that is, p : X→ [0, 1] and

∑
x∈X p(x) = 1. The support of p is defined as the subset

Sp ⊆ X such that

Sp = {x ∈ X|p(x) > 0}. (7.2)

Theorem 7.2 The Chan-Darwiche distance measure is a distance measure, in the sense
that for any three probability functions p1, p2, p3 over a state space X, the following three
properties hold:

• Positivity: DCD(p1, p2) ≥ 0 and DCD(p1, p2) = 0 ⇔ p1 ≡ p2.

• Symmetry: DCD(p1, p2) = DCD(p2, p1)

• Triangle Inequality: DCD(p1, p2)+DCD(p2, p3) ≥ DCD(p1, p3).

Proof of Theorem 7.2 Positivity and symmetry are clear (Exercise 2). It only remains
to prove the triangle inequality. Since the state space is discrete and finite, it follows that
there exist y, z ∈ X such that

DCD(p1, p3) = log max
x∈X

p3(x)

p1(x)
− log min

x∈X
p3(x)

p1(x)
= log

p3(y)

p1(y)
− log

p3(z)

p1(z)

= log
p3(y)

p2(y)
+ log

p2(y)

p1(y)
− log

p3(z)

p2(z)
− log

p2(z)

p1(z)

=
(

log
p3(y)

p2(y)
− log

p3(z)

p2(z)

)
+
(

log
p2(y)

p1(y)
− log

p2(z)

p1(z)

)
≤
(

log max
x∈X

p3(x)

p2(x)
− log min

x∈X
p3(x)

p2(x)

)
+
(

log max
x∈X

p2(x)

p1(x)
− log min

x∈X
p2(x)

p1(x)

)
= DCD(p1, p2)+DCD(p2, p3).

�

This distance is relatively easy to compute. It has the advantage over the Kullback-Leibler
divergence (which is not a true distance measure) that it may be used to obtain bounds
on odds ratios .

Example 7.2: The Chan-Darwiche distance between two multivariate bernoulli
distributions Consider d independent Bernoulli trials, X = (X1, . . . , Xd), where the
‘success’ probabilities for each trial may differ. The distribution of the random vector X

is known as a multivariate Bernoulli distribution . This example considers the distance
between two multivariate Bernoulli distributions where the ‘success’ probabilities for
the two distributions are given by the vectors p = (p1, . . . , pd) and q = (q1, . . . , qd)

respectively. From this, the Chan-Darwiche distance between two different models
for tossing the thumb-tack (Section 5), and the Chan-Darwiche distance between two
(univariate) Bernoulli distributions may be derived.
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Let X be the binary hypercube; that is, X = {0, 1}d and let x ∈ X denote an element
in X. Then x = (xi)

d
i=1, where xi ∈ {0, 1}. Let q and p be two multivariate Bernoulli

probability functions over X. That is, q : X→ [0, 1] and p : X→ [0, 1] are defined such
that each x ∈ X,

q
(
x
) = d∏

i=1

q
xi

i (1− qi)
1−xi

and

p
(
x
) = d∏

i=1

p
xi

i (1− pi)
1−xi

where, for this example, it is assumed that 0 < qi < 1 and 0 < pi < 1 (i.e. the inequalities
are strict) for all i ∈ {1, . . . , d}.

Thus, the likelihood ratio between q and p is well defined and is given by

LR
(
x
) = q

(
x
)

p
(
x
) = d∏

i=1

(
qi

pi

)xi
(

1− qi

1− pi

)1−xi

. (7.3)

For each i ∈ {1, . . . , d}, let mi be defined as

mi =
{

1 if qi
pi
≥ 1−qi

1−pi

0 otherwise.
(7.4)

Then m = (mi)
d
i=1 ∈ X and, by construction, it follows from Equation (7.3) that for all

x ∈ X,

LR
(
x
) ≤ LR

(
m
) = d∏

i=1

max

(
qi

pi

,
1− qi

1− pi

)
. (7.5)

Next let m̄ be the binary complement of m defined by Equation (7.4). That is, for each
i ∈ {1, . . . , d}, m̄i = 1−mi , giving m̄i = 0, if mi = 1 and m̄i = 1 if mi = 0. Then it
holds that

LR
(
x
) ≥ LR

(
m̃
) = d∏

i=1

min

(
qi

pi

,
1− qi

1− pi

)
. (7.6)

It now follows from the definition of the Chan-Darwiche distance measure (Definition
7.3) and Equations (7.5) and (7.6) that

DDC(p, q) = log LR
(
m
)− log LR

(
m̃
)

=
d∑

i=1

log
max

(
qi

pi
,

1−qi

1−pi

)
min

(
qi

pi
,

1−qi

1−pi

) . (7.7)
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For i such that mi = 1 it clearly holds that

max
(

qi

pi
,

1−qi

1−pi

)
min

(
qi

pi
,

1−qi

1−pi

) = qi

pi

1−qi

1−pi

= Oq,i

Op,i

,

where O denotes the odds;

Oq,i = qi

1− qi

, Op,i = pi

1− pi

.

Similarly for i such that mi = 0 it holds that

max
(

qi

pi
,

1−qi

1−pi

)
min

(
qi

pi
,

1−qi

1−pi

) = Op,i

Oq,i

,

from which it follows that

DDC(p, q) =
d∑

i=1

log max

(
Oq,i

Op,i

,
Op,i

Oq,i

)
. (7.8)

The expression in Equation (7.8) gives two interesting special cases.

1. Let qi = q and pi = p for all i, and 0 < q < 1 and 0 < p < 1. This corresponds,
for example, to d tosses of a thumb-tack when considering two different probabil-
ities of head for tosses that are conditionally independent given this parameter. In
this case,

q
(
x
) = qk (1− q)d−k , p

(
x
) = pk (1− p)d−k ,

where k is the number of digital ones in x. By Equation (7.8)

DDC(p, q) = d log max

(
Oq

Op

,
Op

Oq

)
, (7.9)

with obvious definitions of the odds. If, say, Oq

Op
>

Op

Oq
, then

DDC(p, q) = d
(
log Oq − log Op

)
,

which is a fairly neat formula.

2. Furthermore, taking d = 1 in the preceding gives the special case

DDC(p, q) = log max

(
Oq

Op

,
Op

Oq

)
, (7.10)

This is the Chan-Darwiche distance between the Bernoulli distributions Be (q) and
Be (p). �



206 PARAMETERS AND SENSITIVITY

Example 7.3: Chan-Darwiche distance for a fork with binary variables Let
(X, Y, Z) be three binary variables, each with state space {0, 1}, that satisfy X ⊥ Y |Z,
so that their probability distribution may be factorized along a fork:

pX,Y,Z = pZpX|ZpY |Z. (7.11)

Five parameters are required to specify the joint distribution:

θX|1 = pX|Z(1|1), θX|0 = pX|Z(1|0), θY |1 = pY |Z(1|1), θY |0 = pY |Z(1|0), θZ = pZ(1).

Assume that all of these probabilities lie strictly between zero and one. Then the factor-
ization in Equation (7.11) may be written

pX,Y,Z (x, y, z) = pa · pb,

where

pa =
[(

θx
X|1(1− θX|1)1−x

) (
θ

y

Y |1(1− θY |1)1−y
)

θZ

]z ∀(x, y, z) ∈ {0, 1}3

and

pb =
[(

θx
X|0(1− θX|0)1−x

) (
θ

y

Y |0(1− θY |0)1−y
)

(1− θZ)
]1−z ∀(x, y, z) ∈ {0, 1}3.

Let qX,Y,Z be another joint probability function where X ⊥ Y |Z, that may be factorized
qX,Y,Z = qZqX|ZqY |Z . Then qX,Y,Z may be written as

qX,Y,Z (x, y, z) = qa · qb,

where, analogously

qa =
[(

ψx
X|1(1− ψX|1)1−x

) (
ψ

y

Y |1(1− ψY |1)1−y
)

ψZ

]z ∀(x, y, z) ∈ {0, 1}3

and
qb =

[(
ψx

X|0(1− ψX|0)1−x
) (

ψ
y

Y |0(1− ψY |0)1−y
)

(1− ψZ)
]1−z

.

Assume that all these probabilities lie strictly between zero and one, so that p and q have
the same support. Then

LR (x, y, z) = qa · qb

pa · pb

(7.12)

For i = 0, 1, set

OX|Z=i
q = ψX|i

1− ψX|i
, OX|Z=i

p = θX|i
1− θX|i

and
OY |Z=i

q = ψY |i
1− ψY |i

, OY |Z=i
p = θY |i

1− θY |i
.
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Then, following the same procedure as in the example above,

LR (x, y, z) ≤ Az · B1−z ≤ max (A, B) . (7.13)

where

A = max

(
O

X|Z=1
q

O
X|Z=1
p

,
O

X|Z=1
p

O
X|Z=1
q

)
·max

(
O

Y |Z=1
q

O
Y |Z=1
p

,
O

Y |Z=1
p

O
Y |Z=1
q

)
· ψZ

θZ

B = max

(
O

X|Z=0
q

O
X|Z=0
p

,
O

X|Z=0
p

O
X|Z=0
q

)
·max

(
O

Y |Z=0
q

O
Y |Z=0
p

,
O

Y |Z=0
p

O
Y |Z=0
q

)
·
(

1− ψZ

1− θZ

)
.

Note that these inequalities determine one (or several) of the eight configurations (x, y, z)

to maximize LR (x, y, z). Similarly, using the method of the example above,

LR (x, y, z) ≥ Cz ·D1−z ≥ min (C,D) , (7.14)

where

C = min

(
O

X|Z=1
q

O
X|Z=1
p

,
O

X|Z=1
p

O
X|Z=1
q

)
·min

(
O

Y |Z=1
q

O
Y |Z=1
p

,
O

Y |Z=1
p

O
Y |Z=1
q

)
· ψZ

θZ

,

D = min

(
O

X|Z=0
q

O
X|Z=0
p

,
O

X|Z=0
p

O
X|Z=0
q

)
·min

(
O

Y |Z=0
q

O
Y |Z=0
p

,
O

Y |Z=0
p

O
Y |Z=0
q

)
·
(

1− ψZ

1− θZ

)
.

In other words, the Chan-Darwiche distance between the two distributions factorized
along the fork is

DDC(p, q) = log max (A,B)− log min (C,D) . �

Theorem 7.3 Let p and q be two probability distributions (Definition 1.2) over the same
finite state space X and let A and B be two subsets of X. Let Ac = X\A and Bc = X\B.
Let Op(A|B) = p(A|B)

p(Ac |B)
and Oq(A|B) = q(A|B)

q(Ac|B)
. Then

e−DCD(p,q) ≤ Oq(A|B)

Op(A|B)
≤ eDCD(p,q).

The bound is sharp in the sense that for any pair of distributions (p, q) there are subsets
A and B of X such that

Oq(A|B)

Op(A|B)
= exp{DCD(p, q)}, Oq(A

c|B)

Op(Ac|B)
= exp{−DCD(p, q)}.

Proof of Theorem 7.3 Recall Definitions 1.2 and 1.3. Without loss of generality, it
may be assumed that p and q have the same support; that is, p(x) > 0 ⇔ q(x) > 0.
Otherwise DCD(p, q) = +∞ and the statement is trivially true; for any A, B ⊆ X, 0 ≤
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Oq(A|B)

Op(A|B)
≤ +∞. For p and q such that p and q have the same support, let r(x) = q(x)

p(x)
.

For any two subsets A, B ⊆ X,

Oq(A|B)

Op(A|B)
= q(A|B)

1− q(A|B)

1− p(A|B)

p(A|B)
= q(AB)

q(AcB)

p(AcB)

p(AB)
=
∑

x∈AB q(x)∑
x∈AcB q(x)

∑
x∈AcB p(x)∑
x∈AB p(x)

=
∑

x∈AB r(x)p(x)∑
x∈AcB r(x)p(x)

∑
x∈AcB p(x)∑
x∈AB p(x)

≤ maxz∈X r(z)
∑

x∈AB p(x)

minz∈X r(z)
∑

x∈AcB p(x)

∑
x∈AcB p(x)∑
x∈AB p(x)

= maxz∈X r(z)

minz∈X r(z)
.

Similarly,
Oq(A|B)

Op(A|B)
≥ minz∈X r(z)

maxz∈X r(z)
.

From the definition of DCD(p, q), it follows directly that

eDCD(p,q) = maxz∈X r(z)

minz∈X r(z)
,

hence

e−DCD(p,q) ≤ Oq(A|B)

Op(A|B)
≤ eDCD(p,q),

as required. �
To prove that the bound is tight, consider x such that r(x) = maxz∈X r(z) and y such
that r(y) = minz∈X r(z). Set A = {x} and B = {x, y}. Then

Oq(A|B) = r(x)p(x)

r(y)p(y)
.

Since Op(A|B) = p(x)

p(y)
and eDCD(p,q) = maxz∈X r(z)

minz∈X r(z)
, it follows that

Oq(A|B)

Op(A|B)
= eDCD(p,q).

Similarly, let C = {y}, then

Oq(C|B)

Op(C|B)
= e−DCD(p,q). �

Theorem 7.3 may be used to obtain bounds on arbitrary queries q(A|B) for the measure
q in terms of p(A|B).

Corollary 7.1 Set d = DCD(p, q), then

p(A|B)e−d

1+ (e−d − 1)p(A|B)
≤ q(A|B) ≤ p(A|B)ed

1+ (ed − 1)p(A|B)
. (7.15)

Proof of Corrollary 7.1 This is straightforward and the details are left to the
reader. �
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7.3.1 Comparison with the Kullback-Leibler divergence
and euclidean distance

For binary variables, divergences are entirely characterized by the Kullback-Leibler mea-
sure. Consider two probability distributions p and q over {1, 2, 3} defined by

p(1) = a, p(2) = b − a, p(3) = 1− b

q(1) = ka, q(2) = b − ka, q(3) = 1− b

Then

DKL(p|q) = a log
1

k
+ (b − a) log

b − a

b − ka
= −a log k − (b − a) log

b − ka

b − a
.

Consider the events A = {1}, B = {1, 2}, then Op(A|B) = a
b−a

and Oq(A|B) = ka
b−ka

and the odds ratio is given by

Oq(A|B)

Op(A|B)
= k(b − a)

b − ka
.

As a → 0, DKL(p|q)→ 0, while Oq(A|B)

Op(A|B)
→ k. It is therefore not possible to find a

bound on the odds ratio in terms of the Kullback-Leibler divergence.
Similarly, in this example, the Euclidean distance is

d2(p, q) =
√

2a(1− k)
a→0−→ 0.

Neither the Kullback-Leibler divergence nor the Euclidean distance can be used to provide
uniform bounds on the odds ratios; even if there is a large relative difference between
pairs of probability values for p and q, they will be ignored if the absolute values of
these probabilities are small.

The Chan-Darwiche distance in terms of the bayes factor The Chan-Darwiche dis-
tance may be interpreted in terms of the Bayes factor , given in Definition 1.6. Recall that
for two probability distributions p and q over a state space X and two events A, B ⊆ X,
the Bayes factor is defined as

Fq,p(A;B) := q(A)/q(B)

p(A)/p(B)
. (7.16)

Recall the notation given in Definition 1.3. Note that

DCD(p, q) = log max
x,y∈X

Fp,q({x}, {y}).

Theorem 7.4 Let p and q be two probability distributions over the same state space X.
Let A and B be two events, then

e−DCD(p,q) ≤ Fq,p(A, B) ≤ eDCD(p,q).
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Proof of Theorem 7.4 This is similar to the proof of Theorem 7.3. Note that

Fq,p(A, B) = q(A)

q(B)

p(B)

p(A)
=
∑

x∈A q(x)∑
x∈B q(x)

∑
x∈B p(x)∑
x∈A p(x)

=
∑

x∈A r(x)p(x)∑
x∈B r(x)p(x)

∑
x∈B p(x)∑
x∈A p(x)

≤ maxz∈X r(z)
∑

x∈A p(x)

minz∈X r(z)
∑

x∈B p(x)

∑
x∈B p(x)∑
x∈A p(x)

= maxz∈X r(z)

minz∈X r(z)
.

Similarly, F(A, B) ≥ minz∈X r(z)

maxz∈X r(z)
and the result follows. �

7.3.2 Global bounds for queries

A key issue is to find bounds on the global effect of changing a parameter θjil; namely,
bounds on an arbitrary query p(A|B) where A and B are two events. The Chan-Darwiche
distance satisfies the following important property.

Theorem 7.5 Consider a Bayesian network, with probability distribution p. Suppose that
the DAG remains the same and the only change to the CPPs is that θj.l is changed to
θ̃j.l for variable j , parent configuration π

(l)
j , resulting in a new probability distribution q.

Then
dCD(p, q) = dCD(θj.l , θ̃j.l).

Proof of Theorem 7.5 This is straightforward from the construction. �

Corollary 7.2 Consider a DAG G and consider two probability distributions p and q

which factorize according to G. Suppose that q is obtained from p by changing θj.l to θ̃j.l

for one fixed (j, l), all other conditional probabilities remaining the same. Let π
(l)
j denote

parent configuration l for variable j and suppose that p({�j = π
(l)
j }) > 0. Then for any

two subsets A and B of X,

e−dCD(θj.l ,θ̃j.l ) ≤ Oq(A|B)

Op(A|B)
≤ e−dCD(θj.l ,θ̃j.l ).

Proof of Corollary 7.2 This follows directly from Theorem 7.5 and Theorem 7.3. �

One feature of the Chan-Darwiche distance measure is that it can be used to bound odds
ratios. Another important feature, following from Theorem 7.5 and Corollary 7.2 is that
if the probability measure is changed locally, only local computations are required to
obtain the Chan-Darwiche measure and to use this to bound changes in the values of
queries. This is not the case with the Kullback-Leibler divergence. If the same change is
applied to p to obtain q, then

dKL(p, q) = p({�j = π
(l)
j })dKL(θj.l , θ̃j.l).

This follows almost directly from the definition and is left as an exercise (Exercise 1).
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The optimality of proportional scaling Consider one of the conditional probability
distributions (θj1l , . . . , θjkj l) and suppose that θj1l is to be altered to a different value,
denoted by θ̃j l1. Under proportional scaling , the probabilities of the other states are
given by

θ̃j il = 1− θ̃j1l

1− θj1l

θj il .

Proportional scaling turns out to be optimal under the Chan-Darwiche distance measure.

Theorem 7.6 Consider a probability distribution p factorized according to a DAG G.
Suppose the value θj1l is changed to θ̃j1l . Among the class of probability distributions Q
factorized along G with q({Xj = x

(l)
j }|{�j = π

(l)
j }) = θ̃j1l , minq∈Q DCD(p, q) is obtained

for q such that θ̃a.b = θa.b for all (a, b) 
= (j, l) and

θ̃j il = 1− θ̃j1l

1− θj1l

θj il .

Under proportional scaling, the Chan-Darwiche distance is then given by

DCD(p, q) = | log θ̃j1l − log θj1l| + | log(1− θ̃j1l)− log(1− θj1l)|.

Proof of Theorem 7.6 Let p be a distribution that factorizes along a DAG G, with
conditional probabilities θaib = p(Xa = x

(a)
i |�a = π

(a)
b ). Let q denote the distribution

that factorizes along G, with conditional probabilities

θ̃aib = q({Xa = x(i)
a }|{�a = π(b)

a }),

where θ̃j1l is given,
θ̃aib = θaib (a, b) 
= (j, l)

and

θ̃j il = 1− θ̃j1l

1− θj1l

θj il i = 2, . . . , kj .

This is the distribution generated by the proportional scheme. Let r denote any other
distribution that factorizes along G with r({Xj = x

(1)
j }|{�j = π

(b)
j }) = θ̃j1b. The aim is

to prove that DCD(p, r) ≥ DCD(p, q).
If θj1l = 1 and θ̃j1l < 1, then there is a θ̃jkl > 0 with θjkl = 0 and it follows that

DCD(p, q) = DCD(p, r) = +∞.
If θj1l = 0 and θ̃j1l > 0, then it follows directly that DCD(p, q) = DCD(p, r) = +∞.
Consider 0 < θj1l < 1. Firstly, consider θ̃j1l > θj1l . Then

max
x∈X

q(x)

p(x)
= max

(
θ̃j1l

θj1l

,
1− θ̃j1l

1− θj1l

)
= θ̃j1l

θj1l

and

min
x∈X

q(x)

p(x)
= 1− θ̃j1l

1− θj1l

.
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Similarly, if θ̃j1l < θj1l , then maxx∈X q(x)

p(x)
= 1−θ̃j1l

1−θj1l
and minx∈X q(x)

p(x)
= θ̃j1l

θj1l
, so

DCD(p, q) = | log θ̃j1l − log θj1l| + | log(1− θ̃j1l)− log(1− θj1l)|.

Now consider any other distribution r with r({Xj = x
(1)
j }|{�j = π

(b)
j }) = θ̃j1b. It is clear,

from the factorization along the DAG that if θ̃j1l ≥ θj1l then maxx∈X r(x)
p(x)

≥ θ̃j1l

θj1l
and

minx∈X r(x)
p(x)

≤ 1−θ̃j1l

1−θj1l
; if θ̃j1l ≤ θj1l then maxx∈X r(x)

p(x)
≥ 1−θ̃j1l

1−θj1l
and minx∈X r(x)

p(x)
≤ θ̃j1l

θj1l
. In

all cases
DCD(p, q) ≤ DCD(p, r). �

7.3.3 Applications to updating

Sections 1.4.2 and 1.4.3 considered the problem of incorporating soft evidence and
proposed two methods, depending on the form in which the soft evidence was given:
‘Jeffrey’s rule’ and ‘Pearl’s method of virtual evidence’ respectively. The purpose of this
section is to obtain bounds on the distance between the original and updated measures
when these methods are applied.

Jeffrey’s rule Recall Jeffrey’s rule, discussed in Section 3.2.1. Let p denote a probabil-
ity distribution over a countable state space X and let q denote the distribution obtained
by updating according to Jeffrey’s rule. Then Theorem 7.3 may be applied to give the
following bound.

Theorem 7.7 Let p be a probability distribution over a countable state space X and let
G1, . . . ,Gn be a collection of mutually exclusive and exhaustive events. Let λj = p(Gj )

for j = 1, . . . , n. Let q denote the probability distribution such that q(Gj ) = µj for j =
1, . . . , n and such that for any other event A,

q(A) =
n∑

j=1

µjp(A|Gj).

In other words, q is the Jeffrey’s update of p, defined by q(Gj ) = µj , j = 1, . . . , n. Then

dCD(p, q) = log max
j

λj

µj

− log min
j

µj

λj

.

�

Proof of Theorem 7.7 This is straightforward and the details are left to the reader (see
Exercise 3, Chapter 7). �

This immediately gives the following bound.

Corollary 7.3 Let Op and Oq denote the odds function before and after applying Jeffrey’s
rule. Let

d = log max
j

λj

µj

− log min
j

µj

λj

.
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Then for any two events A and B,

e−d ≤ Oq(A|B)

Op(A|B)
≤ ed .

Under the Chan-Darwiche distance measure, Jeffrey’s rule may be considered optimal ,
in the following sense.

Theorem 7.8 Let p denote a probability distribution over X and let G1, . . . , Gr denote a
collection of mutually exclusive and exhaustive events. Let µj = p(Gj ), let λ1, . . . , λr be
a collection of non-negative numbers such that

∑r
j=1 λj = 1 and let q be the probability

distribution over X defined by

q(x) =
r∑

j=1

λj

µj

p(x)1Gj
(x), x ∈ X,

where

1Gj
(x) =

{
1 x ∈ Gj

0 x 
∈ Gj .

Then dCD(p, q) minimizes dCD(p, r) subject to the constraint that r is a probability dis-
tribution over X such that r(Gi) = λi for i = 1, . . . , r .

Proof of Theorem 7.8 Let q denote the distribution generated by Jeffrey’s rule and
let r be any distribution that satisfies the constraint r(Gj ) = q(Gj ) = λj , j = 1, . . . , r .
If p and r do not have the same support (Definition 7.4), then +∞ = DCD(p, r) ≥
DCD(p, q). If they have the same support, let j denote the value such that

λj

µj
= maxi

λi

µi

and let k denote the value such that λk

µk
= mini

λi

µi
. Let α = maxx∈X r(x)

p(x)
. Then

αµj = α
∑
x∈Gj

p(x) ≥
∑
x∈Gj

r(x)

p(x)
p(x) = r(Gj ) = λj ,

so that

α ≥ λj

µj

.

Similarly, set β = minx∈X r(x)
p(x)

, then a similar argument gives β ≤ λk

µk
. It follows that the

distance between p and r is

DCD(p, r) = log max
x∈X

r(x)

p(x)
− log min

x∈X
r(x)

p(x)
= log α − log β

≥ log
λj

µj

− log
λj

µj

= log max
i

λi

µi

− log min
i

λi

µi

= DCD(p, q).

Therefore q gives the smallest distance. �
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Example 7.4 Consider Example 3.4, Section 3.2.1. It is taken from [65] and discussed
in [66]. The probability may be updated using Jeffrey’s rule to give, for example,

qS,C(s, cg) = λg

µg

pS,C(s, cg) = 0.7

0.3
× 0.12 = 0.28.

Updating the whole distribution in this way gives

qS,C =
S\C cg cb cv

s 0.28 0.10 0.04
sc 0.42 0.15 0.01

.

Theorem 7.7 gives

dCD(p, q) = log max
i

λi

µi

− log min
i

λi

µi

= log
0.7

0.3
− log

0.05

0.4
= 2.93,

while Corollary 7.3 gives

0.05 ≤ Oq(cg|s)
Op(cg|s) ≤ 18.73.

This suggests that the distributions have changed dramatically. Note that pC|S(cg|s) =
0.12
0.56 = 0.214, while qC|S(cg|s) = 0.28

0.42 = 0.667. The change of probability has led to a
dramatic change and

Oq(cg|s)
Op(cg|s) =

0.667/0.333

0.214/0.786
= 7.34.

If the new distribution over colour were q∗C = (0.25, 0.25, 0.50) instead, then
dCD(p, q∗) = 0.406 and

0.666 ≤ Oq∗(cg|s)
Op(cg|s) ≤ 1.5.

The evidence is weaker and the bounds are therefore tighter. �
Now consider the following problem: the probability that the piece of cloth is green,
given that it is sold tomorrow is, before updating, 0.214. What evidence would satisfy
the constraint that the updated probability that the cloth is green, given that it is sold
tomorrow, does not exceed 0.3?

By Corollary 7.1,

0.214e−d

1+ (e−d − 1)× 0.214
≤ q(cg|s) ≤ 0.214ed

1+ (ed − 1)× 0.214
.

The constraint qC|S(cg|s) ≤ 0.3 is satisfied if

0.214ed

1+ (ed − 1)× 0.214
≤ 0.3

giving d ≤ 0.454. The current distribution over colour is (µg, µb, µv) = (0.3, 0.3, 0.4).
The problem now reduces to finding (λg, λb, λv) such that qC|S(cg|s) = 0.3 and

log max

(
λg

0.3
,

λb

0.3
,

λv

0.4

)
− log min

(
λg

0.3
,

λb

0.3
,

λv

0.4

)
= 0.454.
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Since
qC,S(cj , s) = λj

µj

pC,S(cj , s), j = g, b, v

it follows that

qC|S(cg|s) = 0.4λg

0.4λg + 0.4λb + 0.4λv

.

With pC|S(cg|s) = 0.3,
0.28λg − 0.12λb − 0.24λv = 0,

with constraint λg + λb + λv = 1, so that 10λg − 3λv = 3.
If the maximum and minimum are then given by λg and λv respectively, then

0.454 = log
λg

0.3
− log

10λg − 3

1.2

giving

λg = 3e0.454

10e0.454 − 4
= 0.402

λv = 0.34, λb = 0.258.

Finally, to check that the solution is valid, 0.4
λv
= 0.4

0.34 = 1.176 > 1.163 = 0.3
0.258 = 0.3

λb
. Sim-

ilarly, λg

0.3 clearly gives the maximum in the first term. �

Pearl’s method of virtual evidence Recall Pearl’s method of virtual evidence, dis-
cussed in Section 1.4.3 and developed in Section 3.2.2.

Again, dCD(p, q) may be computed using only local information.

Theorem 7.9 Let p be a probability distribution over a countable state space X and let
λ1 = 1 and λ2, . . . , λr positive numbers. Let q denote a set function, defined over subsets
of X, such that q(φ) = 0 (where φ denotes the empty set) and for any finite collection of
disjoint subsets A1, . . . , An ⊂ X, q(∪n

j=1Aj) =
∑n

j=1 q(Aj ), which satisfies

q(x) = p(x)

r∑
j=1

λj∑r
k=1 p(Gk)λk

1Gj
(x), x ∈ X.

Then q is a probability distribution over X and

dCD(p, q) = log max
i

λi − log min
i

λi .

Proof of Theorem 7.9 Firstly, it is clear from the construction that
∑

x∈X q(x) = 1
and that q(x) ≥ 0 for all x ∈ X and (from the definition) that q satisfies the necessary
additivity properties, so that q is a probability. From the definition,

q(x)

p(x)
=
∑

j

λj∑
k p(Gk)λk

1Gj
(x) x ∈ X.
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It follows that

DCD(p, q) = log max
x∈X

q(x)

p(x)
− log min

x∈X
q(x)

p(x)

= log max
j

λj∑
k p(Gk)λk

− log min
j

λj∑
k p(Gk)

= log max
j

λj − log min
j

λj

as required. �
This immediately gives the following bound.

Corollary 7.4 Let Oq and Op denote the odds functions associated with the probability
measures defined in Theorem 7.9 and let

d = DCD(p, q) = log max
i

λi − log min
i

λi .

Then for any events A, B ⊆ X,

e−d ≤ Oq(A|B)

Op(A|B)
≤ ed.

Example 7.5 ‘Burglary’ (Example 3.5, Section 3.2.2) may be developed to illustrate
these results. The discussion follows [66]. Let A denote the event that the alarm goes off,
B the event that a burglary takes place and let E denote the evidence of the telephone
call from Jemima. According to Pearl’s method, this evidence can be interpreted as

λ = p(E|A)

p(E|Ac)
= 4.

Therefore, the distance between the original distribution p and the update q(.) = p(.|E)

derived according to Pearl’s method is DCD(p, q) = log 4 � 1.386. This distance may
be used to bound q(B), the probability of a burglary, after the update to incorporate the
evidence. Using Equation (7.15),

p(B)e−d

1+ (e−d − 1)p(B)
≤ q(B) ≤ p(B)ed

1+ (ed − 1)p(B)
,

so that 2.50× 10−5 ≤ q(B) ≤ 4.00× 10−4. An application of Pearl’s virtual evidence
rule gives q(B) = 3.85× 10−4. �

7.4 Parameter changes to satisfy query constraints

The problem considered in this section is to decide whether an individual parameter is
relevant to a given query constraint and, if it is, to compute the minimum amount of
change needed to that parameter to enforce the constraint. The constraints considered are
of the following form: Let e denote an instantiation of a collection of variables E (so
that {E = e} is a piece of hard evidence, and may be expressed as e = (e1, . . . , em) as
in Definition 3.1) and let Y, Z denote two random variables such that Y 
∈ E and Z 
∈ E.
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The query constraints considered are of the following type:

pY |E(y|e)− pZ|E(z|e) ≥ ε, (7.17)

pY |E(y|e)
pZ|E(z|e) ≥ ε. (7.18)

The notation will be abbreviated by writing: p(y|e) when the abbreviation is clear from
the context.

Let pX denote the probability function for a collection of variables X = (X1, . . . , Xd),
which may be factorized along a graph G = (V, E) (where V = {X1, . . . , Xd}), with
given conditional probability potentials, θjil = pXj |�j

(x
(i)
j |π(l)

j ). Then

pX(x) =
d∏

j=1

qj∏
l=1

kj∏
i=1

θ
n(x

(j)
i
|π(j)

l
)

j il ,

where n(x
(j)

i |π(j)

l ) = 1 if the child parent configuration appears in x and 0 otherwise. Sup-
pose that the probabilities (θj1l , . . . , θj,kj ,l) are parametrized by (t

(j l)

1 , . . . , t
(j l)
mj

), where
mj ≤ kj − 1. The following result holds.

Theorem 7.10 Let X = (X1, . . . , Xd) denote a set of variables and let p be a probability
distribution that factorizes along a DAG G with node set V = {X1, . . . , Xd}. with corre-
sponding probability potentials θjil = pXj |�j

(x
(i)
j |π(l)

j ). Suppose that for each (j, l) the

probabilities (θj1l , . . . , θj,kj ,l) are parametrized by (t
(j l)

1 , . . . , t
(j l)
mjl

) where mjl ≤ kj − 1.

Let E = (Xe1 , . . . Xem) denote a subset of X and let e = (x
(i1)
e1 , . . . , x

(im)

(em)) denote an
instantiation of E. Then for all 1 ≤ k ≤ mjl ,

∂

∂t
(j l)

k

pE(e) =
kj∑

α=1

p({E = e}, {Xj = x
(α)
j }, {�j = π

(l)
j })

θjαl

∂

∂t
(j l)

k

θjαl .

Proof of Theorem 7.10 Firstly,

pE(e) =
∑
il

pE|Xj ,�j
(e|x(i)

j , π
(l)
j )pXj |�j

(x
(i)
j |π(l)

j )p�j
(π

(l)
j )

=
∑
il

pE|Xj ,�j
(e|x(i)

j , π
(l)
j )θjilp�j

(π
(l)
j ).

It follows that

∂

∂t
(j l)

k

pE(e) =
kj∑
i=1

pE|Xj ,�j
(e|x(i)

j , π
(l)
j )p�j

(π
(l)
j )

∂θjil

∂t
(j l)

k

=
kj∑
i=1

pXj ,�j |E(x
(i)
j , π

(l)
j |e)pE(e)p�j

(π
(l)
j )

pXj ,�j
(x

(i)
j , π

(l)
j )

∂θjil

∂t
(j l)

k
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=
kj∑

i=1

pXj ,�j ,E(x
(j)

i , π
(j)

l , e)

pXj |�j
(x

(i)
j |π(l)

j )

∂θjil

∂t
(j l)

k

=
kj∑

i=1

pXj ,�j ,E(x
(i)
j , π

(l)
j , e)

θjil

∂θjil

∂t
(j l)

k

as required. �

Proportional scaling Again, the complete set of variables is X = (X1, . . . , Xd), with
a joint probability distribution p that may be factorized along a directed acyclic graph G.
Evidence is received on a subset of the variables E = (Xe1 , . . . , Xem). Consider a pro-
portional scaling scheme, where each conditional probability distribution (θj1l , . . . , θjkj l)

has exactly one parameter. Under proportional scaling, this may be represented as θj1l =
t (j l) and there are non-negative numbers a

(jl)

2 , . . . , a
(j l)

kj
satisfying

∑kj

α=2 a
(jl)
α = 1, such

that
θj1l = t (j l)

θjαl = a(jl)
α (1− t (j l)), α = 2, . . . , kj .

Then, an application of Theorem 7.10 in the simplified setting of proportional scaling
immediately gives

∂

∂t(j l)
pE(e) = pE,Xj ,�j

(e, x
(1)
j , π

(l)
j )

θj1l

−
kj∑

α=2

pE,Xj ,�j
(e, x

(α)
j , π

(l)
j )

θjαl

a(j l)
α . (7.19)

When a proportional scaling scheme is used, Theorem 7.1 gives

pE(e) = α + βt(j l),

where α and β do not depend on t (j l). It follows that for any t (j l), ∂

∂t(j l) pE(e) = β, where
β is constant (i.e. it does not depend on t (j l)). This observation makes it straightforward,
under proportional scaling, to find the necessary change in a single parameter t (j l) (if
such a parameter change is possible) to enforce a query constraint.

7.4.1 Binary variables

Assume that variable Xj is binary , with pXj |�j
(x

(1)
j |π(l)

j ) = t (j l) and pXj |�j
(x

(0)
j |π(l)

j ) =
1− t (j l). Then Equation (7.19) reduces to:

∂

∂t(j l)
pE(e) = pE,Xj ,�j

(e, x
(1)
j , π

(l)
j )

t(j l)
− pE,Xj ,�j

(e, x
(0)
j , π

(l)
j )

1− t (j l)
. (7.20)
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The statement Y = y, E = e may be treated as hard evidence. By Theorem 7.1, it follows
that there are real numbers λ, λy and λz such that

λ = ∂

∂t(j l)
pE(e) = pE,Xj ,�j

(e, x
(1)
j , π

(l)
j )

t(j l)
− pE,Xj ,�j

(e, x
(0)
j , π

(l)
j )

1− t (j l)
,

λy = ∂

∂t(j l)
pY,E(y, e) = pY,E,Xj ,�j

(y, e, x
(1)
j , π

(l)
j )

t(j l)
− pY,E,Xj

(y, e, x
(0)
j , π

(l)
j )

1− t (j l)

and

λz = ∂

∂t(j l)
pZ,E(z, e) = pZ,E,Xj ,�j

(z, e, x
(1)
j , π

(l)
j )

t(j l)
− pZ,E,Xj ,�j

(z, e, x
(0)
j , π

(l)
j )

1− t (j l)
.

The following is a corollary of Theorem 7.10, which reduces to Equation (7.20) for the
binary case.

Corollary 7.5 To satisfy the constraint given by Equation (7.17), the parameter t (j l) has
to be changed to t (j l) + δ,where δ satisfies

pY,E(y, e)− pZ,E(z, e)− εpE(e) ≥ δ(−λy + λz + ελ). (7.21)

To satisfy the constraint given by Equation (7.18), the parameter t (j l) has to be changed
to t (j l) + δ, where

pY,E(y, e)− εpZ,E(z, e) ≥ δ(−λy + ελz). (7.22)

Proof of Corollary 7.5 Since pY |E(y|e) = pY,E(y,e)

pE(e)
, it follows that pY |E(y|e)−

pZ|E(z|e) ≥ ε is equivalent to pY,E(y, e)− pZ,E(z, e) ≥ εpE(e). A change in the con-
straint changes pY,E(y, e), pZ,E(z, e) and pE(e) to pY,E(y, e)+ δλy , pZ,E(z, e)+ δλz

and pE(e)+ δλ respectively. To enforce the difference constraint, it follows that δ

satisfies
(pY,E(y, e)+ λyδ)− (pZ,E(z, e)+ λzδ) ≥ ε(pE(e)+ λδ).

Equation (7.21) follows directly.
Similarly, to enforce the ratio constraint, the following inequality is required:

pY,E(y, e)+ λyδ

pZ,E(z, e)+ λzδ
≥ ε.

Equation (7.22) now follows directly and the proof is complete. �

Proportional scaling If proportional scaling is being used, so that Equation (7.19)
holds, then it is clear that Corollary 7.5 can be extended, with minor adjustment to the
set of linear equations, to satisfy the constraints given by Equations (7.17) and (7.18).
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7.5 The sensitivity of queries to parameter changes

In line with the Chan-Darwiche distance measure, the following definition will be used
for ‘sensitivity’.

Definition 7.5 (Sensitivity) Let p denote a parametrized family of probability distribu-
tions, over a finite, discrete state space X, parametrized by k parameters (θ1, . . . , θk) ∈ �̃,
where �̃ ⊆ Rk denotes the parameter space. Let p(θ1,...,θk)(.) denote the probability distri-
bution when the parameters are fixed at θ1, . . . , θk. Then the sensitivity of p to parameter
θj is defined as

Sj (p)(θ1, . . . , θk) = max
x∈X

∂

∂θj

log p(θ1,...,θk)({x})−min
x∈X

∂

∂θj

log p(θ1,...,θk)({x}).

Example 7.6 If p is a family of binary variables, with state space X = {x0, x1} and a
single parameter θ , then

S(p)(θ) =
∣∣∣∣ ∂

∂θ
log

p(θ)({x1})
p(θ)({x0})

∣∣∣∣ . �

This section restricts attention to a single parameter model. Consider a network with d

variables, X = (X1, . . . , Xd) where one particular variable Xj is a binary variable. The
other variables may be multivalued. Let

t (j l) = pXj |�j
(x

(1)
j |π(l)

j ).

Let Y denote a collection of variables, taken from (X1, . . . , Xn) and let Y = y denote
an instantiation of these variables. Let y denote the event {Y = y} and let yc denote
the event {Y 
= y}. Similarly, let e denote the event {E = e}, where E is a different
sub-collection of variables from X. From Definition 7.5, the sensitivity of a query p(y|e)
to the parameter t (j l) is defined as∣∣∣∣∣ ∂

∂t(j l)
log

p(y|e)
p(yc|e)

∣∣∣∣∣ .
The following theorem provides a simple bound on the derivative in terms of p(y|e) and
t (j l) only.

Theorem 7.11 Suppose Xj is a binary variable taking values x
(1)
j or x

(0)
j . Set

t (j l) = pXj |�j
(x

(1)
j |π(l)

j ).

Then ∣∣∣∣ ∂

∂t(j l)
p(y|e)

∣∣∣∣ ≤ p(y|e)(1− p(y|e))
t(j l)(1− t (j l))

. (7.23)

The example given after the proof shows that this bound is sharp; there are situations
where the derivative assumes the bound exactly .
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Proof of Theorem 7.11 Firstly, p(y|e) = p(y,e)

p(e)
, so that

∂

∂t(j l)
p(y|e) = 1

p(e)

∂

∂t(j l)
p(y, e)− p(y|e)

p(e)

∂

∂t(j l)
p(e).

Using this, Equation (7.20) gives

∂

∂t(j l)
p(y|e)

=
{
(1− t (j l))p(y, x

(1)
j , π

(l)
j |e)− t (j l)p(y, x

(0)
j , π

(l)
j |e)

}
t (j l)(1− t (j l))

(7.24)

−
{
(1− t (j l))p(y|e)p({Xj = x

(1)
j }, {�j = π

(l)
j }|e)− t (j l)p(y|e)p({Xj = x

(0)
j }, {�j = π

(l)
j }|e)

}
t (j l)(t − t (j l))

= (1− t (j l))(p(y, {Xj = x
(1)
j }, {�j = π

(l)
j }|e)− p(y|e)p({Xj = x

(1)
j }, {�j = π

(l)
j }|e))

t(j l)(1− t (j l))

− t (j l)(p(y, {Xj = x
(0)
j }, {�j = π

(l)
j }|e)− p(y|e)p({Xj = x

(0)
j }, {�j = π

(l)
j }|e))

t(j l)(t − t (j l))
. (7.25)

With the shorthand notation yc to denote the event {Y 
= y},

p({Xj = x
(1)
j }, {�j = π

(l)
j }, y|e)− p(y|e)p({Xj = x

(1)
j }, {�j = π

(l)
j }|e)

≤ p({Xj = x
(1)
j }, {�j = π

(l)
j }, y|e)− p(y|e)p({Xj = x

(1)
j }, {�j = π

(l)
j }, y|e)

= p({Xj = x
(1)
j }, {�j = π

(l)
j }, y|e)(1− p(y|e)

≤ p(y|e)(1− p(y|e))
and

p(y|e)p({Xj = x
(1)
j }, {�j = π

(l)
j }|e)− p({Xj = x

(1)
j }, {�j = π

(l)
j }, y|e)

= (1− p(yc|e))p({Xj = x
(1)
j }, {�j = π

(l)
j }|e)

−p({Xj = x
(1)
j }, {�j = π

(l)
j }|e)+ p({Xj = x

(1)
j }, {�j = π

(l)
j }, yc|e)

= p({Xj = x
(1)
j }, {�j = π

(l)
j , yc|e)− p(yc|e)p({Xj = x

(1)
j }, {�j = π

(l)
j |e)

= p({Xj = x
(1)
j }, {�j = π

(l)
j }, yc|e)(1− p(yc|e))

≤ p(yc|e)(1− p(yc|e))
= (1− p(y|e))p(y|e)

From this, it follows directly from Equation (7.25) that∣∣∣∣ ∂

∂t(j l)
p(y|e)

∣∣∣∣ ≤ p(y|e)(1− p(y|e))
t(j l)(1− t (j l))

.

The proof of Theorem 7.11 is complete. �
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Corollary 7.6 The sensitivity of p(y|e) to the parameter t (j l) is bounded by∣∣∣∣∣ ∂

∂t(j l)
log

p(y|e)
p(yc|e)

∣∣∣∣∣ ≤ 1

t (j l)(1− t (j l))
. (7.26)

Proof of Corollary 7.6 Immediate. �
It is clear that the worst situation from a robustness point of view arises when the
parameter value t (j l) is close to either 0 or 1, while the query takes values that are close
to neither 0 nor 1.

Example 7.7 This example shows that the bounds given by inequalities (7.23) and (7.26)
are tight, in the sense that there are examples where it is attained. Consider the network
given in Figure 7.2, where X and Y are binary variables taking values from (x0, x1) and
(y0, y1) respectively. pX(x0) = θx and pY (y0) = θy . Suppose that E is a deterministic
binary variable; that is, p({E = e}|{X = Y }) = 1 and p({E = e}|{X 
= Y }) = 0.

The probability potentials are

pX = x0 x1

θx 1− θx
pY = y0 y1

θy 1− θy

pE|X,Y (e|., .) =
X\Y y0 y1

x0 1 0
x1 0 1

It follows that

pY |E(y0|e) = pY |E(y0, e)

pE(e)
= pY (y0)

∑
x pX(x)pE|X,Y (e|x, y0)∑

x,y pX(x)pY (y)pE|X,Y (e|x, y)

= θyθx

θyθx + (1− θy)(1− θx)
.

It follows that
∂

∂θx

pY |E(y0|e) = θy(1− θy)

(θxθy + (1− θx)(1− θy))2

while

pY |E(y0|e)(1− pY |E(y0|e))
θx(1− θx)

= θyθx(1− θy)(1− θx)

(θxθy + (1− θx)(1− θy))2θx(1− θx)

= θy(1− θy)

(θxθy + (1− θx)(1− θy))2
,

X Y

E

Figure 7.2 The network for Example 7.7.
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so that
∂

∂θx

pY |E(y0|e) = θy(1− θy)

(θxθy + (1− θx)(1− θy))2

showing that the bound (7.23) is achieved. �
For the bound (7.26), note from the above that

∂

∂θx

pY |E(y0|e) = pY |E(y0|e)pY |E(y1|e)
θx(1− θx)

so that
∂

∂θx

log pY |E(y0|e) = pY |E(y1|e)
θx(1− θx)

and, because pY |E(y0|e)+ pY |E(y1|e) = 1,

∂

∂θx

pY |E(y1|e) = − ∂

∂θx

pY |E(y0|e) = −pY |E(y0|e)pY |E(y1|e)
θx(1− θx)

so that
∂

∂θx

log
pY |E(y0|e)
pY |E(y1|e) =

1

θx(1− θx)
,

so that equality is achieved in bound (7.26). �
Although a small change in a parameter t (j l) can lead to a large change in a query p(y|e),
the change is not so large if instead the change in odds are considered.

Theorem 7.12 Let p be a parametrized family of probability distributions, factorized
along the same DAG, with a single parameter θ . Let Xj be a binary variable and let
θ = p

(θ)
Xj |�j

(x
(0)
j |π(l)

j ); all the other CPPs remain fixed and let Oθ = θ
1−θ

. Consider a

parameter change from θ = t to θ = s. Note that Ot = t
1−t

and Os = s
1−s

. Let p(θ)(y|e)
denote the probability value of a query when θ is the parameter value. Let Õθ (y|e) =

p(θ)(y|e)
1−p(θ)(y|e) . Then

Ot

Os

≤ Õs(y|e)
Õt (y|e)

≤ Os

Ot

s ≥ t

Os

Ot

≤ Õs(y|e)
Õt (y|e)

≤ Ot

Os

s ≤ t.

This gives the bound∣∣∣log Õs(y|e)− log Õt (y|e)
∣∣∣ ≤ |log Os − log Ot | .

Proof of Theorem 7.12 Let x denote the probability of the query p(y|e) when the value
of the parameter t (j l) is z.

Note that, for 0 < a ≤ b < 1,∫ b

a

dx

x(1− x)
=
∫ b

a

dx

x
+
∫ b

a

dx

1− x
= log

b

a

1− a

1− b
.
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Then, for t (j l) ≤ s(j l), Equation (7.23) gives

−
∫ s

t

dz

z(1− z)
≤
∫ ps(y|e)

pt (y|e)

dx

x(1− x)
≤
∫ s

t

dz

z(1− z)
,

so that

− log
s

t

1− t

1− s
≤ log

ps(y|e)
pt (y|e)

1− ps(y|e)
1− pt(y|e) ≤ log

s

t

1− t

1− s

giving immediately that
Ot

Os

≤ Õs(y|e)
Õt (y|e)

≤ Os

Ot

.

For s ≤ t the argument is similar and gives

Os

Ot

≤ Õs(y|e)
Õt (y|e)

≤ Ot

Os

.

In both cases ∣∣∣log Õs(y|e)− log Õt (y|e)
∣∣∣ ≤ |log Os − log Ot |

and the result follows. �

Notes The observation that the probability of evidence is a linear function of any single
parameter in the model and hence that the conditional probability is the ratio of two
linear functions is due to E. Castillo, J.M. Gutiérrez and A.S. Hadi [108] and [109]. See
also V.M. Coupé and L.C. van der Gaag [110]. The most significant developments in
sensitivity analysis, which comprise practically the whole chapter, were introduced by
H. Chan and A. Darwiche in the article [111] and developed in the article [66], where
Chan-Darwiche distance measure was introduced, and the article [81], which discusses
the application to Jeffrey’s update rule and Pearl’s method of virtual evidence.
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7.6 Exercises: Parameters and sensitivity

1. Let G = (V, E) be a directed acyclic graph, where V = (X1, . . . , Xd), and let p

and q be two probability distribution factorized along G. Suppose that the con-
ditional probability tables for p and q are the same except for one single (j, l)

variable/parent configuration, where p has table θj.l and q has table θ̃j.l . Let dKL

denote the Kullback-Leibler distance. Show that

dKL(p, q) = p({�j = π
(l)
j })dKL(θj.l, θ̃j.l).

2. Let DCD(p, q) denote the Chan-Darwiche distance between two probability distribu-
tions. Prove that for any two probability distributions p and q, defined on the same
finite state space X,

• DCD(p, q) ≥ 0 with equality if and only if p(x) = q(x) for all x ∈ X.

• DCD(p, q) = DCD(q, p).

3. Let p be a probability distribution over a countable state space X and let G1, . . . , Gn

be a collection of mutually exclusive and exhaustive events. Let λj = p(Gj ) for
j = 1, . . . , n. Let q denote the probability distribution such that q(Gj ) = µj for
j = 1, . . . , n and such that for any other event A,

q(A) =
n∑

j=1

µjp(A|Gj).

In other words, q is the Jeffrey’s update of p, defined by q(Gj ) = µj , j = 1, . . . , n.
Prove that

dCD(p, q) = log max
j

λj

µj

− log min
x∈X

µj

λj

,

where dCD denotes the Chan-Darwiche distance.

4. Consider a Bernoulli trial, with probability function pX(.|t) defined by

pX(x|t) = tx(1− t)1−x, x = 0, 1, t ∈ [0, 1].

Recall the definition of sensitivity, Definition 7.5. Compute the sensitivity with
respect to the parameter t .

5. Find the calibration cd(k) of the Chan-Darwiche distance by suitably reformulating
the concept of calibration as found in Exercise 3, Chapter 5. You should obtain

cd(k) = e±k

1+ e±k
.

Why is this a reasonable calibration? Compare by plotting h(k), the calibration of the
Kullback-Leibler divergence in Example 3, Chapter 5, together with the calibration
cd(k) and comment on any differences you observe.
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A

C D

B

Figure 7.3 DAG on four variables.

6. Consider the DAG given in Figure 7.3, where (A, B,C, D) are all binary variables
with probability tables

pA = 1 0
s 1− s

, pB = 1 0
t 1− t

pC|A,B(1|., .) =
A\B 1 0

1 1 0.8
0 0.8 0

Compute the sensitivity, with respect to s and with respect to t , for pA|C(1|1).

7. A test to detect whether a person has the Green Monkey Disease virus is being
developed. Laboratory tests show that if a person has the condition, then the test
gives a positive result with probability 0.99. If a person does not have the condition,
then the test gives a positive result with probability 0.02. The proportion of the
population that has the condition is t , where t is unknown, but suspected to be around
1%. Compute the sensitivity of the probability that a randomly chosen person has
the disease given a positive test result with respect to this parameter. Compute the
probability that the person has the disease, given a positive test result, for t = 0.01
and t = 0.02.

8. Following the example (Section 7.3) of the Chan-Darwiche distance for two distri-
butions factorized along a fork, find an expression for the Chan-Darwiche distance
between two distributions factorized along the same Chow-Liu tree.

9. Suppose that the probability distribution pA,B,C,D can be factorized along the the
DAG given in Figure 7.3. Suppose that pA(1) = pB(1) = 0.5,

pD|C =
C\D 0 1

0 0.7 0.3
1 0.3 0.7

and

pC|A,B(1|., .) =
A\B 0 1

0 0 t

1 1 1

Is it possible to find a value of t such that pA|D = 0.8?
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10. Suppose the probability distribution of (A, B,C, D) may be factorized along the
DAG given in Figure 7.3.
All variables are binary, taking values 0 or 1. Suppose, after training examples,
pA(1) = pB(1) = 0.5,

pD|C =
C\D 0 1

0 0.6 0.4
1 0.2 0.8

Suppose

pC|A,B(1|., .) =
A\B 0 1

0 0 1− t

1 1− s 1− st

(a) Compute the range of values that pA|D(1|1) can take.

(b) The gradient descent method is a standard numerical procedure. Suppose the
parameters are t and a constraint (in the example below, pA|D(1|1) = 0.6) has
to be satisfied. If one wants to find parameter values t as close as possible to
prescribed initial values t0 according to a certain distance measure, one starts by
choosing a step length δ. One then finds values of the parameters for which the
constraints are satisfied. (In the example below, this can be done by computing
s1 and t1 such that (s0, t1) and (s1, t0) satisfy the constraint and letting (s∗, t∗) =
(s0, t1) or (s1, t0), whichever gives the smallest value of d((s, t), (s0, t0)).

Next, if there are constraints, such as f (t) = c (where t is the set of parameters), the
gradient of the constraint ∇t f (t)|t∗ is computed. From the unit vectors ν such that
(ν,∇t f (t)|t∗) = 0 (that is |ν| = 1), the one that gives the lowest value (i.e. negative
number with largest absolute value) of (ν, dt (t, t0)|t=t∗) is chosen. The parameters
are then updated; t∗ → t∗ + δν. Then, compute the appropriate vector ν and update
again. Continue until the change in the distance d(t∗, t0) is less than a prescribed
value.

Write a MATLAB code that employs a Gradient Descent Method, with step length
0.02, to compute the values of (s, t) as close as possible to prescribed initial values
(s0, t0), which satisfies the constraint pA|D(1|1) = 0.6, where the distance used is the
Chan-Darwiche distance.
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Graphical models and
exponential families

This chapter introduces exponential families of distributions, focusing on links with con-
vex analysis and specifically with the theory of conjugate duality. This is then applied to
updating the probability distribution in a graphical model in the light of new information.
One of the key features of exponential families, with mean parameters, is the relative
ease with which the entropy and Kullback-Leibler distance between two members of the
family may be computed.

8.1 Introduction to exponential families

The notations are as before, except that continuous random variables will also be consid-
ered for modelling the outcome of an experiment. Let V = {X1, . . . , Xd} denote the ran-
dom variables. For j = 1, . . . , d , Xj will denote the state space for variable Xj . If Xj is

continuous, then Xj ⊆ R (the real numbers). If Xj is discrete, then Xj = {x(1)
j , . . . , x

(kj )

j },
where kj is possibly +∞. The notation X = (X1, . . . , Xd) denotes the row vector; when
data is presented in a matrix, it is usual that each column presents a different attribute
and each row represents an independent instantiation. An instantiation of X will be
denoted x ∈ X1 × . . .Xd ≡ X (when no subscript is employed, X denotes the product
space, which is the state space of the row vector X).

An exponential family is a family of probability distributions satisfying certain prop-
erties, listed in Definition 8.1 below. For the purposes of Bayesian networks, the emphasis
is on discrete variables.

Bayesian Networks: An Introduction T. Koski, J. Noble
 2009 John Wiley & Sons, Ltd
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Definition 8.1 (Exponential Family) An exponential family is a family of probability
distributions defined by a probability function pX(.|θ) if X are discrete variables, or a
probability density function πX(.|θ) for continuous variables, indexed by a parameter set
�̃ ⊆ Rp (where p is possibly infinite), where there is a function � : X→ Rp, a function
A : �̃→ R and a function h : X→ R such that

pX(x|θ) = exp{〈θ,�(x)〉 −A(θ)}h(x)

if X is a discrete random vector and

πX(x|θ) = exp{〈θ, �(x)〉 −A(θ)}h(x)

if X is a continuous random vector.
It is convenient to use the notation I to denote the indexing set for the parameters;

θ = (θα)α∈I. Then � denotes a collection of functions � = (φα)α∈I, where φα : X→ R.
The inner product notation is defined as

〈θ,�(x)〉 =
∑
α∈I

θαφα(x).

The parameters in the vector θ are known as the canonical parameters or exponential
parameters.

Attention will be restricted to distributions where |I| = p < +∞; namely, I has a finite
number, p, of elements.

Since
∑

X pX(x|θ) = 1 for discrete variables and
∫
X πX(x|θ)dx = 1 for continuous

variables, it follows that the quantity A, known as the log partition function , is given by
the expression

A(θ) = log
∫
X

exp{〈θ, �(x)〉}h(x)dx

for continuous variables and

A(θ) = log
∑
X

exp
{〈θ, �(x)〉} h(x)

for discrete variables. It is assumed that h, θ and � satisfy appropriate conditions so that
A is finite.

Set

P(x; θ) = pX(x|θ)

h(x)
. (8.1)

With the set of functions � fixed, each parameter vector θ indexes a particular probability
function pX(.|θ) belonging to the family. The exponential parameters of interest belong
to the parameter space, which is the set

�̃ = {θ ∈ Rp|A(θ) < +∞}. (8.2)

It will be seen shortly that A is a convex function of θ .



STANDARD EXAMPLES OF EXPONENTIAL FAMILIES 231

Definition 8.2 (Regular Families) An exponential family for which the domain �̃ of
Equation (8.2) is an open set is known as a regular family.

Attention will be restricted to regular families.

Definition 8.3 (Minimal Representation) An exponential family, defined using a collec-
tion of functions � for which there is no linear combination 〈a, �(x)〉 =∑α∈I aαφα(x)

equal to a constant is known as a minimal representation.

For a minimal representation, there is a unique parameter vector θ associated with each
distribution.

Definition 8.4 (Over-complete) An over-complete representation is a representation that
is not minimal; there is a linear combination of the elements of � which yields a constant.

When the representation is over-complete, there exists an affine subset of parameter
vectors θ , each associated with the same distribution.

Recall the definition of sufficiency, given in Definition 3.3. The following lemma is
crucial. Its proof is left as an exercise.

Lemma 8.1 Let X = (X1, . . . , Xd) be a random vector with joint probability function

pX(x|θ) = exp{〈θ, �(x)〉 − A(θ)}h(x), X ∈ X

then �(X), which will be denoted �, is a Bayesian sufficient statistic for θ . If the repre-
sentation is minimal, then �(X) is a minimal sufficient statistic for θ .

Proof of Lemma 8.1 See Exercise 2, Chapter 8. �

8.2 Standard examples of exponential families

The purpose of this section is to take some basic distributions, which are well known,
and illustrate that they satisfy the definition of an exponential family.

Bernoulli Consider the random variable X, taking values 0 or 1, with probability func-
tion pX(1) = p, pX(0) = 1− p. This may be written as

pX(x) =
{

px(1− p)1−x x ∈ {0, 1}
0 other x.

Then

pX(x) = exp

{
x log

(
p

1− p

)
+ log(1− p)

}
= exp {xθ + log(1− p)}
= exp

{
xθ − log(1+ eθ )

}
,

where θ = log
(

p

1−p

)
.
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Note: Change of notation In Chapter 1.9, the quantity now denoted by p was denoted
by θ . The quantity θ no longer denotes a probability; it now denotes the canonical
parameter .

In the language of exponential families, X = {0, 1}, � = {φ} where φ(x) = x, h(0) =
h(1) = 1,

pX(0|θ) = e−A(θ), pX(1|θ) = eθ−A(θ)

In other words
log pX(x|θ) = θx − A(θ),

which gives
1 = pX(0|θ)+ pX(1|θ) = e−A(θ)(1+ eθ )

so that
A(θ) = log(1+ exp{θ}).

Gaussian Recall that the one-dimensional Gaussian density is of the form

π(x|µ, σ) = 1√
2πσ

exp

{
− (x − µ)2

2σ 2

}
.

This may be expressed in terms of an exponential family as follows: X = R, h(x) = 1,
� = {φ1, φ2} where φ1(x) = x and φ2(x) = −x2.

log π(x|θ) = θ1x − θ2x
2 −A(θ)

where

1 = e−A(θ)

∫ ∞

−∞
eθ1x−θ2x2

dx.

The partition function is therefore

A(θ) = 1

2
log π − 1

2
log θ2 +

θ2
1

4θ2
2

and the parameter space is

�̃ = {(θ1, θ2) ∈ R2|θ2 > 0}.
Note that in the ‘usual’ notation

θ1 = µ

σ 2
, θ2 = 1

σ 2
.

Exponential Recall that an exponential density is of the form

π(x|λ) =
{

λe−λx x ≥ 0

0 x < 0.

This is an exponential family, taking X = (0,+∞), h(x) = 1, � = φ, where φ(x) = −x,
θ = λ, so that e−A(θ) = θ , yielding A(θ) = − log θ , � = (0,+∞).
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Poisson Recall that the probability function p for a Poisson distribution with parameter
µ is given by

p(x|µ) = µx

x!
e−µ, x = 0, 1, 2, . . .

This is an exponential family with h(x) = 1
x! , θ = log µ so that p(x|µ) = P(x; θ)h(x),

where
P(x; θ) = exθ−eθ

.

This gives A(θ) = exp{θ}. Since µ ≥ 0 and θ = log µ, it follows that �̃ = R.

Beta Recall that the probability density function for a Beta distribution is given by

π(x|α, β) =
{

�(α+β)

�(α)�(β)
xα−1(1− x)β−1 x ∈ [0, 1]

0 other x.

This is an exponential family, with X = (0, 1), h ≡ 1, α − 1 = θ1, β − 1 = θ2, � =
{φ1, φ2} where φ1(x) = log x, φ2(x) = log(1− x). Then

log π(x|θ) = θ1 log x + θ2 log(1− x)−A(θ),

where the partition function A is given by

A(θ) = log �(θ1 + 1)+ log �(θ2 + 1)− log �(θ1 + θ2 + 2)

and the parameter space is �̃ = (−1,∞)2.

8.3 Graphical models and exponential families

The scalar examples described in Section 8.2 serve as building blocks for the construction
of exponential families, which have an underlying graphical structure.

Example 8.1: Sigmoid belief network model The sigmoid belief network model ,
described below, was introduced by R. Neal in [112]. It is an exponential family, with
an underlying graphical structure.

Consider a directed acyclic graph G = (V, E), where V = {X1, . . . , Xd} is the set of
variables, along which the probability distribution of X = (X1, . . . , Xd) may be factor-
ized. Suppose that for each Xj ∈ V , j = 1, . . . , d , the random variable Xj takes values
0 or 1, each with probability 1/2. For any two components Xs and Xt of the random
vector X, component Xs has a direct causal effect on Xt only if (Xs, Xt ) ∈ E.

The following notation will be used:

Ṽ = {1, . . . , d}, Ẽ = {(s, t)|(Xs, Xt ) ∈ E}.
The probability distribution over the possible configurations is modelled by an exponential
family with probability function pX(.|θ) of the form

pX(x|θ) = exp


d∑

s=1

θsxs +
∑

(s,t)∈Ẽ

θ(s,t)xsxt − A(θ)

 .



234 GRAPHICAL MODELS AND EXPONENTIAL FAMILIES

The notation �i denotes the parent set of node Xi and πi(x) denotes the instantiation of
�i corresponding to the instantiation {X = x}, this may be rewritten as

pX(x|θ) =
d∏

i=1

pXi |�i
(xi |πi(x), θ),

where (clearly)

pXi |�i
(xi |πi(x), θ) =

exp
{
xi

(
θi +

∑
xj∈πi(x) θ(ij)xj

)}
1+ exp

{
θi +

∑
xj∈πi(x) θ(ij)xj

} ,

where the notation xj ∈ πi(x) is clear. The index set is I = Ṽ ∪ Ẽ. The domain � = Rn,
where n = |I|. Since the sum that defines A(θ) is finite for all θ ∈ Rn, it follows that
the family is regular. It is minimal , since there is no linear combination of the functions
equal to a constant.

This model may be generalized. For example, one may consider higher order inter-
actions. To include coupling of triples (Xs, Xt , Xu), one would add a monomial xsxtxu

with corresponding exponential parameter θ(s,t,u). More generally, the set C of indices of
interacting variables may be considered, giving

pX(x|θ) = exp

{∑
C∈C

θ(C)

∏
s∈C

Xs − A(θ)

}
.

8.4 Noisy ‘or’ as an exponential family

This section outlines some ideas of propositional logic in the presence of noise. The
noisy ‘or’ gate is a device that reduces the sizes of the conditional probability tables
and can hence lead to sharper probabilistic inference. The section ends with an example
illustrating that the basic structures of the noisy ‘or’ gate can be expressed as exponential
families.

Disjunction in propositional logic In logic, the ‘or’ disjunction of two propositions p

and q is denoted by p ∨ q and is defined by the truth table

p q p ∨ q

1 1 1

1 0 1

0 1 1

0 0 0

Here 1 = the proposition is true, 0 = the proposition is false. For example, if p and q

are the causes of some effect (e.g. a sore throat) and the presence of either or both of
them will make the effect occur.
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B

A1 A2 An. . .

Figure 8.1 A logical ‘or’ gate.

1–q1
1–q2

1–qn

B

A1 A2 An
. . .

Figure 8.2 Noisy ‘or’ junction.

Noisy ‘or’ as a causal network Consider the DAG given in Figure 8.1 where B =
A1 ∨ A2 ∨ . . . ∨ An. This is the logical ‘or’ and there is no noise.

The noise then enters, as in the DAG given in Figure 8.2, by considering that if
any of the variables Ai , i = 1, . . . , n is present, then B is present unless something has
inhibited it .

Noisy ‘or’: inhibitors Consider the DAG in Figure 8.2, where qi denotes the probability
that the impact of Ai is inhibited.

All variables are binary, and take value 1 if the cause, or effect, is present and 0
otherwise. In other words, pB|Ai

(0|1) = qi . The assumption from the DAG is that all the
inhibitors are independent. This implies that

pB|A1,...,An(0|a1, . . . , an) =
∏
j∈Y

qj ,

where Y = {j ∈ {1, . . . , n}|aj = 1}. This may be described by a noisy ‘or’ gate.

Noisy ‘or’ gate The noisy ‘or’ can be modelled directly, introducing the variables Bi

i = 1, . . . , n, where Bi takes the value 1 if the cause Ai is on and it is not inhibited and
0 otherwise. The corresponding DAG is given in Figure 8.3.

B

B1 B2 Bn

A2 AnA1
. . .

. . .

Figure 8.3 Noisy ‘Or’ Gate.

where
pB|B1,...,Bn(1|b1, . . . , bn) = b1 ∨ . . . ∨ bn.
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C

BA

Figure 8.4 A collider connection.

The B1, . . . , Bn are introduced as mutually independent inhibitors, and

pBi |Ai
(0|1) = qi,

yielding the result given above.

Example 8.2 Consider the collider connection given in Figure 8.4.
Suppose that the variables A, B and C are binary, taking values 0 or 1 and that

the conditional probabilities of C given {A = 1} and {B = 1} are pC|A(1|1) = 0.7 and
pC|B(1|1) = 0.8. Suppose, furthermore, that they satisfy the assumptions of the ‘noisy or’
gate; namely, that {A = 1} causes {C = 1} unless an inhibitor prevents it; this inhibitor
functions with probability 0.3, that {B = 1} causes {C = 1} unless an inhibitor prevents
it; this inhibitor functions with probability 0.2. Then this network may be considered as
a ‘noisy or’ gate, with additional variables X and Y ,

pC|X,Y (1|1, 1) = pC|X,Y (1|1, 0) = pC|X,Y (1|0, 1) = 1, pC|X,Y (1|0, 0) = 0

and

pX|A(1|1) = 0.7, pX|A(1|0) = 0, pY |B(1|1) = 0.8, pY |B(1|0) = 0.

Example 8.3: Noisy ‘or’ as an exponential family The QMR–DT (Quick Medical
Reference–Decision Theoretic) database is a large scale probabilistic data base that is
intended to be used as a diagnostic aid in the domain of internal medicine. It is a bipartite
graphical model; that is, a graphical model where the nodes may be of one of two types.
The upper layer of nodes (the parents) represent diseases and the lower layer of nodes
represent symptoms. There are approximately 600 disease nodes and 4000 symptom
nodes in the database.

An evidence, or finding , will be a set of observed symptoms, denoted by a vector
of length 4000, each entry being a 1 or 0 depending upon whether or not the symptom
is present or absent. This will be denoted f , which is an instantiation of the random
vector F . The vector d will be used to represents the diseases; this is considered as an
instantiation of the random vector D. Let dj denote component j of vector d and let fj

denote component j of vector f . Then, if the occurrence of various diseases are taken
to be independent of each other, the following factorization holds:

pF,D(f , d) = pF |D(f |d)pD(d) =
∏

i

pFi |D(fi |d)
∏
j

pDj
(dj ).
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This may be represented by a noisy ‘or’ model. Let qi0 denote the probability that
symptom i is present in the absence of any disease and qij the probability that disease
j induces symptom i, then the probability that symptom i is absent, given a vector of
diseases d is

pFi |D(0|d) = (1− qi0)
∏
j

(1− qij )
dj .

The noisy ‘or’ may then be rewritten in an exponential form:

pFi |D(0|d) = exp

−∑
j

θij dj − θi0

 ,

where θij ≡ log(1− qij ) are the transformed parameters.

8.5 Properties of the log partition function

Firstly, some basic properties of the log partition function A(θ) are discussed, which
are then developed using convex analysis, discussed in [113]. Let Eθ [.] denote expecta-
tion with respect to p(.|θ) for discrete variables, or π(.|θ) for continuous variables. Of
particular importance is the idea that the vector µ, where µi := Eθ [φi(X)] provides an
alternative parametrisation of the exponential family. Here expectation is defined as

Eθ [f (X)] =
∫
X

πX(x|θ)f (x)dx

if X is a continuous random vector and

Eθ [f (X)] =
∑
x∈X

pX(x|θ)f (x)

if X is a discrete random vector. Recall that, for discrete variables,

A(θ) = log
∑
x∈X

e〈θ,�(x)〉h(x). (8.3)

Provided expectations and variances exist, it follows that

∂

∂θα

A(θ) =
∑
x∈X

e〈θ,�(x)〉−A(θ)φα(x)h(x) = Eθ [φα(X)]. (8.4)

Taking second derivatives yields

∂

∂θα∂θβ

A(θ) = Eθ [φα(X)φβ(X)]− Eθ [φα(X)]Eθ [φα(X)] = Covθ (φα(X), φβ(X)).

It is and easy to show, and a standard fact, that any covariance matrix is non-negative
definite. It now follows that, on �̃, A is a convex function.
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Mapping to mean parameters Given a vector of functions �, set F(θ) = Eθ [�(X)]
and let M = F(�̃). For an arbitrary exponential family defined by

pX(x|θ) = exp
{〈θ,�(x)〉 −A(θ)

}
h(x),

a mapping � : �̃→M may be defined as follows:

�(θ) := Eθ [�(X)].

To each θ ∈ �̃, the mapping � associates a vector of mean parameters µ = �(θ) belong-
ing to the set M. Note that, by Equation (8.4),

�(θ) = ∇A(θ).

The mapping � is one to one, and hence invertible on its image, when the representation
is minimal. The image of �̃ is the interior of M.

Example 8.4 Consider a Bernoulli random variable X with state space {0, 1}.
That is, pX(0) = 1− p and pX(1) = p. Now consider an over-complete exponential
representation

pX(x|θ) = exp {θ0(1− x)+ θ1x − A(θ0, θ1)}
so that

A(θ0, θ1) = log
(
eθ0 + eθ1

)
.

Here �̃ = R2. φ0(x) = 1− x and φ1(x) = x.

∂

∂θ0
A(θ) = eθ0−A(θ0,θ1) = 1− p = µ0

∂

∂θ1
A(θ) = eθ1−A(θ0,θ1) = p = µ1.

The set M of mean parameters is the simplex {(µ0, µ1) ∈ R+ × R+|µ0 + µ1 = 1}. For
any fixed µ = (µ0, µ1) where µ0 ≥ 0, µ1 ≥ 0, µ0 + µ1 = 1, the inverse image is,

�−1(µ) =
{
(θ0, θ1) ∈ R2

∣∣∣∣ eθ0

eθ0 + eθ1
= µ0

}
which may be rewritten as

�−1(µ) =
{
(θ0, θ1) ∈ R2

∣∣∣∣θ1 − θ0 = log
µ1

µ0

}
.

In an over-parametrized, or over-complete representation, there is no longer a bijection
between �̃ and �(�̃). Instead, there is a bijection between elements of �(�̃) and affine
subsets of �̃. A pair (θ, µ) is said to be dually coupled if µ = �(θ), and hence θ ∈
�−1(µ).
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8.6 Fenchel Legendre conjugate

The Fenchel Legendre conjugate of the log partition function A is defined as follows:

A∗(µ) := sup
θ∈�̃

{
〈µ, θ〉 −A(θ)

}
. (8.5)

The choice of notation is deliberately suggestive; the variables in the Fenchel Legendre
dual turn out to have interpretation as the mean parameters. Recall the definition of
P given by Equation (8.1); namely, if pX(x|θ) is the probability function (or density
function), then

P(x; θ) = pX(x|θ)

h(x)
.

Definition 8.5 (Boltzmann-Shannon Entropy) The Boltzmann-Shannon entropy of
pX(x|θ) with respect to h is defined as

H(pX(x|θ)) = −Eθ [log P(x; θ)].

The following is the main result of the chapter.

Theorem 8.1 For any µ ∈M, let θ(µ) ∈ �−1(µ). Then

A∗(µ) = −H(pX(x|θ(µ)).

In terms of this dual, for θ ∈ �̃, the log partition satisfies be expressed:

A(θ) = sup
µ∈M

{〈θ, µ〉 − A∗(µ)}. (8.6)

Proof of Theorem 8.7 From the definition µ = Eθ [�(X)], it follows that

−H(pX(x|θ)) = Eθ [log P(X; θ)] = Eθ [〈θ,�(X)〉]−A(θ) = 〈θ, µ〉 −A(θ). (8.7)

Consider the function
F(µ, θ) = 〈µ, θ〉 − A(θ).

Let θ(µ) denote a value of θ that maximizes F(µ, θ) if such a value exists in �̃. The result
follows directly by using the definition given by Equation (8.5) together with Equation
(8.7). Otherwise, let θ(n)(µ) denote a sequence such that limn→+∞ F(µ, θ(n)(µ)) =
A∗(µ). The first statement of the theorem follows directly from this.

For the second part, choose θ ∈ �̃ and choose µ(θ) = ∇θA(θ). By the definition of
M, note that µ(θ) ∈M. Since A is convex, it follows that µ(θ) maximizes 〈θ, µ〉 −
A(θ), so that

A(θ) = 〈µ(θ), θ〉 − A∗(µ(θ)).

But, from the definition of A∗(µ), it follows that for all µ ∈M,

A(θ) ≥ 〈µ, θ〉 −A∗(µ).
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From this,
A(θ) = sup

µ∈M
{〈µ, θ〉 − A∗(µ)}

and Theorem 8.1 is established. �

The conjugate dual pair (A, A∗) for the families of exponential variables given before
are now given.

Bernoulli Recall that A(θ) = log(1+ exp{θ}) for θ ∈ R. It follows that

A∗(µ) = sup
θ∈R
{θµ− log(1+ eθ )}

The supremum is attained for θ(µ) satisfying

µ = eθ(µ)

1+ eθ(µ)
.

It follows that
eθ(µ) = µ

1− µ

and
θ(µ) = log µ− log(1− µ)

so that
A∗(µ) = µ log µ− µ log(1− µ)− log(1+ µ

1− µ
),

which gives
A∗(µ) = µ log µ+ (1− µ) log(1− µ).

Gaussian Recall that �̃ = {(θ1, θ2)|θ2 > 0} and

A(θ) = 1

2
log π − 1

2
log θ2 + θ2

1

4θ2
.

A∗(µ) = sup
θ∈�̃

{θ1µ1 + θ2µ2 − 1

2
log π + 1

2
ln θ2 − θ2

1

4θ2
}.

This is maximized when 
µ1 − θ1(µ)

2θ2(µ)
= 0

µ2 + 1
2θ2(µ)

+ θ2
1 (µ)

4θ2
2 (µ)

= 0,

which gives  θ2(µ1, µ2) = − 1
2(µ2

1+µ2)

θ1(µ) = − µ1
µ2

1+µ2
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and

A∗(µ1, µ2) = −1

2
− 1

2
log π − 1

2
log(−2(µ2

1 + µ2)).

Note that
M = {(µ1, µ2)|µ2

1 + µ2 < 0}.

Exponential distribution Recall that �̃ = (0,+∞) and that A(θ) = − log(θ). By a
straightforward computation,

A∗(µ) = −1− log(−µ)

and
M = (−∞, 0).

Poisson distribution Recall that �̃ = R and that A(θ) = exp{θ}. It is a straightforward
computation to see that

A∗(µ) = µ log µ− µ

and that
M = (0,+∞).

8.7 Kullback-Leibler divergence

Recall Definition 5.4, the Kullback-Leibler distance between two probability distributions
p and q over a finite state space X;

DKL(q|p) =
∑
x∈X

q({x}) log
q({x})
p({x}) .

When X = Zd and p and q are two probability functions, this may be written as

DKL(q|p) = Eq

[
log

q(X)

p(X)

]
, (8.8)

where X is a random vector taking values in Zd and Eq denotes expectation with respect
the probability distribution by q (i.e. q is the probability function of X). The definition
of Kullback-Leibler may be extended to continuous distributions using Equation (8.8),
where q and p denote the respective density functions. In this case, Equation (8.8) is
taken as

DKL(q|p) =
∫

Rd
q(x) log

q(x)

p(x)
dx.

When q and p are members of the same exponential family, the Kullback-Leibler diver-
gence may be computed in terms of the parameters. The key result, for expressing the
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divergence in terms of the partition function, is Fenchel’s inequality given in Equation
(8.9), which can be seen directly from the definition of A∗(µ).

A(θ)+ A∗(µ) ≥ 〈µ, θ〉, (8.9)

with equality if and only if µ = �(θ) and θ ∈ �−1(µ). That is, for µ = �(θ) and
θ ∈ �−1(µ),

A(θ)+ A∗(µ) = 〈µ, θ〉. (8.10)

Consider an exponential family of distributions, and consider two exponential parameter
vectors, θ1 ∈ �̃ and θ2 ∈ �̃. When distributions are from the same exponential family,
the notation D(θ1|θ2) is used to denote DKL(p(.|θ1)|p(.|θ2)). Set µ

i
= �(θi). Using the

parameter to denote the distribution with respect to which the expectation is taken, note
that

D(θ1|θ2) = Eθ1

[
log

p(X|θ1)

p(X|θ2)

]
= A(θ2)− A(θ1)− 〈µ1

, θ2 − θ1〉. (8.11)

The representation of the Kullback-Leibler divergence given in Equation (8.11) is known
as the primal form of the Kullback-Leibler divergence.

Taking µ
1
= �(θ1) and applying Equation (8.10), the Kullback-Leibler divergence

may also be written

D(θ1|θ2) ≡ D̃(µ
1
|θ2) = A(θ2)+ A∗(µ

1
)− 〈µ

1
, θ2〉. (8.12)

The representation given in Equation (8.12) is known as the mixed form of the
Kullback-Leibler divergence. Recall the definition of A∗ given by

A∗(µ) := sup
θ∈�̃

{〈µ, θ〉 −A(θ)}

and recall Equation (8.6) from theorem 8.1,

A(θ) = sup
µ∈M

{〈θ, µ〉 −A∗(µ)}.

Equation (8.6) may be rewritten as

inf
µ∈M

{A(θ)+ A∗(µ)− 〈θ, µ〉} = 0.

It follows that infµ∈M D̃(µ|θ) = 0.
Finally, taking µ

2
= �(θ2) and applying Equation (8.10) once again to Equation

(8.12) yields the so-called dual form of the Kullback-Leibler divergence:

˜̃D(µ
1
|µ

2
) ≡ D(θ1|θ2) = A∗(µ

1
)− A∗(µ

2
)− 〈θ2, µ1

− µ
2
〉. (8.13)
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8.8 Mean field theory

In this section, probability distributions of the form

pX(x|θ) = exp

{∑
α

θαφα(x)−A(θ)

}
h(x)

are considered. Mean field theory techniques are discussed and it is shown how they
may be used to obtain estimates of the log partition function A(θ). This is equivalent
to the problem of finding an appropriate normalizing constant to make a function into a
probability density, a problem that often arises when updating using Bayes’ rule.

Mean field theory is based on the variational principle of Equation (8.6). The two
fundamental difficulties associated with the variational problem are the nature of the
constraint set M and the lack of an explicit form for the dual function A∗. Mean field
theory entails limiting the optimization to a subset of distributions for which A∗ is
relatively easy to characterize.

More specifically, the discussion in this chapter is restricted to the case where the
functions φα are either linear or quadratic. The problem therefore reduces to considering
a graph G = (V, E), where the node set V denotes the variables and the edge set E

denotes a direct association between the variables. For this discussion, the edges in E are
assumed to be undirected. As usual, V = {X1, . . . , Xd}. Let Ṽ = {1, . . . , d} denote the
indexing set and let Ẽ = {(s, t)|(Xs, Xt ) ∈ E}. Specifically, the probability distributions
under consideration are of the form

pX(x|θ) = exp

∑
s∈Ṽ

θsxs +
∑

(s,t)∈Ẽ

θ(s,t)xsxt − A(θ)

 .

Let H denote a sub-graph of G over which it is feasible to perform exact calculations. In
an exponential formulation, the set of all distributions that respect the structure of H can
be represented by a linear subspace of the exponential parameters. Let I(H) denote the
subset of indices associated with cliques in H . Then the set of exponential parameters
corresponding to distributions structured according to H is given by

E(H) := {θ ∈ �̃ | θα = 0, α ∈ I\I(H)
}
.

The simplest example is to consider the completely disconnected graph H = (V, φ).
Then

E(H) = {θ ∈ �̃ | θ(s, t) = 0, (s, t) ∈ E
}
.

The associated distributions are of the product form

pX(x|θ) =
∏
s∈Ṽ

pXs (xs |θs).

Optimization and lower bounds Let pX(x|θ) denote the target distribution that is
to be approximated. The basis of mean field approximation is the following: any valid
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mean parameter specifies a lower bound on the log partition function, established using
Jensen’s inequality.

Proposition 8.1 (Mean Field Lower Bound)

A(θ) ≥ sup
µ∈M

{
〈θ, µ〉 − A∗(µ)

}
Proof of Proposition 8.1 The proof is given for discrete variables; the proof for contin-
uous variables is exactly the same, replacing the sum with an integral.

A(θ) = log
∑
x∈X

exp{〈θ,�(x)〉}

= log
∑
x∈X

pX(x|θ) exp{〈θ,�(X)〉 − log pX(x|θ)}

= log Eθ [exp{〈θ,�(X)〉 − log pX(X|θ)}]
(a)≥ 〈θ, Eθ [�(X)]〉 − Eθ [log pX(X|θ)}]
= 〈θ, µ〉 −A∗(µ).

The inequality (a) follows from Jensen’s inequality; the last line follows from
Theorem 8.1. �

There are difficulties in computing the lower bound in cases where there is not an explicit
form for A∗(µ). The mean field approach circumvents this difficulty by restricting to

M(G;H) :=
{
µ ∈ Rd | µ = Eθ [�(X)], θ ∈ E(H)

}
.

Note that M(G;H) ⊂M, hence

A(θ) ≥ sup
µ∈M

{
〈θ, µ〉 − A∗(µ)

}
≥ sup

µ∈M(G;H)

{
〈θ, µ〉 −A∗(µ)

}
.

This lower bound is the best that can be obtained by restricting to H .
Let µ(n) denote a sequence such that for each n, µ(n) ∈M(G, H), such that

µ(n) n→+∞−→ µ and such that

〈θ, µ(n)〉 −A∗(µ(n))
n→+∞−→ sup

µ∈M(G;H)

{
〈θ, µ〉 − A∗(µ)

}
.

Note that µ ∈M(G;H). Since θ ∈ �̃, it follows that µ ∈M. The distribution associated
with µ minimizes the Kullback-Leibler divergence between the approximating distribu-
tion and the target distribution, subject to the constraint that µ ∈M(G;H). Recall the
mixed form of the Kullback-Leibler divergence; namely, Equation (8.12).

D̃(µ|θ) = A(θ)− A∗(µ)− 〈µ, θ〉.
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Naive mean field updates In the naive mean field approach, a fully factorised distri-
bution is chosen. This is equivalent to the approximation obtained by taking an empty
edge set to approximate the original distribution. The naive mean field updates are a set
of recursions for finding a stationary point of the resulting optimization problem.

Example 8.5 Consider the sigmoid belief network model. Here X = (X1, . . . , Xd) and
X = {0, 1}d . Suppose that the distribution may be factorized along a graph G = (V, E).
Let Ẽ = {(i, j)|(Xi, Xj ) ∈ E}. The probability function is given by

pX(x|θ) = exp


d∑

j=1

θjxj +
∑

(i,j)∈Ẽ

θ(i,j)xixj − A(θ)

 .

The naive mean field approach involves considering the graph with no edges. In this
restricted class,

pX(x|θ) = exp


d∑

j=1

θjxj − A(θ(H))

 ,

where θ(H) is the collection of parameters θ
(H)
s = θs , s = 1, . . . , d and θ(H)(s, t) ≡ 0.

Note that
µs = Eθ [φs(X)] = Eθ [Xs]

and
µ(s,t) = Eθ [φs,t (X)] = Eθ [XsXt ].

When θ ∈ H , it follows that (Xs)
d
s=1 are independent, so that

µ(s,t) = Eθ [XsXt ] = µsµt .

The optimization is therefore restricted to the set of parameters

M(G;H) = {(µs)
d
s=1, (µ(s,t))(s,t)∈{1,...,d}2 |0 ≤ µs ≤ 1, µ(s,t) = µsµt .}

With the restriction to product form distributions, (Xs)
d
s=1 are independent Bernoulli

variables and hence

A∗H (µ) =
d∑

s=1

{µs log µs + (1− µs) log(1− µs).

Set

F(µ; θ) =
d∑

s=1

θsµs +
∑

(s,t)∈Ẽ

θ(s,t)µsµt −
d∑

s=1

(µs log µs + (1− µs) log(1− µs)),

then the lower bound is given by

A(θ) ≥ sup
(µs)

d
s=1∈[0,1]d

F (µ; θ).
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Note that, for each µs , the function F is strictly convex. It is easy to see that the maximum
is attained when, for all 1 ≤ s ≤ t , (µt )

d
t=1 satisfies

θs +
∑

t :(s,t)∈Ẽ

θ(s,t)µt − log
µs

1− µs

= 0,

or
log

µs

1− µs

= θs +
∑

t∈N(s)

θ(s,t)µt .

Note that if
log

y

1− y
= x,

then
y = σ(x),

where

σ(x) = 1

1+ e−x
.

The algorithm then proceeds by setting

µ(j+1)
s = σ(θs +

∑
t∈N(s)

θ(s,t)µ
(j)
t ).

As discussed in [114] (p. 222), the lower bound thus computed seems to provide a good
approximation to the true value.

8.9 Conditional Gaussian distributions

One very important family of distributions is the family of conditional Gaussian distribu-
tions . These are not of themselves of exponential type, but the conditional distributions
are of exponential type. An example of the situation in view here is found in Section 10.9,
where some of the variables are continuous and, conditioned on the discrete variables,
have Gaussian distribution.

Let V be a set of variables, where V = D ∪ C; D is a set of discrete variables and C

is a set of continuous variables. Let Ṽ denote the indexing set, where Ṽ is decomposed
into Ṽ = " ∪ �; " is the indexing set for the discrete variables and � is the indexing
set for the continuous variables. Let |"| denote the number of variables in " and let |�|
denote the number of variables in �. The random vector X of variables in V will be
written

X = (X", X�),

where X" denotes the vector of discrete variables and X� denotes the vector of continuous
variables. Random vectors will be row vectors. The state space is

X = X1 × . . .× X|"| × X|"|+1 × . . .× X|"|+|�|,
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where Xj denotes the state space for variables j . The following notation will also be
used:

X" = X1 × . . .× X|"|, X� = X|"|+1 × . . .× X|"|+|�|,
X = X" × X�.

Attention is restricted to the case where the continuous variables have Gaussian distribu-
tion, conditional on the discrete variables, so X� = R|�|. For the discrete variables,

Xj = {i(1)
j , . . . , i

(kj )

j }.

A particular configuration i ∈ X" is called a cell .
The following notation will be used to indicate that a random vector X1 conditioned

on X2 = x2 has distribution F :

X1 | X2 = x2 ∼ F.

The moment generating function is necessary to define a multivariate normal distribution.

Definition 8.6 (Moment Generating Function) Let X = (X1, . . . , Xd) be a random vec-
tor. Its moment generating function is the function MX : Rd → R, where R ∪ {+∞} ∪
{−∞}, is defined as

MX(p1, . . . , pd) = E

exp


d∑

j=1

pjXj


 .

The moment generating function is useful, because it uniquely determines the distribution
of a random vector X. That is, a joint probability determines a unique moment generating
function, and the moment generating function uniquely determines a corresponding joint
probability. The moment generating function is essentially a Laplace transform.

A multivariate normal distribution is defined as follows:

Definition 8.7 (Multivariate Normal Distribution) A random vector X = (X1, . . . , Xd)

is said to have a multivariate normal distribution, written X ∼ N(µ, C), if its moment
generating function is of the form

φ(p1, . . . , pd) = exp


d∑

j=1

pjµj + 1

2

∑
jk

pjpkCjk

 , p ∈ Rd .

If a random vector X ∼ N(µ, C), then E[Xi] = µi for each i = 1, . . . , d and
Cov(Xi, Xj ) = Cij for each (i, j). If C is positive definite, then the joint density
function of X = (X1, . . . , Xd) is given by

πX1,...,Xd
(x1, . . . , xd) = 1

(2π)d/2|C|1/2
exp

{
−1

2
(x − µ)C−1(x − µ)

}
, x ∈ Rd,
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where x = (x1, . . . , xd) and µ = (µ1, . . . , µd) are row vectors and |C| denotes the deter-
minant of C.

The conditional Gaussian distribution, or CG distribution, may now be defined.

Definition 8.8 (CG Distribution) A collection of random variables X = (X",X�

)
is said

to follow a CG distribution if for each i ∈ X",

X�|X" = i ∼ N
(
µ(i), C(i)

)
. (8.14)

The notation for such a conditional Gaussian distribution is

X ∼ CG(|"|, |�|).

If the numbers of discrete and continuous random variables are, respectively, |"| = p

and |�| = q, then X ∼ CG(p, q).
If C−1 is well defined, then the conditional density function of X� conditioned on

X" = i is

πX� |X"
(
x|i) = 1

(2π)q/2
√

detC(i)
e−

1
2 (x−µ(i))C(i)−1(x−µ(i))t , (8.15)

for all i ∈ X" such that
pX"(i) > 0.

For this discussion, it is assumed that pX"(i) > 0 for each i ∈ X".
Directly from Equation (8.15),

pX"(i)πX� |X"
(
x|i) = χ(i)eg(i)+xh(i)− 1

2 xK(i)xt

(8.16)

where χ(i) = 1 if pX"(i) > 0 and 0 if pX"(i) = 0, h(i) = C(i)−1µ(i), K(i) = C(i)−1

and

g(i) = log pX"(i)+ 1

2

(
log detK(i)− |�| log 2π − xK(i)xt

)
.

The family of joint distributions is not an exponential family, but from Equation (8.15),
it is clear that conditioning on the discrete variables gives a family of multivariate normal
distributions, which is an exponential family. The canonical parameters of this exponen-
tial family are

(
h(i), K(i)

)
and it is easy to see that the mean parameters of the CG

distribution are
(
µ(i), C(i)

)
since, conditioned on X" = i, it follows that E[X�] = µ(i)

and E[Xt
�X�] = C(i) (recall that random vectors are taken to be row vectors).

Parametrization of the CG distribution The CG distribution may be parametrized in
terms of the exponential family to which the conditional distributions belong. The canoni-
cal parameters for the joint distribution, defined by the pair of functions

(
pX" , πX�

|X"
)

are defined as (g, h, K), where the parameters (h(i), K(i)) are the canonical parameters
of the conditional distribution and g(i) is the log partition function of the conditional
distribution, conditioned on X" = i.
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Similarly, the mean parameters are defined as (p, µ, C), where (µ(i), C(i)) are the
mean parameters of the conditional distribution and p(i) is the appropriate multiplier
obtained from Equation (8.15).

Proposition 8.2 Let X have a conditional Gaussian distribution. Let V denote the set of
variables and Ṽ the indexing set. Let A and B be two disjoint sets such that Ṽ = A ∪ B,
then the conditional distribution of XA given XB = xB is conditional Gaussian.

Proof of Proposition 8.2 The following calculation shows that XA∩� | {XB = xB} ∪
{XA∩" = xA∩"} has a multivariate Gaussian distribution. Firstly, it is clear that

πXA∩� |XA∩",XB

(
xA∩� | xA∩", xB

)
= πXA∩� |X",XB∩�

(
xA∩� | x", xB∩�

)
;

this is obtained simply by reorganising the sets of variables.
The conditional density function on the right hand side is obtained by conditioning

the distribution of XA∩� | X" = x" on XB∩� = xB∩� . Since (XA∩�, XB∩�) | X" = x"
has a multivariate Gaussian distribution, and the conditional distribution of a multivariate
Gaussian, conditioning on some of its component variables is again multivariate Gaussian,
it follows that the conditional distribution is multivariate. The proof is complete. �

8.9.1 CG potentials

Definition 8.9 (Conditional Gaussian Potential) A CG potential φ
(
x
)
, for x = (i, x�) ∈

I× Rq , for a discrete space I (where x is a row vector) is any function of the form

φ
(
x
) = χ(i)eg(i)+x�h(i)− 1

2 x�K(i)xt
� ,

where χ takes the values 1 or 0 and K(i) is symmetric for each i ∈ I.
A CG potential is said to have canonical parameters (g, h,K).
If , furthermore, K(i) is positive definite for each i ∼ I, then the mean parameters are

defined by
µ(i) = K(i)−1h(i), C(i) = K(i)−1

and

pX"(i) = χ(i) exp

{
g(i)− 1

2

(
log detK(i)− q log 2π − x�K(i)xt

�

)}
,

where q = |�|.

The margins of a CG potential with respect to a subset of the continuous variables may be
computed in the standard way for multivariate Gaussian distributions, but for a potential ,
the integral may not be 1.

8.9.2 Some results on marginalization

If the variables to be integrated out are discrete, then complicated mixture distributions
arise. The following proposition gives a special case.
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Proposition 8.3 Let A ⊆ Ṽ denote a subset of the indexing set for the variables. If X is
CG and B = Ṽ \ A (namely, B is the set of all indices in Ṽ that are not in A) and B ⊆ "
and

XB ⊥ X� | X"\B,

then XA ∼ CG.

Proof of Proposition 8.3 Clearly, from the definition of a CG distribution, it is necessary
and sufficient to show that

XA∩� | X"\B ∼ N|A∩�|.

(multivariate normal, with dimension | A ∩ � |). The proof requires the following identity:
If XB ⊥ X� | X"\B , then

πX� |X"(x�|X") = πX� |XB,X"\B
(x�|xB, x"\B) = πX� |X"\B

(x�|x"\B).

This follows almost directly from the first characterization of conditional independence
from Theorem 2.1. The result in Theorem 2.1 was stated for discrete variables; it is
straightforward to verify that it holds for conditional density functions. Recall that, from
the definition of a CG distribution, πX� |X"

(
x� | x"

)
is a multivariate normal distribution.

Therefore the conditional distribution of X� conditioned on X"\B is multivariate Gaus-
sian, therefore the conditional distribution of X�∩A conditioned on X"\B is multivariate
Gaussian. The proof is complete. �

8.9.3 CG regression

Definition 8.10 (CG Regression) Let Z = (Z1, . . . , Zs) be a continuous random (row)
vector and let I be a discrete random (row) vector with probability function pI . Let I
denote the state space for I . If a random (row) vector Y = (Y1, . . . , Yr) has the property
that

Y | (I = i, Z = z) ∼ Nr

(
A(i)+ zB(i), C(i)

)
,

where for each i ∈ I

• A(i) is a 1× r row vector for each i ∈ I,

• B(i) is an s × r matrix,

• C(i) is a positive semi-definite symmetric matrix,

then Y is said to follow a CG regression.

Let V denote a set of variables, containing both discrete and continuous variables, which
have been ordered so that the probability distribution may be factorized along a directed
acyclic graph G = (V, E). Let Xγ be a continuous variable, with parent set �(γ ). Suppose
that X has a conditional Gaussian distribution. Then the conditional distribution for Xγ ,
conditioned on its parent nodes �(γ ) is the CG regression

Xγ | � (γ ) ∼ N
(
α(i)+ zβ, σ (i)

)
,
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where the discrete variables of �(γ ) take values i and the continuous variables of �(γ )

take values z. Here α(i) is a number, σ(i) > 0 and β is a column vector with dimension
equal to the dimension of the continuous component z so that zβ is a well defined inner
product. Thus, the conditional density corresponds to a CG potential φ(i, z, xγ ), equal to

φ(i, z, xγ ) = 1√
2πσ(i)

exp

{
− (xγ − α(i)+ zβ)2

2σ(i)

}
(8.17)

The canonical characteristics of this potential are easily found manipulating the expression
in Equation (8.17).

Notes The material for Chapter 8 is taken mostly from M.J. Wainright and M.I. Jordan
[115]. It is developed further in [114]. Possible improvements to the lower bound
are proposed by K. Humphreys and D.M. Titterington in [116]. The book by
O. Barndorff-Nielsen [113] is the standard treatise of exponential families and the
required convex analysis. Conditional Gaussian distributions and their applications to
Bayesian networks are discussed in [67].
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8.10 Exercises: Graphical models and exponential families
1. Which of the following families of distributions are exponential families? Obtain the

minimal sufficient statistics for those which are.

(a)

p(x|θ) =
{

1
10 x = 0.1n+ θ, n ∈ {0, 1, . . . , 9}
0 otherwise

(b) The family of N(µ, µ) distributions, where µ> 0 (that is mean and variance
both µ)

(c) The family X|X 
= 0, where X ∼ Bi(n, p).

2. Prove Lemma 8.1.

3. Consider a one parameter exponential family, in canonical parameters, with proba-
bility function, or density function,

p(x|θ) = exp{θφ(x)− A(θ)}h(x).

Show that
E[φ(X)] = A′(θ)

and
Var(φ(X)) = A′′(θ).

4. Let (X1,X2,X3) be random variables, with joint probability function

p(x1, x2, x3|η) = n!

x1!x2!x3!

3∏
j=1

p
xi

i , x1 + x2 + x3 = n,

where p1 = η2, p2 = 2η(1− η) and p3 = (1− η)2 and 0 ≤ η ≤ 1.

(a) Is this an exponential family?

(b) Obtain the minimal sufficient statistic for θ .

(c) Compute the mean parameter in terms of η.

(d) Compute the Fenchel Legendre conjugate of the log partition function.

(e) Prove that the Kullback-Leibler divergence is given by

D(θ1|θ2) = A(θ2)− A(θ1)− 〈µ1, θ2 − θ1〉.
D̃(µ1|θ2) = A(θ2)+ A∗(µ1)− 〈µ1, θ2〉
˜̃D(µ1|µ2) = A∗(µ1)−A∗(µ2)− 〈θ2, µ1 − µ2〉.

State the definitions of the terms used in this equation.
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(f) Compute the primal form of the Kullback-Leibler divergence D(θ1|θ2), where θ1

and θ2 are the canonical parameters. Compute the dual form, expressed in terms
of the mean parameters.

5. (Propositional Logic) Consider a treatment for high blood pressure which, under
‘normal’ circumstances is effective in 9 cases out of 10. The patient may have
additional conditions, which cause the treatment to fail. If the patient has condition
R, it causes the treatment to fail with probability 1

7 . If the patient has condition W , it
causes the treatment to fail with probability 1

4 . If the patient has condition C, it causes
the treatment to fail with probability 1

3 . If the patient has condition B, it causes the
treatment to fail with probability 1

2 . Assume that all these factors act independently
on the probability that the treatment fails. Compute the probabilities for success and
failure for all possible combinations of the factors listed above.

6. (Mean Field Update) Consider a probability function, given by

pX(x|θ) = exp


n∑

j=1

θ(j)x(j)+
∑

(i,j)∈E

θ(i, j)x(j)− A(θ)

 ,

where θ = {(θ(j))nj=1, (θ(j, k)), (j, k) ∈ E}, E denotes the edge set and x ∈ {0, 1}n.
Let q denote the probability function

qX(x|θ) = exp


n∑

j=1

θ(j)x(j)−AH (θ)

 .

Let
A∗H (µ) = sup

θ

{〈µ, θ〉 −AH (θ).

(a) Prove that

A∗H (µ) =
n∑

j=1

{µ(j) log µ(j)+ (1− µ(j)) log µ(j)} .

(b) Prove that

A(θ) ≥ sup
µ


n∑

j=1

θ(j)µ(j)+
∑

(j,k)∈E

θ(j, k)µ(j)µ(k)− A∗H (µ)

 .

(c) Consider the probability distribution

p(x1, x2, x3; θ) = exp


3∑

j=1

θ(j)xj + θ(1, 2)x1x2 + θ(1, 3)x1x3 − A(θ)

 .
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Show that the expression in the previous part is maximized for (µ(1), µ(2), µ(3))

that satisfy

log
µ(1)

1− µ(1)
= θ(1)+ θ(1, 2)µ(2)+ θ(1, 3)µ(3)

log
µ(2)

1− µ(2)
= θ(2)+ θ(1, 2)µ(1)

log
µ(3)

1− µ(3)
= θ(3)+ θ(1, 3)µ(1).

(d) Write a MATLAB code to compute numerical approximations to the values
(µ(1), µ(2), µ(3)) that give the naive mean field approximation to the log par-
tition function A(θ).

7. Let
X = (X", X�

) ∼ CG(|"|, 1).

Let I denote the state space for X" and let p denote the probability function for the
random vector X". Prove that

E [X�] =
∑
i∈I

p(i)µ(i)

and
Var (X�) =

∑
i∈I

p(i)σ (i)2 +
∑
i∈I

p(i) (µ(i)− E [X�])2 ,

stating clearly any results about multivariate normal random variables that you are
using.

8. Let X ∼ CG(2, 2) and let I1 and I2 be binary variables. Find the canonical parameters
for the distribution.

9. Prove that if a conditional Gaussian distribution is marginalized over a subset of the
continuous variables, the resulting distribution is again a CG distribution. Find the
canonical characteristics of the marginal distribution in terms of the original canonical
characteristics, stating clearly any results about multivariate normal random variables
that you are using.

10. Suppose that hard evidence is entered into a subset of the continuous variables of
a CG distribution. Show that the updated distribution is again a CG distribution
and express the canonical characteristics of the updated distribution in terms of the
canonical characteristics of the original distribution, stating clearly any results about
multivariate normal random variables that you are using.
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Causality and intervention
calculus

9.1 Introduction

Causality is a notion with a manipulative component. Wold R.H. Strotz and H.O.A. [117]
state:

‘. . . in common scientific usage, (causality) has the following general mean-
ing: z is the cause of y if, by the hypothesis that it is, or would be, possible,
by controlling z indirectly, to control y, at least stochastically’.

Hence, causal inference in this chapter is meant to answer to predictive queries about
the effect of a hypothetical or pondered manipulation or intervention.1 Causal predictive
inference requires a machinery to signify intervention, i.e. when one actively changes
the value of one or more of the variables. Examples of manipulations are medical treat-
ments and manual interceptions in an automatic controller. These change the states in
a data-generating mechanism by upsetting the normal forces working on it. This is the
basic principle of a ‘controlled experiment’. In order to assess whether or not a particular
variable has a causal effect on another, the values of that variable are assigned purely at
random, by the controller, without reference to any other factors.

1 There are also counter-factual causal inferences of the form of an explanation If and event A had not
occurred, then C would not have occurred , which are not explicitly covered here.

Bayesian Networks: An Introduction T. Koski, J. Noble
 2009 John Wiley & Sons, Ltd
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One argument against making causal inferences has been that statistics lacks the
language to model effects of intervention. In order to discuss effects of intervention in
the language of DAGs, an edge between two nodes in a Bayesian network is expressly
interpreted as a causal link. In other words, the states of a parent variable are said to
be direct causes, stochastically, of the states of a child variable. This is the sense in
which the discussion about causal Bayesian networks is to be understood. This does not
perhaps contribute to a deeper understanding of the generic concept of causality, but it is
sufficient for predictive causal inference, and in this setting, the modelling assumptions
are transparent.

The present chapter introduces the ‘do-calculus’ of probability updating by interven-
tion: some of the variables in a causal Bayesian network are forced to take certain values,
rather than simply being observed to have these values. If the variable is forced into a
certain value, and then the conditional probabilities computed, this is known as ‘do’ con-
ditioning; while if the variable is simply observed , this is known as ‘see’ conditioning.
The ‘do-calculus’ is due to Judea Pearl in [118] and [1]. It enables conclusions to be
drawn about the effects of active interventions, based on passive observations.

The updating of probabilities based on ‘see’ conditioning (Bayes’ rule, Jeffrey’s rule)
are defined without reference to any causal structure. The conditional probabilities are
estimated directly from observations and it is important that the variables are merely
observed and that they have not been forced. The updating associated with ‘do’ condi-
tioning depends upon the causal structure. It is the ‘do’ conditional probabilities that are
estimated in a controlled randomized experiment. The calculus described in this chapter
enables one to compute intervention probabilities from the conditional probabilities in
causal Bayesian networks.

Pearl’s ‘do-calculus’ describes how to treat a perfect intervention; namely, an inter-
vention which essentially ‘cuts off’ the influence of the parents to a node. Some real
world interventions may be modelled in this way; for example, gene knock outs. Many
interventions, however, are not so precise in their effects and Pearl’s calculus has been
extended by Eaton and Murphy in [119] to take this into account.

In times past, only a few expositions of statistics considered causal inference. A
notable exception is H.O.A. Wold [120]. Nowadays, there are discussions of causality in
statistical textbooks; for example, in D. Edwards [121], Chapter 9. Even though prob-
abilistic reasoning and statistical studies avoid claims that they have established causal
links and restrict claims to ‘correlation’ and ‘association’, statistical methods are rou-
tinely used incorrectly to justify causal inference from data, see D. Freedman [122]. D.V.
Lindley [123] quotes a statement by Terry Speed: ‘considerations of causality should
be treated as they have always been treated in statistics: preferably not at all (but if
necessary, then with great care).’ It should thus come as no surprise that the method-
ologies in Pearl [1] and Spirtes et al. [48] have met with critical reviews, for example,
[20] (Freedman and Humphreys), which should be taken seriously by every statistician
studying ‘do-calculus’.

One practical result of the theory of ‘do-calculus’ is that sets of confounding variables
(any common ancestor to two nodes in a causal DAG is a confounder) may be charac-
terized. That is, one may locate a sufficient set of variables that, if they were known, one
could establish the correct causal effect between variables of interest.

It will be shown that a sufficient set for estimating the causal effect of X on Y is
any set of non-descendants of X that d-separate X from Y after all the arrows emanating
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from X have been removed. This criterion, known as the ‘back door criterion’, provides a
mathematical definition of confounding and helps to identify accessible sets of variables
that ought to be investigated.

Another effect of the theory of ‘do-calculus’ is to give a precise meaning to the well
known phrase learning by doing in the sense that there can be perfect interventions that
can resolve the question of which structure to use from a Markov equivalence class. In
practise, a controlled experiment provides a perfect intervention.

D.V. Lindley [123] notes that the do-calculus is well adapted for Bayesian use; the
separate assessments of p(Y | see(x)) and p(Y | do(x)) do not violate coherence. Lind-
ley also states that ‘the “do”-calculus is an extremely sensible method of developing
a calculus for controlled experiments.’ ‘Do’-calculus also has applications to situations
other than controlled experiments.

9.2 Conditioning by observation and by intervention

Suppose that X = x is observed . Then the conditional probability of Y = y can be
expressed, using Bayes’ rule, as

pY |X(y|x) = pX|Y (x|y)pY (y)

pX(x)
.

This formula describes the way that the probability distribution of the random variable
Y changes after X = x is observed . This is denoted by

p(Y = y|see(x)).

The causal probability calculus, also describes how to modify the probability distribution
of the random variable Y in the presence of an active intervention to force the random
variable X to take the value x, where the intervention is independent of the state of the
system. This is denoted by X ← x. The conditional distribution of Y , after an intervention
has forced the value x on the variable X, is denoted by

p(Y = y|do(x)) = p(y‖x) = p(Y = x|X ← x).

There is a distinction between these two types of conditioning. As P. Spirtes et al. [48]
put it:

‘How can an observed distribution p be used to obtain reliable predictions
of the effects of alternative policies that would impose a new marginal dis-
tribution on some set of variables? The very idea of imposing a policy that
would directly change the distribution of some variable . . . necessitates that
the resulting distribution pMAN will be different from p. p alone cannot be
used to predict pMAN, but p and a causal structure can be.’

Here ‘MAN’ is an abbreviation of ‘manipulate’.
This chapter shows how the causal structure of the Bayesian network may be used

to construct an intervention calculus.
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9.3 The intervention calculus for a Bayesian network

Notations Consider a directed acyclic graph (DAG) G = (V, E) where the node set
V is finite. Let Ṽ denote the indexing set for the nodes. For each v ∈ Ṽ = {1, . . . , d},
the random variable Xv takes its values in a finite state space Xv = {x(1)

v , . . . , x(kv)
v }. As

usual, �j will denote the set of parent variables of variable Xj . The notation �̃j will be
used to denote the indexing set of the variables in �j .

For a set of indices A, the space XA = ×v∈AXv .
The edges E in the graph represent the causal relationships between the variables,

so that a parent of Xv is a direct cause of Xv .

XṼ = ×v∈Ṽ Xv = (X1, . . . , Xd),

while xṼ will denote a value in X1 × . . .× Xd . That is,

xṼ = ×d
v=1x

(iv)
v = (x

(i1)

1 , . . . , x
(id )

d );

that is,
XṼ = xṼ ⇔ (X1 = x

(i1)

1 , . . . , Xd = x
(id )

d ).

For any A ⊂ Ṽ , XA is defined as

XA = ×v∈AXv,

while xA will denote a value in ×v∈AXv . That is,

xA = ×v∈Ax(iv)
v .

Since the superscripts are implied, they will often be omitted in the text.
The set difference, written

Ṽ \A,

is defined as all the indices in Ṽ which are not included in A. The following notation
will be used in situations where the ordering of the variables is not important:

xṼ = ×d
v=1xv = ×v∈Ṽ \Axv ×v∈A xv = xṼ \A.xA.

Let φ be a function defined on X1 × . . .× Xd . Then the quantity
∑

Ṽ \A φ is defined as∑
Ṽ \A

φ

 (xṼ ) =
∑
xṼ \A

φ(xṼ \A.xA).

Definition 9.1 (The Intervention Formula) The conditional probability of XṼ \A = xṼ \A,
given that the variables XA were forced to take the values xA independently of all else, is
written

pXṼ ‖XA
(xṼ |XA ← xA) or pXṼ \A‖XA

(xṼ ‖xA)
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and defined as

pXṼ \A‖XA
(xṼ |XA ← xA) = pXṼ \A‖XA

(xṼ ‖xA)

= pXṼ
(xṼ )∏

v∈A pXv |�v (x
(iv)
v |x�̃v

)

=
∏

v∈Ṽ \A

pXv |�v (x
(iv)
v |x�̃v

). (9.1)

The function pXṼ \A‖XA
(.‖xA) defines a probability distribution over the space XṼ \A, the

space where the variables on which no intervention has been made take their values.

This means instantiation of the variables indexed by the set A and elimination of those
edges in E which lead from the parents of the nodes indexed by A to the nodes indexed
by A. The terminology ‘local surgery’ is used to describe such an elimination. A local
surgery is performed and the conditional probabilities on the remaining edges are mul-
tiplied. This yields a factorization along a mutilated graph. The direct causes of the
manipulated variable are put out of effect.

The idea of deletion of connections (in terms of wiping out equations in a multivariate
model) is found in R.H. Strotz and H.O.A. Wold [117].

The quantity pXṼ \A‖XA
(.‖xA) from Definition 9.1 defines a family of probability

measures over XṼ \A, which depending on the parameter xA, the values forced on the
variables indexed by A. This family includes original probability measure; if A = φ,
then

pXṼ \A‖XA
(.‖xA) = pXṼ

(.).

The family of probability measures defined in Definition 9.1 is the intervention measure.
In addition, the final expression on the right hand side of Equation (9.1) is called the
intervention formula . This formula is due to Pearl, but is also given independently in the
first edition of P. Spirtes et al. [48]. See also C. Meek and C. Glymour [124], p. 1010.

Intervention An ‘intervention’ is an action taken to force a variable into a certain state,
without reference to its own current state, or the states of any of the other variables. It
may be thought of as choosing the values x∗A for the variables XA by using a random
generator independent of the variables XṼ .

Remark In the same style of notation, conditioning by observation is

pXṼ \A|XA
(xṼ \A|see(xA)) = pXṼ \A|XA

(xṼ \A|xA). (9.2)

where, by the standard definition of conditional probability,

pXṼ \A|XA
(xṼ \A|xA) = pXṼ

(xṼ )∑
y

Ṽ
:y

A
=xA

p(X1 = yi1 , . . . Xd = yin)
. (9.3)

Comparing Equation (9.1) with Equation (9.3) gives the following corollary.
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X Y

Figure 9.1 A DAG for X having causal effect on Y .

Corollary 9.1 If Xi has no parents, i.e. if �i = φ, then for all xṼ \{i} ∈ ×j∈Ṽ \{i}Xj and
all y ∈ Xi ,

pXṼ \{i}‖Xi
(xṼ \{i}‖y) = pXṼ |Xi

(xṼ |y).

Example 9.1 Consider the DAG given in Figure 9.1, for ‘X having causal effect on Y ’.
The factorization of pX,Y along the DAG in Figure 9.1 is

pX,Y (x, y) = pY |X(y|x)pX(x)

and the intervention formula gives

pY‖X(y‖x) = pY |X(y|x).

Since X is a parent of Y , intervening to force X = x transforms the distribution over Y

in exactly the same way as observing X = x. But if instead Y is forced, the intervention
formula yields

pX‖Y (x‖y) = pX(x).

Clearly, pX‖Y (x‖y) 
= pX|Y (x|y) as functions unless X and Y are independent.
The causal graph in Figure 9.1 may be used to illustrate the following situation, where

X denotes ‘rain’, with values ‘yes’ or ‘no’, while Y denotes ‘barometer reading’, with
values ‘high’ or ‘low’.

• The reading in a barometer is useful to predict rain:

p (rain | barometer reading = high) >P (rain | barometer reading = low)

• But forcing the barometer will not cause rain:

P (rain | barometer← high) = P (rain | barometer← low)

Example 9.2: The DAG for a wet pavement Consider the DAG given in Figure 9.2,
which represents a causal model for a wet pavement.

The season A has four states: spring, summer autumn, winter. Rain B has two states:
yes/no. Sprinkler C has two states: on/off. Wet pavement D has two states: yes/no.
Slippery pavement has two states: yes/no.

The joint probability distribution is factorized as

pA,B,C,D,E = pApB|ApC|ApD|B,CpE|D.



THE INTERVENTION CALCULUS FOR A BAYESIAN NETWORK 261

A

B C

D

E

Figure 9.2 DAG for wet pavement, no intervention.

Suppose, without reference to the values of any of the other variables and without refer-
ence to the current state of the sprinkler, ‘sprinkler on’ is now enforced . Then

pA,B,C,D,E(.|C ← 1) = pA,B,C,D,E(., ., 1, ., .)

pC|A(1|.)
= pApB|ApD|B,C(.|., 1)pE|D.

After observing that the sprinkler is on, it may be inferred that the season is dry and that
it probably did not rain and so on. If ‘sprinkler on’ is enforced, without reference to the
state of the system when the action is taken, then no such inference should be drawn in
evaluating the effects of the intervention. The resulting DAG is given in Figure 9.3. It is
the same as before, except that C = 1 is fixed and the edge between C and A disappears.

The deletion of the factor pC|A represents the understanding that whatever relation-
ships existed between sprinklers and seasons prior to the action, found from

pA,B,D,E|C(., ., ., .|1)

are no longer in effect when the state of the variable is forced , as in a controlled exper-
iment, without reference to the state of the system. This is an example of the difference
between seeing and doing . After observing that the sprinkler is on, it may be inferred

A

B C = 1

D

E

Figure 9.3 Sprinkler ‘on’ is forced.
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X Z Y Z Z Y

X Y

X XZ Y Z Z Y

X Y

Figure 9.4 Three Markov equivalent graphs.

X Z = z Z = z Z = zY X Y

X Y

Figure 9.5 Graphs from Figure 9.4 with intervention Z ← z applied.

that the season is dry, that it probably did not rain and so on. No such inferences may
be drawn in evaluating the effects of the intervention ‘ensure that the sprinkler is on’.

9.3.1 Establishing the model via a controlled experiment

The three graphs in Figure 9.4 are Markov equivalent. The chains X → Z → Y and
X ← Z ← Y and the fork X ← Z → Y are all Markov equivalent, with conditional
independence structure X ⊥ Y |Z. If there are causal relations between the variables,
then it is not possible to distinguish which of the models is appropriate from the data
alone.

If one of the graphs in Figure 9.4 represents an appropriate causal structure between
the variables, and if it is possible to intervene by controlling the variables Z, then it is
possible to distinguish which of the models is appropriate. Figure 9.5 shows the associated
structural model when the control Z ← z has been applied, forcing Z to be independent
of its ancestors. A controlled experiment, where the direct causal links between Z and its
parent variables have been eliminated, will exhibit independence structure X ⊥ (Y, Z) in
the first case, X ⊥ Y |Z in the second (X, Z) ⊥ Y in the third. The original experiment
determines the equivalence; the additional controlled experiment, if it is possible to carry
it out, will determine which graph within the equivalence class is appropriate.

9.4 Properties of intervention calculus

The following propositions summarize some basic properties of intervention calculus.

Proposition 9.1 If Xi has no parents, then for all xṼ ∈ XṼ

pXṼ \{i}‖Xi
(xṼ \{i}‖xi) = pXṼ \{i}|Xi

(xṼ \{i}|xi). �

Proposition 9.2 introduces the term exogeneity . A variable is exogenous to a model if it
is not determined by other parameters and variables in the model, but is set externally
and any changes to it come from external forces. In this context, it simply means that
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‘do’ conditioning on a variable affects the offspring in the same way that it would if the
variable took that value without the external intervention.

Proposition 9.2 (Exogeneity and Invariance) For each j = 1, . . . , d , let �j denote the
set of parent variables for variable Xj , �̃j the indexing set for the variables in �j ,
so that X�̃j

denotes the state space for �j . For each variable in the variable set V =
{X1, . . . , Xd}, exogeneity holds, where exogeneity for variable Xj is defined as follows:
for each (x, π) ∈ Xj × X�̃j

,

pXj ‖�j
(x‖π) = pXj |�j

(x|π). (9.4)

For all j = 1, . . . , d and each S ⊆ Ṽ such that S ∩ ({j } ∪ {�̃j }) = φ, modular-
ity/invariance holds. This is defined as follows for each (x, π, xS) ∈ Xj × X�̃j

× XS ,

pXj ‖�j ,XS
(x‖π, xS) = pXj |�j

(x|π). (9.5)

Proof of Proposition 9.2 Equation (9.4) is established first. pXj ‖�j
(.‖π) is a marginal

distribution which depends on the enforced value �j ← π . For all (x, π) ∈ Xj × X�̃j
,

pXj ‖�j
(x‖π) =

∑
xṼ \�̃j

|xj=x

pXṼ \�̃j
‖�j

(xṼ \�̃j
‖π).

An application of the intervention formula (9.1) yields

pXj ‖�j
(x‖π) =

∑
xṼ \�̃j

|xj=x

 ∏
v∈Ṽ \�̃j

pXv |�v(xv|x�̃v
)

∣∣∣∣∣∣
(xj ,x�̃j

)=(x,π)

.

Successive application of the distributive law, together with∑
x∈Xv

pXv |�v(x|πv) = 1

for any πv ∈ X�̃v
gives

pXj ‖�j
(x‖π) = pXj |�j

(x|π)

for all (x, π) ∈ Xj × X�̃j
as required. The proof of Equation (9.5) may be carried out

by a similar marginalization. �

The property described by Equation (9.5) expresses the notion of invariance, or modularity
found in Woodward [21]. Once all the direct causes of a variable Xj are controlled, no
other interventions will affect the probability of Xj .

The following property is another straightforward consequence of the definition.

Proposition 9.3 For any (x, π) ∈ Xj × X�̃j
,

p�j ‖Xj
(π‖x) = p�j

(π).
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Proof of Proposition 9.3 By marginalization, followed by an application of the inter-
vention formula (9.1), for each (x, π) ∈ Xj × X�̃j

,

p�j ‖Xj
(π‖x) =

∑
xṼ \({j}∪{�j })

pXṼ \({j}∪�̃j ),�‖X(xṼ \({j }∪�̃j
, π‖x)

=
∑

xṼ \({j}∪�̃j )

pXṼ
(xV )

pXj |�j
(x|π)

∣∣∣∣∣∣∣
(xj ,x�̃j

)=(x,π)

=
∑

xṼ \({j}∪�̃j )
pXṼ

(xṼ )

pXj |�j
(x|π)

∣∣∣∣∣∣
(xj ,x�̃j

)=(x,π)

= pXj ,�j
(x, π)

pXj |�j
(x|π)

= p�j
(π).

�

The probability measure after intervention is factorized along the mutilated graph. The
following proposition determines the probabilities on the mutilated graph.

Proposition 9.4 Let A ⊂ V and let Ã denote the indexing set for the variables in A. Then,
for Xj 
∈ A and any (x, x�̃j \Ã, xA) ∈ Xj × X�̃j

× XA,

pXj |�j \A‖A(x|x�̃j \Ã‖xÃ) = pXj |�j \A,�j∩A(x|x�̃j \Ã, x�̃j∩Ã),

where the conditioning is taken in the sense of: first the ‘do’ conditioning XÃ ← xÃ is
applied and then the set of variables �j \A is observed.

The causality calculus means here that the conditional specifications are unchanged for
variables which are not used for the intervention.

Proof of Proposition 9.4 By definition of conditional probability,

pXj |�j \A‖A(x|x�̃j \Ã‖xÃ) =
pXj ,�j \A‖A(x, x�̃j \Ã‖xA)

p�j \A‖A(x�̃j \Ã‖xA)
.

An application of the intervention formula to the numerator gives

pXj ,�j \A‖A(x, x�̃j \Ã‖xÃ) =
∏

v∈{j }∪�̃j \Ã

pXv |�v (xv|x�̃v
)

and to the denominator gives

p�j \A‖A(x�̃j \Ã‖xÃ) =
∏

v∈�̃j \Ã

pXv |�v(xv|x�̃v
).
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Putting these together clearly gives

pXj |�j \A‖A(x|x�̃j \Ã‖xÃ) = pXj |�j \A,�j∩A(x|x�̃j \Ã, x�̃j∩Ã),

as claimed. The proof is complete. �

As Lauritzen [125] states, the intervention calculus is shown to have the property that
conditional specifications are unchanged for variables that are not used in the intervention.

Example 9.3: Wet pavement revisited Consider the conditional probability
pD|B‖C(.|.‖1). Here B and C are parents of D, and in the notation of the preceding
proposition (using A in the sense of the previous proposition), D = Xj , �j \A = B,
XÃ = C and xÃ = x�̃j∩Ã = 1. Plugging into the formula in the preceding proposition,

pD|B‖C(.|.‖1) = pD|B,C(.|., 1).

The right hand side may be thought of as a pre-intervention probability , which can be
estimated from the data before the intervention C ← 1 is made. In this case, an estimate of
the pre-intervention probability pD|B,C(.||., 1) is also an estimate of the post-intervention
probability pD|B‖C(.|.‖1).

9.5 Transformations of probability

The following proposition is almost a direct consequence of the definition. It presents a
simple rearrangement of the intervention formula in a special case.

Proposition 9.5

pXṼ \{j}‖Xj
(xṼ \{j }‖x) = pXṼ \({j}∪�̃j )|Xj ,�j

(xṼ \({j }∪�̃j )|x, x�̃j
)p�j

(x�̃j
)

Proof of Proposition 9.5 An application of the definition gives

pXṼ \{j}‖Xj
(xṼ \{j }‖x) =

∏
v∈Ṽ \{j }

pXv |�v(xv|x�̃j
).

One term has been removed in the product, namely, pXj |�j
(x|x�̃j

), so that (with xj = x)

∏
v∈Ṽ \{j }

pXv |�v (xv|x�̃j
) = pXṼ

(xṼ )

pXj |�j
(x|x�̃j

)

=
pXṼ

(xṼ )p�j
(x�̃j

)

pXj ,�j
(x, x�̃j

)

= pXṼ \({j}∪�̃j )|Xj ,�j
(xṼ \({j }∪�̃j )|x, x�̃j

)p�j
(x�̃j

)

as required. �
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The effect of the intervention may be viewed as follows: all the conditional probability
potentials remain the same except for pXj |�j

. After the intervention Xj ← x, this is
replaced by the potential:

pXj |�j
(x|π) = 1 ∀π ∈ X�̃j

,

and
pXj |�j

(y|π) = 0 ∀y ∈ Xj \{x}, π ∈ X�̃j
.

Consider the probability over the remaining variables in V \{Xj } after conditioning on
{Xj = x}. The following two equations illustrate the differences in the way the probability
mass is distributed following ‘see’ conditioning on the one hand and ‘do’ conditioning
on the other.

pXṼ \A|XA
(xṼ \A|see(xA)) = pXṼ \A|XA

(xṼ \A|xA) = pXṼ
(xṼ )

pXA
(xA)

.

It follows that for any set of variables

pXṼ \A‖XA
(xṼ \A‖do(xA)) =

∏
v∈Ṽ \A

pXv |�v (xv|x�̃v
).

Proposition 9.6 (Adjustment for Direct Causes) Let B ⊂ V be a set of random variables
in a DAG that are disjoint from {Xj } ∪�j and let B̃ denote the indexing set for the
variables in B. Then for any (x, xB̃) ∈ Xj × XB̃ ,

pB‖Xj
(xB̃‖x) =

∑
X�̃j

pB|Xj ,�j
(xB̃ |x, x�̃j

)p�j
(x�̃j

). (9.6)

Proof of Proposition 9.6 Firstly,

pB‖Xj
(xB̃‖x) =

∑
XṼ \(B̃∪{j})

pV \{j }(xṼ \{j }|x).

By Proposition 9.5, this may be written as

pB‖Xj
(xB̃‖x) =

∑
XṼ \(B̃∪{j})

pV \({Xj }∪�j )(xṼ \({j }∪�̃j )|x, x�̃j
)p�j

(x�̃j
).

A marginalization over XṼ \(B̃∪{j }∪�̃j ) gives

pB|Xj
(XB̃ |x) =

∑
X�̃j

pB|Xj ,�j
(xB̃ |x, x�̃j

)p�j
(x�̃j

)

as required. The proof is complete. �

In Proposition 9.6, the ‘do’ probability is computed by first ‘see’ conditioning on the
direct causes �j of Xj and then averaging over them.
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9.6 A note on the order of ‘see’ and ‘do’ conditioning

The causal calculus is well defined for a causal network if firstly some of the variables
are forced, irrespective of the state of the network, and then some other variables are
observed. Consider a set of variables V = {X1, . . . , Xd}. Let A, B and C denote three
disjoint subsets of variables and Ã, B̃, C̃ their indexing sets. Conditioning is to be read
from right to left. The quantity

pA|B‖C(xÃ|xB̃‖xC̃)

may be computed quite easily using the calculus developed so far by first modifying the
network according to the ‘do’ conditioning C ← xC̃ , and then applying Bayes’ rule to
condition on {B = xB̃} in the usual way.

In terms of the ‘causal’ interpretation defined above, conditioning the other way
round, first see B = xB̃ and then force C = xC̃ does not appear to be so well defined. It
is difficult to give it a ‘causal’ interpretation, particularly if there are variables in C that
are ancestors of variables in B. Mathematically, the ‘see’ followed by ‘do’ conditioning,
for a causal network, can be defined, although the result may not have a practical value. If
the ‘see’ conditioning is carried out first, then these variables can no longer be influenced
by the ‘do’ conditioned variables, even though the ‘do’ conditioned variables may be
ancestors.

If B = xB̃ is observed , these variables are now fixed, so the states of the variables
in C can no longer have any influence. More precisely, to define ‘see’ followed by
‘do’ conditioning, one has to assume that the variables V = {X1, . . . , Xd} have a causal
order , (Xσ(1), . . . , Xσ(d)), where Xσ(1) has no ancestors and, for each j ∈ {2, . . . , d},
the parent set is either empty, or is chosen from (Xσ(1), . . . , Xσ(j−1)). Furthermore, it
is assumed that the same causal order holds for the remaining random variables after a
‘see’ conditioning of the network. After the ‘see’ conditioning C = xC̃ , the conditional
probability potentials pXσ(j)|�σ(j)

are replaced, for σ(j) 
∈ C̃, by

p̃Xσ(j)|�σ(j)\C = pXσ(j)|�σ(j)\C,C(.|., xC̃).

The ‘do’ conditioning is then applied to this new network.

Example 9.4 Consider three variables (X1,X2,X3), where the probability distribution
may be factorized along the DAG given in Figure 9.6. Consider pX1|X3‖X2(x1|x3‖x2) and
pX1‖X2|X3(x1‖x2|x3), where the conditioning is taken from right to left.

X1

X2

X3

Figure 9.6 DAG for ‘see’ and ‘do’ example.
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X1 X2

Figure 9.7 DAG for ‘see’ and ‘do’ example, after ‘see’ conditioning.

In terms of the original tables,

pX1|X3‖X2(x1|x3‖x2) = pX1(x1)pX3|X1,X2(x3|x1, x2)∑
y pX1(y)pX3|X1,X2(x3|y, x2)

. (9.7)

If the ‘see’ conditioning X3 = x3 is applied first, the network after this conditioning is
given by Figure 9.7. The conditional probability potentials, after conditioning on X3 = x3,
are given by p̃X1 and p̃X2|X1 , which are given in terms of the original potentials in
Equations (9.8) and (9.9).

p̃X1(.) = pX1|X3(.|x3) =
∑

z pX1(.)pX3|X1,X2(x3|., z)pX2|X1(z|.)∑
y,z pX1(y)pX3|X1,X2(.|y, z)pX2|X1(z|y)

(9.8)

p̃(X2|X1) = p(X2|X1, X3 = x3) = p(X1)p(X2|X1)p(X3 = x3|X1,X2)∑
y p(X1)p(X2 = y|X1)p(X3 = x3|X1,X2 = y)

.

(9.9)

Now, the application of the ‘do X2 ← x2’ conditioning breaks the causal link between
X1 and X2, so that

pX1‖X2|X3(x1‖x2|x3) = p̃X1(x1) =
∑

z pX1(x1)pX3|X1,X2(x3|x1, z)pX2|X1(z|x1)∑
y,z pX1(y)pX3|X1,X2(x3|y, z)pX2|X1(z|y)

. (9.10)

The formula is clearly different from the formula for pX1|X3‖X2(x1|x3‖x2), which is given
by Equation (9.7).

Although a mathematical definition may be given to applying a ‘see’ conditioning
first, it is difficult to see how to make sense of this in terms of causality.

9.7 The ‘Sure Thing’ principle

The following result is taken from [1], p. 181, where Pearl refers to it as the ‘Sure Thing’
principle.

Proposition 9.7 Consider three binary variables A, B, C with the network given in Figure
9.10. If

pB|C‖A(1|1‖1) < pB|C‖A(1|1‖0)

and
pB|C‖A(1|0‖1) < pB|C‖A(1|0‖0)

then
pB‖A(1‖1) < pB‖A(1‖0).

The notation means: first A is forced, then C is observed.
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Proof of Proposition 9.7 Firstly,

pB‖A(1‖1) = pB|C‖A(1|1‖1)pC‖A(1‖1)+ pB|C‖A(1|0‖1)pC‖A(0‖1).

Since C is a parent of A,
pC‖A(.‖1) = pC(.).

It follows that

pB‖A(1‖1) =
1∑

x=0

pB|C‖A(1|x‖1)pC‖A(x‖1) =
1∑

x=0

pB|C‖A(1|x‖1)pC(x).

Similarly,

pB‖A(1‖A0) =
1∑

x=0

pB|C‖A(1|x‖0)pC(x).

It now follows directly from the assumptions that

pB‖A(1‖1) < pB‖A(1‖0),

as advertized. �

Simpson’s paradox resolved by a controlled experiment Consider three binary vari-
ables, A,B and C. Simpson’s paradox is the observation that there are situations where

pB|C,A(1|1, 1)/pB|C,A(0|1, 1)

pB|C,A(1|1, 0)/pB|C,A(0|1, 0)
> 1 and

pB|C,A(1|0, 1)/pB|C,A(0|0, 1)

pB|C,A(1|0, 0)/pB|C,A(0|0, 0)
> 1,

but
pB|A(1|1)/pB|A(0|1)

pB|A(1|0)pB|A(0|0)
< 1. For example, suppose that A denotes ‘treatment’, B denotes

‘recovery’ and C denotes ‘gender’. With no information about the causal relations
between the variables, Simpson’s paradox states that even if the ‘treatment’ may improve
the chances of recovery for both men and women, it may nevertheless be bad for the
population as a whole.

If the model is that shown in Figure 9.8, where A denotes ‘treatment’, (1 = applied,
0 = no treatment), C ‘gender’ (male/female), B recovery (yes/no) and the value of A is
randomly assigned to each individual so that a proper controlled experiment is carried
out, then the causal link between C and A is broken. The ‘sure thing’ principle may then
be applied, which states that if the treatment improves the chances of recovery for both
men and women, it is good for the population as a whole.

C

A B

Figure 9.8 A = treatment, B = recovery, C = gender.
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C

A B

Figure 9.9 A = treatment/B = recovery/C = blood pressure.

Now consider the DAG given in Figure 9.9, where A denotes treatment, B recovery
and C blood pressure.

Suppose that ‘treatment’ is randomly assigned to individuals in an appropriate manner
so that a controlled experiment is carried out. In this model, blood pressure is on the
causal pathway influencing recovery. The controlled experiment has not removed the
direct causal link between A and B and hence the possibility of Simpson’s paradox
cannot be excluded. It could be that although the treatment is comparatively good within
the group where high blood pressure is observed after treatment and also comparatively
good within the group where low blood pressure is observed after treatment, it may
be bad for the population as a whole. This could happen if ‘treatment’ increases blood
pressure and increased blood pressure reduces the chances of recovery.

9.8 Back door criterion, confounding and identifiability

Given a causal Bayesian network and observational data, where the values of the vari-
ables in a set A have been forced (due, for example, to a controlled experiment), the
task is to estimate the conditional probability distribution over the remaining variables;
pV \A‖A

(
xṼ \Ã‖xÃ

)
. The problem is simplified if pV \A‖A

(
xṼ \Ã‖xÃ

)
can be modified until

no ‘do’ operations appear, so that the required conditional probability potentials may be
estimated using observational data, thus reducing a causal query to a probabilistic query.

Confounding Consider the DAG given in Figure 9.10.
The factorization is

pA,B,C = pB|A,CpA|CpC.

Consider pB‖A(.‖a). Note that

pB‖A(.‖a) =
∑
c∈XC

pB,C‖A(., c‖a)

and that

pB,C‖A(., .‖a) = pB|C‖A(.|.‖a)pC‖A(.‖a) = pB|A,C(.|a, .)pC,

C

A B

Figure 9.10 Illustration for Confounding.
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where in the second term, the ‘do’ conditioning of A← a is applied first, and then C is
observed. It follows that

pB‖A(.‖a) =
∑
c∈XC

pB|A,C(.|a, c)pC(c).

This shows that to estimate pB‖A(.‖a) from data, it is necessary to be able to estimate
the potentials pB|A,C and pC . If C is observable, then the effect on the probability
potentials of B of manipulating A may be estimated. But if C is a hidden random
variable (sometimes the term latent is used) in the sense that no direct sample of the
outcomes of C may be obtained, it will not be possible to estimate the probabilities used
on the right hand side and hence it will not be possible to predict the effect on B of
manipulating A. This is known as confounding .

Semi-Markovian model The model described above is an example of a semi-
Markovian model . Let V = {X1, . . . , Xd} and suppose that the probability distribution
over the variables V may be factorized along a directed acyclic graph G = (V, E). Now
suppose that V = U ∪ Z, where U is a set of unobserved variables, while Z is the set of
observed variables. Assume that in G, no variable in U is a descendant of any variable
in Z. Such a model is known as a semi-Markovian model , following [126]. Let Z̃ and Ũ

denote the indexing sets for the variables in Z and U respectively. The joint distribution
of the observed variables becomes a mixture of products of conditional probabilities,

pZ

(
xZ̃

) =∑
XŨ

∏
v∈Z̃

pXv |�v

(
xv | x�̃v

)
pU

(
xŨ

)
. (9.11)

Now consider an intervention ZT ← xZT
, where ZT ⊂ Z. Then the ‘do’ conditional

probability for the remaining variables in Z is

pZ

(
xZ̃

) =∑
XŨ

∏
v∈Z̃\Z̃T

pXv |�v

(
xv | x�̃v

)
pU

(
xŨ

)
. (9.12)

The question of identifiability , considered next, is whether it is possible to express

pZ\ZT ‖ZT
(xZ̃\Z̃T

‖xZ̃T
)

uniquely as a function of the observed distribution pZ

(
xZ̃

)
; that is, without involving

either the unknown conditional probability tables PZv |�v for v ∈ {1, . . . , d} such that
�v ∪ U 
= φ or the unknown distribution pU

(
xŨ

)
.

Back door criterion Recall that there are three basic types of connection in a DAG:
chain, collider and fork. Any sequence of nodes with edges between successive nodes,
regardless of direction, is known as a trail . Two subsets of nodes A and B are d-separated
by a set of nodes C if on all trails between a node in A and B there is an intermediate
node X such that

• either the connection is a chain or a fork and X ∈ C

• or the connection is a collider and neither X nor any of its descendants are in C.
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The notation
A ⊥ B‖GC

denotes that A and B are d-separated by C. That is, C blocks every trail from a node
in A to a node in B; if all the nodes of C are instantiated, then there are no active
trails between A and B. Theorem 2.2 states that A ⊥ B‖GC implies that A ⊥ B|C. That
is, if the probability distribution factorizes along the graph G, then d-separation implies
conditional independence.

Definition 9.2 (Back Door Criterion) A set of nodes C satisfies the back door criterion
relative to an ordered pair of nodes (Xi,Xj ) ∈ V × V if

1. no node of C is a descendant of Xi and

2. C blocks every trail (in the sense of d-separation) between Xi and Xj which con-
tains an edge pointing to Xi .

If A and B are two disjoint subsets of nodes, C is said to satisfy the back door criterion
relative to (A, B) if it satisfies the back door criterion relative to any pair (Xi, Xj ) ∈
A× B.

The name ‘back door criterion’ reflects the fact that the second condition requires that
only trails with nodes pointing at Xi be blocked. The remaining trails can be seen as
entering Xi through a back door.

Example 9.5 Consider the back door criterion DAG, given in Figure 9.11. The sets
of variables C1 = {X3, X4} and C2 = {X4, X5} satisfy the back door criterion relative
to the ordered pair of nodes (Xi, Xj ), whereas C3 = {X4} does not satisfy the criterion
relative to the ordered pair of nodes (Xi, Xj ); if X4 is instantiated, the Bayes ball may
pass through the collider connection from X1 to X2.

Identifiability Suppose that X1, . . . , Xn and Z are sets of variables in a Bayesian
network and that Z satisfies the back door criterion with respect to (Xi, Xj ). The aim is
to show that the set of variables Z plays a similar role to the variable C in the discussion
on confounding. Firstly, since no variables of Z are descendants of Xi , it follows that

X1 X2

X3 X4 X5

Xi X6 Xj

Figure 9.11 Back door criterion.
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pZ‖Xi
(.|xi) = pZ(.). This is seen as follows: first, marginalise over all variables that are

descendants of Xi . Now consider the resulting reduced DAG, where all descendants of
Xi have been eliminated. The result follows directly, by noting that since no variables of
the set Z are descendants of Xi , and the conditional probability tables for the Bayesian
network remain unchanged except that the causal links between the set of variables
�i ∪ {Xi} removed. It follows that

pXj ‖Xi
(.‖xi) =

∑
z∈XZ

pXj ,Z‖Xi
(., z‖xi)

=
∑
z∈XZ

pXj |Z‖Xi
(.|z‖xi)pZ‖Xi

(z‖xi)

where the conditioning is to be taken that first Xi → xi is imposed and then Z is
observed. Since Z d-separates Xi from Xj via any trail with arrow pointing into Xi , it
follows that the same probability tables are used for the computation of pXj |Z‖Xi

(.|.‖xi)

and pXj |Z,Xi
(.|., xi), from which

pXj |Z‖Xi
(.|.‖xi) = p(Xj |Z,Xi = xi),

so that

pXj ‖Xi
(.‖xi) =

∑
z∈XZ

pXj |Z,Xi
(.|z, xi)pZ(z). (9.13)

If a set of variables Z satisfying the back door criterion with respect to (Xi, Xj ) can
be chosen such that pZ and pXj |Z,Xi

can be estimated from the observed data, then the
distribution pXj ‖Xi

can also be estimated from the observed data.

Definition 9.3 (Identifiability) If a set of variables Z satisfies the back door criterion
relative to (X, Y ), then the causal effect of X to Y is given by the formula

pY‖X(.‖x) =
∑
z∈XZ

pY |X,Z(.|x, z)pZ(z) (9.14)

and the causal effect of X on Y is said to be identifiable.

The formula given in Equation (9.14) is named adjustment for concomitants . The word
identifiability refers to the fact that the existence of the concomitants Z satisfying the
back door criterion makes it possible to compute, or identify, pY‖X(y‖x) uniquely from
any p which is strictly positive over V .

Notes In the main, Chapter 9 presents material found in [125], [1] and [121]. The paper
[127] summarizes the recent developments in the problem of identifiability and presents
an algorithmic solution. The identifiability question asks whether it is possible to compute
the probability of some set of effect variables given an intervention on another set of
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variables in the presence of non-observable variables, using data that is not obtained
from a controlled experiment. The results by Y. Huang, M. Valtorta in [127] show that
the do-calculus rules of J. Pearl [118] and [128] are complete in the sense that if a
causal effect is identifiable, then there exists a sequence of applications of the ‘do’ rules
that transforms the causal effect formula to a formula that only contains observational
quantities. The philosophical paper [129] argues for Bayesian networks as the proper
representation of stochastic causality.
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9.9 Exercises: Causality and intervention calculus
1. Consider a Bayesian network with the following DAG

A B C

Figure 9.12 Directed acyclic graph.

where A, B and C are binary variables (i.e. taking values either 0 or 1), together with
probabilities

pA =
(

1

2
,

1

2

)

pB|A =
A\B 1 0

1 0.75 0.25
0 0.25 0.75

pC|B =
B\C 1 0

1 0.125 0.875
0 0.675 0.375

(a) Compute pB‖C(1‖1).

(b) Compute pA‖C(1‖1).

(c) Compute pA‖B(1‖1)

(d) Compute pC‖B(1‖1)

2. Consider the joint probability table for the three variables A, B and C.

pA,B,C =

C

A B 1 0
1 1 0.15 0.22

0 0.04 0.09
0 1 0.1 0.03

0 0.26 0.11

Compute pA,B , pB , pB,C and pC|A,B(1|., .). Compare your answers with pC|B(1|.).
Show that this is an example of Simpson’s paradox .

Suppose that the values in the table for pA,B,C are the ‘empirical’ probabilities
obtained from 400 observations. The following model is considered to be appropriate.

CAB

Figure 9.13 Directed acyclic graph.
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(a) Which conditional probabilities do we need for this Bayesian network?

(b) What are the estimates of pA,B,C obtained using these estimates for the conditional
probability?

(c) How many parameters does this model have?

(d) Let x denote the empirical probabilities and y denote the fitted probabilities.
Calculate

dK(x, y).

If the fitted model holds, then one would expect

400dK(x, y) ∼ χ2
1 .

The reason: the empirical distribution has seven parameters, while the fitted model
has six parameters. For large numbers of observations, the Kullback-Leibler

distance is approximately
∑

j

(xj−yj )2

xj
. Multiply by the number of observations

to obtain the χ2 statistic. Degrees of freedom is the difference in number of
parameters.

(e) Assuming that the probabilities given in the table for p(A, B,C) are exact, and
the distribution factorizes according to the DAG given in Figure 9.14, compute

pC|A‖B(1|1‖1)

pC|A‖B(1|1‖0)

pC|A‖B(1|0‖1)

pC|A‖B(1|0‖0)

and compare with pC‖B(1‖1) and pC‖B(1‖0).

A

B C

Figure 9.14 DAG for A,B,C.

3. Let A,B,C, W be disjoint sets of nodes in a Bayesian network. Let G denote the
directed acyclic graph describing the causal network, and let G−C denote the graph
with all edges between C and parents of C removed.

Prove that if A and B are d-separated by (C, W) on the graph G−C , then

pA|W,B‖C(xA|xW , xB, ‖xC) = pA|W‖C(xA|xW‖xC),

where the conditioning is performed from right to left.
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4. Let G be a directed acyclic graph, and suppose that a probability distribution p may be
factorized along G. Let G−X denote the graph obtained by deleting from G all arrows
pointing towards X (that is, all links between X and its parents are deleted). Prove
that if Y and Z are d-separated in G−X by X, then

pY |Z‖X(.|.‖x) = pY‖X(.‖x),

where the conditioning is taken from right to left.

5. Suppose the causal relations between the variables (X1,X2,X3,X4,X5, X6, Y, Z) may
be expressed by the DAG given in Figure 9.15. Prove that C1 = {X1, X2} and C2 =
{X4, X5} satisfy the back door criterion relative to the ordered pair of nodes (Y, Z),
while C3 = {X4} does not. Which sets of nodes satisfy the back door criterion with
respect to the ordered set of nodes (Z, Y )?

X1 X2

X3 X4 X5

Y X6 Z

Figure 9.15 Causal relations between variables.

6. Let a set of variables C satisfy the back door criterion relative to (X, Y ). Prove that

pY‖X(y‖x) =
∑

c

pY |C‖X(y|c‖x)pC‖X(c‖x).

7. Let C be a set of variables in a Bayesian network and let X be a variable such that
C contains no descendants of X. Prove, from the definition, that

pC‖X(c‖x) = pC(c).

8. Let V = {X1, . . . , Xd} denote a set of variables. Let V = Z ∪ U , where the variables
in Z are observable and the variables in U are unobservable. Assume that the proba-
bility distribution over the variables in V may be factorized along a directed acyclic
graph G = (V, E), where no variable in U is a descendant of any variable in Z; that
is, the model is semi-Markovian. Consider a single variable, say Xj ∈ Z. Assume that
there exists no fork of the form {(Xi, Xj ), (Xi, Xk)}, where Xk ∈ Z and j 
= k, and
Xi ∈ U is an unobservable variable. That is, there are no confounders between Xj

and the rest of the observable variables. Then show that

pZ\{Xj }‖Xj
(xZ̃\{j }‖xj ) = pZ\({Xj }∪�j )|Xj ,�j

(
xZ̃\({j }∪�̃j )|xj , x�̃j

)
p�j

(x�̃j
).
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The junction tree and probability
updating

A Bayesian network presents a factorization of a probability distribution according to
a directed acyclic graph. Chapter 4 introduced the basic material about decomposable
graphs that enabled the construction of a junction tree from a directed acyclic graph.
Trees often provide the basis of efficient algorithms and in this chapter, the junction
tree is used as the basis for developing a method of updating the probability distribu-
tion.

The probability updating task is the following: let X = (X1, . . . , Xd) denote a set of
variables, with a probability function pX that factorizes along a directed acyclic graph to
form a Bayesian network. The task is to compute the conditional probability distribution
of X given some evidence (Definition 3.1) that is entered into the network. Chapter 10
develops a method based on the junction tree and applies it for hard evidence received
in a network where all the variables are discrete. Section 10.9 extends the technique to
hard evidence received for a conditional Gaussian (CG) distribution (defined in Section
8.9) and Section 10.10 to virtual and soft evidence.

10.1 Probability updating using a junction tree

Let e = (e1, . . . , em) denote hard evidence potential (Definition 3.1); that is, a collection
of hard findings. A hard finding is defined as an instantiation of a variable in the network;
for each j ∈ {1, . . . , m}, ej is a potential containing 0s and 1s corresponding to the
instantiation. The task is to compute the conditional distribution pX|e given the hard

Bayesian Networks: An Introduction T. Koski, J. Noble
 2009 John Wiley & Sons, Ltd
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evidence e. Following Equation (3.3), the conditional distribution is defined as

pX|e =
pX;e
p(e)

,

where
p(e) =

∑
x∈X

pX;e(x)

and

pX;e = pX

m∏
j=1

ej .

The main object of this chapter is to illustrate how this may be carried out effectively
using the following procedure:

1. Moralize the DAG of the Bayesian network.

2. Triangulate the moralized graph.

3. Let the cliques of the triangulated graph be the nodes of a tree, which is a junction
tree.

4. Use the Markov properties of the probability distribution to associate potentials to
the separators and nodes of the junction tree.

5. Propagate (i.e. send messages to update the potentials on the separators and nodes
of the junction tree) through the junction tree.

For producing a tree that is computationally efficient, the most important step of the
construction is the triangulation of the moralized graph. There are many ways to add
edges to triangulate a graph and it is important, with large networks, to find a method
that is optimal. An efficient triangulation will lead to a junction tree that produces the
smallest possible largest clique size, and should find the triangulation within polynomial
time.

An algorithm for constructing a triangulation that is close to optimal, when the state
spaces (Xv)

d
v=1 are the same size for each variable in (X1, . . . , Xd) is found in [130].

In general, probabilistic inference is an NP-hard problem. The complexity of the
inference techniques are not discussed in this text; an analysis of the complexity is found
in [82].

10.2 Potentials and the distributive law

Notations The following paragraph repeats various notations. Let Ṽ = {1, . . . , d}
denote the indexing set for the d nodes for a graph G = (V, E). To each node is
associated a random variable. To each node j ∈ Ṽ , is associated a finite state space
Xj = (x

(1)
j , . . . , x

(kj )

j ), the set of possible states for the random variable Xj . The state
space of X = (X1, . . . , Xd) is denoted by X = ×d

j=1Xj . Let D ⊂ Ṽ denote a subset of
the nodes. The notation

xD = ×v∈Dxv
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is used to denote a configuration (or a collection of outcomes) on the nodes in D. The
state space of the variables in D is denoted by

XD = ×v∈DXv.

Suppose D ⊆ W ⊆ Ṽ and that xW ∈ XW . That is, xW = ×v∈Wxv . Then, ordering the
variables of W so that XW = XD × XW \D , the projection of xW onto D is defined as the
variable xD that satisfies

xW = (xD, xW \D),

where the meaning of the notation ‘(, )’ is clear from the context. Here A\B denotes the
set difference, i.e. the elements in the set A not included in B.

Definition of a potential and charge Let

� = {φ1, . . . , φm}
be a set of non-negative real valued functions on X. The functions φj ∈ � are called
potentials . The set of potentials � is known as a charge. For each j = 1, . . . ,m, XDj

will denote the state space for potential φj , while the set Dj ⊂ Ṽ denotes the set of
indices for the argument variables of φj . The set XDj

is called the domain of φj .
The joint probability function pX1,...,Xd

is itself a potential, with domain X. If the
joint probability function may be factorized according to a DAG G = (V, E), the decom-
position is written as

pX1,...,Xd
=

d∏
j=1

pXj |�j
.

Then for each j = 1, . . . , d , φj defined by φj (xv, x�̃j
) = pXj |�j

(xj |x�̃j
) is a potential

with domain XDj
= Xj × X�̃j

and Dj = {j} ∪ �̃j .

Example 10.1 Consider a probability function over six variables that may be factorized
along the directed acyclic graph in Figure 10.1.

The potentials corresponding to the conditional probabilities are

φ1 = pX1, φ2 = pX2|X1 , φ3 = pX3|X1 ,

φ4 = pX4|X2 , φ5 = pX5|X2,X3, φ6 = pX6|X3 .

X1

X2 X3

X4 X5 X6

Figure 10.1 A Bayesian network on six variables.
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The corresponding domains are

XD1 = X1

XD2 = X2 × X1

XD3 = X3 × X1

XD4 = X4 × X2

XD5 = X5 × X2 × X3

XD6 = X6 × X3.

Definition 10.1 (Contraction) Recall Definition 2.26 for multiplication of potentials. A
contraction of a charge, or set of potentials is an operation of multiplication and division
of potentials, after extending them to X, that returns a function over X.

For example,

�(x) =
m∏

j=1

φj (x)

is a contraction, when the φj have first been expanded to the domain XD = X∪m
j=1Dj

.
In other settings, the charge may contain potentials of two types;

� = {φ1, . . . , φm1 , ψ1, . . . , ψm2}
and

�(x) =
∏m1

j=1 φj (x)∏m2
j=1 ψj(x)

is a contraction, where the domains of all the potentials have been extended to X before
the operations of multiplication and division were applied.

The same notation is often used to denote the contraction of a charge and of the set
of potentials (the charge). The context makes it clear which is intended.

Evidence potentials Suppose that a random variable Xv is known to be instantiated
with the value y. This is a piece of hard evidence and may be expressed as an evidence
potential, which is a table containing 1s and 0s. Using notation x = (x1, . . . , xd), this
evidence may be expressed as a potential e

(y)
v over the domain X defined as

e(y)
v (x) =

{
1 xv = y

0 xv 
= y.
(10.1)

Let U ⊆ V and let Ũ denote the indexing set for the variables in U . An evidence potential ,
denoted by eU , is defined for y ∈ XU , x ∈ X, where the components of y are indexed by
Ũ , as

e
(y)

U (x) =
∏
v∈Ũ

e(yv)
v (x),
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where ev is defined by Equation (10.1). The interpretation is that eU is a finding in the
sense of seeing; not in the sense of doing.

For a Bayesian network with the nodes indexed by Ṽ = {1, . . . , d} and joint proba-
bility distribution factorized recursively as

pX =
d∏

v=1

pXv |�v ,

the quantity p
X;e(y)

U

= pX.e
(y)

U , is obtained by multiplication of tables to give

p
X;e(y)

U

(x) =
d∏

v=1

pXv |�v(xv|x�̃v
)
∏
v∈U

e(yv)
v (x).

The product is zero for all x ∈ X such that xU 
= y; that is, if xv 
= yv for some v ∈ Ũ .
It follows that, for fixed y ∈ XU , p

X;e(y)

U

may be considered as a potential with domain

XV \U .

10.2.1 Marginalization and the distributive law

Recall the discussion of marginalization in Section 2.5. The distributive law is used when
marginalizing a product of potentials. It can be written as follows: let φ1 be a potential
with domain XD1 and let φ2 be a potential with domain XD2 . Suppose that A ⊂ D1 ∪D2

and the product φ1φ2 (Definition 2.26) is to be marginalized over XA. If A ∩D1 = φ

(the empty set), then ∑
XA

φ1φ2 = φ1

∑
XA

φ2.

More particularly, suppose that φ1 has domain XD1∪D3 and φ2 has domain XD2∪D3∪D4 ,
where D1, D2, D3 and D4 are disjoint. In coordinates, the distributive law may be
written as ∑

x2∈XD2

φ1(x1, x3)φ2(x2, x3, x4) = φ1(x1, x3)
∑

x2∈XD2

φ2(x2, x3, x4).

The effect of the distributive law is that the potential over XD1 × XD3 × XD4 is first
marginalized down to a function over XD3 × XD4 . The function is transmitted to the
function over XD2 × XD3 , to which it is multiplied. The domains of the two functions to
be multiplied have to be extended to XD1 × XD3 × XD4 . Using X1, X2, X3, X4 to denote
the associated domains XD1 ,XD2 ,XD3 and XD4 , the domains under consideration for the
operations are illustrated in Figure 10.2. First, the potential φ2, defined over (X2, X3, X4)

is considered. This is marginalized to a potential over (X3, X4) and is then extended, by
multiplying with φ1, to a potential over (X1,X3,X4).

Example 10.2: A marginalization Consider the computation for marginalizing a con-
traction of a charge � defined over a state space X = X1 × X2 × X3 × X4 × X5 where

�(x) = φ1(x1, x3, x5)φ2(x1, x2)φ3(x3, x4)φ4(x5, x6).
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(X2, X3, X4) (X3, X4) (X1, X3, X4)

Figure 10.2 The distributive law.

X2 X6

X1 X5

X3

X4

Figure 10.3 Associations of variables.

More particularly, consider the computation of

�↓0 =
∑
x∈X

�(x),

where the notation �↓U is defined in the discussion of marginalization in Section 2.5.
The bucket elimination method may be used, with (for example) the order of summation:
x2, x4, x6, x5, x3, x1. The sum may be written as∑

x1∈X1

∑
x3∈X3

∑
x5∈X5

φ1(x1, x3, x5)
∑

x6∈X6

φ4(x5, x6)
∑

x4∈X4

φ3(x3, x4)
∑

x2∈X2

φ2(x1, x2).

The computation, carried out in this order, may be represented by the graph in Figure 10.3.
A computational tree, according to the distributive law, is given in Figure 10.4.

10.3 Elimination and domain graphs

The notations described at the beginning of Section 2.5 will be used. Let U denote a
subset of V and set W = V \U . Let Ũ , W̃ and Ṽ denote the indexing sets of U, W and
V respectively. Consider the computation of

�↓U(x) =
 ∑

xV \U∈XV \U

�(xV \U , xU)


for a contraction

�(x) =
m∏

j=1

φj (xDj
).
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X1, X2 X5, X6

X1 X5

X1, X3, X5

X3

X3, X5

Figure 10.4 A computational tree for the marginalization.

Recall that the operation �↓U(x) means marginalizing � over all variables not
in the set U . The variable xv , with index v ∈ W̃ = Ṽ \Ũ is eliminated from∑

xV \U∈XV \U
�(xV \U , xU) by the following procedure, where contraction means

multiplying together all the potentials in the charge.

1. Let �v (or �Xv ) denote the contraction of the potentials in � that have Xv in
their domain; that is,

�v =
∏

j |v∈Dj

φj .

2. Let φ(v) (or φ(Xv)) denote the function
∑

xv∈Xv
�v .

3. Find a new set of potentials �−v (or �−Xv ) by setting

�−v = (� ∪ {φ(v)})\�v.

This is the definition of �−v , also denoted by �−Xv . Those potentials that do not contain
Xv in their domain have been retained; the others have been multiplied together and then
marginalized over Xv (thus eliminating the variable) to give φ(v). This potential has been
added to the collection, and all those containing Xv (other than φ(v)) have been removed.

Note that the notation �−Xv has two meanings: it is used to denote the collection
of potentials, and it is also used to denote the contraction of the charge obtained by
multiplying together the potentials in the collection. The meaning is determined by the
context. Having removed Xv , it remains to compute∑

xW \{Xv }

�−Xv (xU , xW \{Xv}).

Proposition 10.1 Let � be a contraction over a domain XW and let U ⊂ W . The quantity

�↓U(xU ) =
∑

xW \U∈XW \U

�(xW \U , xU)
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can be computed through successive elimination of the variables

Xv ∈ W \U.

Proof of Proposition 10.1 By the commutative laws for multiplication and adding,
together with the distributive law, the elimination of Xv gives

�↓U(xU) =
∑

xW \{Xv }∈XW \{Xv}

�−Xv (xU , xW \{Xv}).

By the argument given above, �−Xv is the contraction of a potential over XW \{Xv}
and it is clear, by induction, that the marginal can be computed through successive
elimination. �

The problem, of course, is to find an elimination sequence which gives as small
elimination domains as possible. Elimination domains were defined in Definition 4.17
and, in this context, the elimination domain is the union of the domains of potentials in
� having Xv in their domain. This is facilitated by considering the domain graph .

Definition 10.2 (Domain Graph) The domain graph for the set of potentials in � is an
undirected graph with the variables as nodes and the links between any pair of variables
which are members of the same domain.

Figure 10.5 illustrates the domain graph associated with Figure 10.1. Figure 10.3 illus-
trates the domain graph associated with Figure 10.4. Note here that the domain graph is
the moral graph . It is clear that the domain graph for any Bayesian network is the moral
graph, since by definition all the parents are connected to each other and to the variable.

Eliminating a node Let G = (V, E) be an undirected graph, where V = {X1, . . . , Xd}.
Recall Definition 4.15; eliminating a node. When a node Xv is eliminated from the graph
G, the resulting graph is denoted by G−Xv . If G is the domain graph for a set of potentials
�, then it is clear from Definition 4.15 that the graph G−Xv is the domain graph for the
set of potentials �−Xv .

Junction trees Let
� = {φ1, . . . , φm}

X1

X2 X3

X4 X5 X6

Figure 10.5 Domain graph of Bayesian network in Figure 10.1.



ELIMINATION AND DOMAIN GRAPHS 287

be a set of potentials on X. Let G be a triangulated graph. A junction tree for � is a
junction tree for G such that

• Each φj is associated with a clique Cj = {Xj1 , . . . Xjk
} such that XCj

, the domain
of φj is the state space of the variables {Xj1 , . . . , Xjk

}.
• Each edge is labelled by a separator consisting of the nodes remaining after elimi-

nation in a clique by an elimination sequence.

Figure 4.9 shows a directed acyclic graph, Figure 4.10 shows its moralized version,
Figure 4.11 shows a triangulation of the moral graph and finally, Figure 4.13 shows a
junction tree constructed from the directed acyclic graph in Figure 4.9.

Summary: Constructing an inference algorithm1

• Take a Bayesian network and find its domain graph G.

• Triangulate the domain graph: G→ G′.
• Find an elimination sequence in G′.
• The elimination sequence determines the elimination domains.

• The elimination domains are cliques.

• Organize the cliques into a junction tree (which is possible, following the results
of Chapter 4).

• Associate the potentials to the junction tree.

It remains to describe a scheme of message passing (propagation) for the task of marginal-
ization to compute

pX|eU
(x)↓A =

 ∑
xṼ \A∈XṼ \A

pX|eU
(xA, xṼ \A)

 .

The task may be performed computationally using ‘HUGIN’.2 HUGIN propagation for
the task is based on representing joint distribution of a Bayesian network using the
so-called Aalborg formula

pX(x1, . . . , xd) =
∏

C∈C φC(xC)∏
S∈S φS(xS)

,

where
C = cliques of the triangulated moral graph

1 This algorithm is sometimes referred to as an inference engine.
2 http://www.hugin.com/

HUGIN is a product from the HUGIN EXPERT A/S, a software company, with head office in the town of
Aalborg in Denmark, developing intelligent solutions in areas such as information management, data mining,
decision analysis, troubleshooting, decision support, prediction, diagnosis, risk management, safety assessment,
control systems, all based on Bayesian networks.
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and
S = separators of the junction tree

and each φC and φS is the potential over the respective clique C and separator S. The
propagation presented is the approach of Lauritzen and Spiegelhalter, discussed in [131];
the technicalities differ slightly from the implementation in HUGIN.

10.4 Factorization along an undirected graph

Let G = (V, E) be an undirected graph, where V = {X1, . . . Xd} is a set of discrete
variables.

Definition 10.3 A joint probability pX over a random vector X = (X1, . . . , Xd) is said
to be factorized according to G if there exist potentials or factors, φA defined on ×v∈ÃXv

where A is a complete set of nodes in G, and Ã is the index set for A, such that

pX(x) =
∏
A

φA(xA)

where the notation is clear (see Section 2.5); the product is over all the potentials.

Joint probability distributions factorized along a graph are known as Markov probability
distributions and a corresponding Markov property will be established later on. If the
factorization holds, then clearly, for any W ⊂ V ,

pXW
(xW ) =

∑
xV \W∈XV \W

∏
A

φA(xW , xV \W),

where, for each A, the domain of φA has first been extended to X.
Recall Definition 4.5 of a separator and Definition 4.12 of a decomposition. In the

definition, A, B or S may be the empty set, φ.

Proposition 10.2 Let G be a decomposable undirected graph and let (A, B, S) decompose
G. Then the following two statements are equivalent:

1. p factorizes along G and

2. both pA∪S and pB∪S factorize along GA∪S and GB∪S respectively and

p(x) = pA∪S(xA∪S)pB∪S(xB∪S)

pS(xS)
.

Proof of Proposition 10.2, 1) �⇒ 2) Since the graph is decomposable, its cliques can
be organized as a junction tree. Hence, without loss of generality, the factorization can
be taken to be of the form

p(x) =
∏
K∈C

φK(xK),

where the product is over the cliques of G. Since (A, B, S) decomposes G, any clique of
G can either be taken as a subset of A ∪ S or as a subset of B ∪ S. Furthermore, S is a
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strict subset of any clique of A ∪ S containing S and S is a strict subset of any clique
of B ∪ S containing S. Letting K denote a clique, it follows that

p(x) =
∏

K⊆A∪S

φK(xK)
∏

K⊆B∪S

φK(xK).

Since S is itself complete, it is a subset of any clique containing S, so that no clique in
the decomposition will appear in both A ∪ S and B ∪ S. Set

h(xA∪S) =
∏

K⊆A∪S

φK(xK)

and
k(xB∪S) =

∏
K⊆B∪S

φK(xK),

then
p(x) = h(xA∪S)k(xB∪S)

and the marginal distribution is given by

pA∪S(xA∪S) =
∑
XB

h(xA∪S)k(xB∪S).

The distributive law now yields

pA∪S(xA∪S) = h(xA∪S)
∑
XB

k(xB∪S) = h(xA∪C)k(xS),

where
k(xS) :=

∑
XB

k(xB∪S).

Similarly,
pB∪S(xB∪S) = k(xB∪S)h(xS),

where
h(xS) :=

∑
XA

h(xA∪S).

It follows that

p(x) = h(xA∪S)k(xB∪S) =
p(xA∪S)p(xB∪S)

k(xS)h(xS)
.

Furthermore,

pS(xS) =
∑
XA∪S

h(xA∪S)k(xB∪S) =
∑
XA

h(xA∪S)
∑
XB

k(xB∪S) = h(xS)k(xS).

It follows that

p(x) = pA∪S(xA∪S)pB∪S(xB∪S)

pS(xS)
.
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In the course of the proof, it has also been shown that pA∪S and pB∪S are factorizable
along the corresponding graphs. This establishes the proof of 1) �⇒ 2). �

Proof of Proposition 10.2, 2) �⇒ 1) This is clear. �

The Markov property By a recursive application of the proposition, together with

p(x) =
∏

C⊆A∪S

φC(xC)
∏

C⊆B∪S

φC(xC),

it follows that

p(x) =
∏

C∈C pC(xC)∏
S∈S pS(xS)

,

where C denotes the set of cliques and S denotes the set of separators, and thus the
desired Markov property has been established. �
This result may be extended to more general undirected graphs and the following proposi-
tion for factorization of probability distributions on undirected graphs has been proved by
Lauritzen in [132]. The generality is unnecessary for the scope of this text and therefore
the proof is omitted.

Proposition 10.3 Let G = (V, E) be an undirected graph and let p be a probability dis-
tribution over the variable set V . If p(x) > 0 for all x ∈ X, then p may be factorized along
G if and only if for any sets of variables A, B, S ⊂ V such that A and B are separated
by S,

A ⊥ B|S

(that for any sets A and B separated by S, the sets of variables A and B are conditionally
independent given S). �

This property is known as the undirected global Markov property .

10.5 Factorizing along a junction tree

Let p be a probability distribution that factorizes along a directed acyclic graph G =
(V, E). The factorization is given by

pX(x) =
d∏

v=1

pXv |�v(xv|x�̃v
),

where �̃j denotes the indexing set for the parent set �j . It is clear that this may be
expressed as a factorization according to the moralized graph Gmor , which is undirected:

pX(x) =
d∏

v=1

φAv (xAv
)
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where A = {Xv} ∪�v and

φAv (xAv
) = pXv |�v(xv|x�̃v

).

Hence a probability distribution factorized along the DAG is also factorized along the
moral graph Gmor and the global Markov property is seen to hold on Gmor . For implement-
ing algorithms, the problem is that it may not be possible to represent the sets (Av)

d
v=1

on a tree. To enable this, Gmor is triangulated to give (Gmor)t . Recall that (Gmor)t is
decomposable and its cliques can be organized into a junction tree T. Then

pX(x) =
∏
C∈C

φC(xC),

where φC(xC) is the product of all those p(xv|x�̃v
), all of whose arguments belong to

C. By moralization, there is always one such clique. Note that this factorization is not
necessarily unique. It follows that

pX(x) =
∏

C∈C pC(xC)∏
S∈S pS(xS)

, (10.2)

where C denotes the set of cliques and S denotes the set of separators of (Gmor)t . Fur-
thermore, the cliques of the expression in Equation (10.2) may be organized according
to a junction tree. This is the definition of a factorization along a junction tree.

Definition 10.4 (Factorization along a Junction Tree, Marginal Charge) Let pX be a prob-
ability distribution over a random vector X = (X1, . . . , Xd). Suppose that the variables
can be organized as a junction tree, with cliques C and separators S such that pX has
representation given in Equation (10.2), where pC and pS denote the marginal probability
functions over the clique variables C ∈ C and separator variables S ∈ S respectively. The
representation in Equation (10.2) is known as the factorization along the junction tree,
and the charge

� = {pS : S ∈ S, pC : C ∈ C}
is known as the marginal charge.

From the foregoing discussion, it is clear that Definition 10.4 is a special case of Definition
10.3, where the potentials are appropriately defined.

Entering evidence Equation (10.2) expresses the prior distribution in terms of potentials
over the cliques and separators of (Gmor)t , or the junction tree. Suppose that new hard
evidence eU is obtained on the variables U ; namely, that for U ⊆ V , {XU = y

U
} and

the probability over the variables V \U has to be updated accordingly. Then

pX;eU
(x) =

{ ∏
C∈C pC(xC)∏
S∈S pS(xS)

xU = y
U

0 xU 
= y
U
.

Now, set φC(xC) = pC(xC\U , y
C∩U

) and φS(xS) = pS(xS\U , y
S∩U

). Then

pXV \U ,XU
(xV \U , y

U
) =

∏
C∈C φC(xC)∏
S∈S φS(xS)

. (10.3)
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The posterior distribution

pXṼ \U |XU
(.|y

U
) =

pXṼ \U ,XU
(., y

U
)

pXU
(y

U
)

may then be computed by finding a representation of the function pXV \U ,XU
(., y

U
) over

domain XV \U using the algorithm defined below. The algorithm such that for any function
f : X→ R+ (not necessarily a probability function) that is expressed as

f (x) =
∏

C∈C φC(xC)∏
S∈S φS(xS)

, (10.4)

for a collection of potentials � = {φC, C ∈ C, φS, S ∈ S} where C and S are the cliques
and separators of a junction tree, the algorithm updates � to a collection of potentials
�∗ = {φ∗C, C ∈ C, φ∗S, S ∈ S} that satisfy

φ∗C(xC) =
∑

z∈XV \C

f (z, xC)

and
φ∗S(xS) =

∑
z∈XV \S

f (z, xS)

for each C ∈ C and each S ∈ S. It follows that the probability of the evidence is

pXU
(y

U
) =

∑
z∈XC\(U∩C)

φ∗C(z, y
U∩C

) =
∑

z∈XS\(U∩S)

φ∗S(z, y
U∩S

)

for all S ∈ S and all C ∈ C. The conditional probability distribution over the remaining
variables V \U may therefore be computed by marginalizing the clique or separator with
the smallest domain, giving a representation of the conditional distribution in terms of
marginal distributions over the cliques and separators.

10.5.1 Flow of messages initial illustration

Consider a non-negative function with domain X × Y × Z, F : X × Y × Z → R+, which
may be written as

F(x, y, z) = f (x, z)g(y, z)

h(z)
, (10.5)

for potentials f : X × Z → R+, g : Y × Z → R+ and h : Z → R+.
The decomposition shown in Equation (10.5) for the function F is of the form given

in Equation (10.4). The graph illustrating the associations between variables is given
in Figure 10.6, with cliques C1 = {X, Z}, C2 = {Z, Y } and separator S = {Z} arranged
according to the junction tree in Figure 10.7.

The following algorithm returns a representation F(x, y, z) = F1(x,z)F2(y,z)

F3(z)
, where

F1(x, z) =
∑
y∈Y

F (x, y, z), F2(y, z) =
∑
x∈X

F(x, y, z), F3(z) =
∑

(x,y)∈X×Y

F (x, y, z).
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X Z Y

Figure 10.6 Undirected graph for the three variables.

XZ Z ZY

Figure 10.7 Junction tree for message passing.

Firstly,

F1(x, z) =
∑
y∈Y

F (x, y, z) =
∑

y

f (x, z)g(y, z)

h(z)
= f (x, z)

h(z)

∑
y∈Y

g(y, z).

Define the auxiliary function h∗(z) =∑y g(y, z), and the update f ∗(x, y) =
f (x, y)h∗(z)

h(z)
, then clearly

f ∗(x, z) = f (x, z)
h∗(z)
h(z)

= F1(x, z).

The calculation of the marginal function F1(x, z) by means of the auxiliary function
h∗(z) may be described as being done by passing a local message flow from ZY to XZ

through their separator Z. The factor

h∗(z)
h(z)

is called the update ratio. It follows that

F(x, y, z) = f (x, z)g(y, z)

h(z)
= f (x, z)g(y, z)h∗(z)

h∗(z)h(z)
= F1(x, z)

1

h∗(z)
g(y, z).

The passage of the flow has resulted in a new representation of F(x, y, z) similar to the
original, but where one of the factors is a marginal function.

Similarly, a message can be passed in the other direction, i.e. from XZ to ZY Using
the same procedure, set

h̃(z) =
∑
x∈X

F1(x, z) =
∑

(x,y)∈X×Y

F (x, y, z) = F3(z).

Next, set

g̃(y, z) = g(y, z)
h̃(z)

h∗(z)
.

It then follows that g̃(y, z) = F2(y, z).
This follows because

F(x, y, z) = F1(x, z)
1

h̃(z)
g̃(y, z) = F1(x, z)

1

F3(z)
g̃(y, z)
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and hence, since F3(z) =
∑

x∈X F1(x, z), it follows that

F2(y, z) =
∑
x∈X

F(x, y, z) = g̃(y, z)
∑
x∈X

F1(x, z)
1

F3(z)
= g̃(y, z).

�
Passing messages in both directions results in a new overall representation of the function
F(x, y, z);.

F(x, y, z) = f ∗(x, z)
1

h∗(z)
g(y, z) = f ∗(x, z)

1

h∗(z)
h∗(z)
h̃(z)

g̃(y, z)

= f ∗(x, z)
1

h̃(z)
g̃(y, z)

= F1(x, z)
1

F3(z)
F2(y, z).

The original representation using potentials has been transformed into a new representa-
tion where all the potentials are marginal functions.

The idea is now extended to arbitrary non-negative functions represented on junction
trees.

10.6 Local computation on junction trees

Consider a junction tree T with nodes C and separators S and let � be a charge

� = {φC : C ∈ C, φS : S ∈ S}, (10.6)

that is, a collection of potentials such that φC : XC → R+ and φS : XS → R+ for each
C ∈ C and each S ∈ S.

Definition 10.5 (Contraction of a Charge on a Junction Tree) The contraction of a charge
(Equation (10.6)) over a junction tree is defined as

f (x) =
∏

C∈C φC(xC)∏
S∈S φS(xS)

. (10.7)

Local message passing Let C1 and C2 be two adjacent neighbouring nodes in T sepa-
rated by S0. Set

φ∗
S0(xS0) =

∑
z∈X

C1\S0

φC1(z, xS0) (10.8)

and set

λS0 =
φ∗

S0(xS0)

φS0(xS0)
(10.9)
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C1 S0 C2

lS0 f*
C2

= lS0 fC2

→

Figure 10.8 Flow from C1 to C2.

Note that, directly from the definition of division of potentials (Definition 2.24), λS0 = 0
for φS0 = 0. The update ratio is defined as the quantity λS0 . The ‘message passing’ is
defined as the operation of updating φS0 to φ∗

S0 and φC2 to

φ∗C2
= λS0φC2 . (10.10)

All other potentials remain unchanged. The scheme of local message passing is illustrated
in Figure 10.8.

Lemma 10.1 Let f : X→ R+ be the contraction of a a charge � = {φS, S ∈
S, φC, C ∈ C} on a junction tree (Definition 10.5), where C is the collection of cliques
and S the collection of separators.

A flow does not change the contraction of the charge.

Proof of Lemma 10.1 The initial contraction is given by

f (x) =
∏

C∈C φC(xC)∏
S∈S φS(xS)

. (10.11)

Firstly, recall Definition 2.24. By the definition of division of potentials, f (x) = 0 for all
x such that φS(xS) = 0 for some S ∈ S. This is part of the definition in the hypothesis
that f has a representation of the form given in Equation (10.11). Let the charge, after
the flow from C1 to C2, be denoted by

�∗ = {φ∗C : C ∈ C, φ∗S : S ∈ S}
and the contraction

f ∗(x) :=
∏

C∈C φ∗C(xC)∏
S∈S φ∗S(xS)

. (10.12)

Note that

f ∗(x) = φ∗C2
(xC2

)
∏

C∈C,C 
=C2
φC(xC)

φ∗
S0(xS0)

∏
S∈S,S 
=S0 φS(xS)

. (10.13)

There are three cases to consider.

• For x such that φS0(xS0) > 0 and φ∗
S0(xS0) > 0,

φ∗C2

φ∗
S0

= φC2λS0

φ∗
S0

=
φC2

(
φ∗

S0

φ
S0

)
φ∗

S0

= φC2

φS0

and the result is proved.
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• For second case and the third case, the results follow from the convenient arrange-
ment of the definitions for division by zero in the sense of tables. For x such that
φS0(xS0) = 0, f (x) = 0, from the definition. Furthermore, from Equation (10.9),
λS0 = 0 (this follows from division by zero in the sense of division of potentials)
and hence, by the definition of φ∗C2

, it follows that that φ∗C2
= 0. It therefore follows

from Equation (10.12) that f ∗(x) = 0, so that 0 = f ∗(x) = f (x).

• For x such that φS0(xS0) > 0, but φ∗
S0(xS0) = 0, it follows directly from Equation

(10.13) using the definition of division by zero in the sense of potentials) that
f ∗(x) = 0. It remains to show that f (x) = 0. From the definition,

0 = φ∗
S0(xS0) =

∑
z∈X

C1\S0

φC1(z, xS0).

Since φC1(xC1
) ≥ 0 for all xC1

∈ XC1 , it follows that φC1(z, xS0) = 0 for all z ∈
XC1\S0 . Since

f (x) = φC1(xC1
)
φC2(xC2

)

φS0(xS0)

∏
C∈C,C 
=C1,C2

φC(xC)∏
S∈S,S 
=S0 φS(xS)

,

it follows directly from the facts that the domains of the cliques other than C1 and

C2 and separators other than S0 do not include XS0 , and that
φC2 (xC2

)

φ
S0 (x

S0 )
< +∞ that

f (x) = 0, hence f (x) = f ∗(x).

In all cases, it follows that a flow does not change the contraction of a charge. �

Having shown how to update for a simple example, and having shown that message
passing does not alter the contraction of a charge, it remains to schedule the message
transmissions in an efficient way for a general junction tree to update the potentials over
the cliques and separators.

10.7 Schedules

The aim of this section is to describe how to construct a series of transmissions between
the various cliques of a junction tree, to update a set of potentials, whose contraction is
a probability distribution, to the posterior probability distributions over the cliques and
separators. First, some definitions and notations are established.

Definition 10.6 (Sub-tree, Neighbouring Clique) A sub-tree T ′ of a junction tree T is a
connected set of nodes of T together with the edges in T between them.

A clique C of a junction tree T is a neighbour of a sub-tree T if the corresponding
node of T is not a node of T ′ but is connected to T ′ by an edge of T.

The following definition gives the technical terms that will be used.

Definition 10.7 (Schedule, Active Flow, Fully Active Schedule) A schedule is an ordered
list of directed edges of T specifying which flows are to be passed and in which order.
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A flow is said to be active relative to a schedule if before it is sent the source has
already received active flows from all its neighbours in T, with the exception of the sink;
namely, the node to which it is sending its flow. It follows that the first active flow must
originate in a leaf of T. This leaf serves as a root for the junction tree. A schedule is full
if it contains an active flow in each direction along every edge of the tree T. A schedule
is active if it contains only active flows. It is fully active if it is both full and active.

Example 10.3 Figures 10.9 and 10.10 depict a DAG and the corresponding junction
tree.

A fully active schedule for the junction tree given in Figure 10.10 would be:

AT → ELT,BLS → BEL,BDE → BEL,EK → ELT, ELT → BEL

BEL→ ELT,ELT → EK,ELT → AT,BEL→ BLS, BEL→ BDE.

Definition 10.8 (Lazy Propagation) The method of updating a distribution that factorizes
over a junction tree is known as lazy propagation.

Proposition 10.4 For any tree T, there exists a fully active schedule.

Proof of Proposition 10.4 If there is only one clique, the proposition is clear; no trans-
missions are necessary. Assume that there is more than one clique. Let C0 denote a leaf
in T. Let T0 be a sub-tree of T obtained by removing C0 and the corresponding edge S0.
Assume that the proposition is true for T0. Adding the edge

C0 → S0 → T0

A S

T E L B

K D

Figure 10.9 Example of a DAG.

AT

T

BLS

BL

ELT
EL

E

BEL

BE

EK BDE

Figure 10.10 Corresponding junction tree.
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to the beginning of the schedule and

C0 ← S0 ← T0

to the end of the schedule provides a fully active schedule for T. �

The aim of a substantial part of the remainder of the chapter is to show that if the con-
traction of a charge � on a junction tree (Definition 10.5) is a probability distribution,
then after the passage of a fully active schedule of flows over a junction tree, the resulting
charge is the marginal charge. That is, all the potentials of the charge are probability
functions over the respective cliques and separators. Furthermore, there is global consis-
tency after the passage of a fully active schedule of flows over a junction tree. This will
be defined later, but loosely speaking, it means that if there are several apparent ways
to compute a probability distribution over a set of variables using the potentials of the
marginal charge, they will all give the same answer.

Definition 10.9 (The Base of a Sub-tree, Restriction of a Charge, Live Sub-tree) Let T ′
be a sub-tree of T, with nodes C′ ⊆ C and edges S′ ⊆ S. The base of T ′ is defined as the
set of variables

U ′ := ∪C∈C′C.

Let
� = {φC : C ∈ C, φS : S ∈ S}

be a charge for T. Its restriction to T ′ is defined as

�T ′ = {φC : C ∈ C′, φS : S ∈ S′}.
Recall Definition 10.5. The contraction of �T ′ is defined as∏

C∈C′ φC(xC)∏
S∈S′ φS(xS)

.

A sub-tree T ′ is said to be live with respect to the schedule of flows if it has already
received active flows from all its neighbours.

Proposition 10.5 Let
�0 = {φ0

C : C ∈ C, φ0
S : S ∈ S}

denote an initial charge for a function f that has factorization

f (x) =
∏

C∈C φ0
C(xC)∏

S∈S φ0
S(xS)

where C and S are the sets of cliques and separators for a junction tree T. Suppose that
�0 is modified by a sequence of flows according to some schedule. Then, whenever T ′ is
live, the contraction of the charge for T ′ is the margin of the contraction f of the charge
for T on U ′.
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Proof of Proposition 10.5 Assume that T ′ ⊂ T and that T ′ is live. Let C∗ denote that
last neighbour to have passed a flow into T ′. Let T ∗ be the sub-tree obtained by adding
C∗ and the associated edge S∗ to T ′. Let C∗,S∗ and U∗ be the cliques, separators and
the base of T ∗. By the junction tree property of T, the separator associated with the edge
S∗ joining C∗ to T ′ is

S∗ = C∗ ∩ U ′.

Furthermore,
C∗ = C′ ∪ {C∗} and S∗ = S′ ∪ {S∗}.

and the set of base variables for T ∗ is

U∗ = U ′ ∪ C∗.

The induction hypothesis The assertion holds for the contraction of the charge on T ∗.
Set

fU∗(xU∗) =
∑
U \U∗

f (x).

Then the inductive hypothesis states that

fU∗(xU∗) =
∏

C∈C∗ φC(xC)∏
S∈S∗ φS(xS)

. (10.14)

Let
� = {φC : C ∈ C, φS : S ∈ S}

denote the charge just before the last flow from C∗ into T ′. Lemma 10.1 states that a flow
does not change the contraction of a charge. This is applied to the contraction of the
charge restricted to T ∗ which, from Equation (10.14) is given by

fU∗(xU∗) =
φC∗(xC∗)

φS∗(xS∗)

∏
C∈C′ φC(xC)∏
S∈S′ φS(xS)

. (10.15)

Set

αU ′ =
∏

C∈C′ φC(xC)∏
S∈S′ φS(xS)

,

then Equation (10.15) may be rewritten as

fU∗(xU∗) =
φC∗(xC∗)

φS∗(xS∗)
αU ′ . (10.16)

The aim is to find the margin fU ′ of f on U ′ and to show that after the flow,

fU ′(xU ′) =
∏

C∈C′ φC(xC)∏
S∈S′ φS(xS)

.

Note that
U ′ ⊂ U∗ ⊂ U,
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so that
U \U ′ = (U \U∗) ∪ (U∗\U ′).

Since the variables may be summed in any order,

∑
XU \U ′

f =
∑

X(U \U∗)

∑
X(U∗\U ′)

f =
∑

X(U∗\U ′)

 ∑
X(U \U∗)

f

 = ∑
X(U∗ \U ′)

fU∗ . (10.17)

It follows that ∑
XU∗\U ′

fU∗ = αU ′
∑

XU∗\U ′

φC∗(xC∗)

φS∗(xS∗)
. (10.18)

Since S∗ = C∗ ∩ U ′ and U∗ = U ′ ∪ C∗, it follows that

U∗\U ′ = C∗\S∗,

so that∑
XU∗\U ′

φC∗(xC∗)

φS∗(xS∗)
=
∑
C∗\S∗

φC∗(xC∗)

φS∗(xS∗)
= 1

φS∗(xS∗)

∑
C∗\S∗

φC∗(xC∗) =
φ∗S∗(xS∗)

φS∗(xS∗)

(def )= λS∗ .

Recall Equation (10.9); λS∗ is the update ratio. This, together with Equation (10.18),
may be applied to Equation (10.17) to give∑

XU \U ′
f = αU ′ .λS∗ .

But after the flow into T ′, αU ′ is updated as

α∗U ′ = λS∗αU ′,

because the potential φC∗ over the nearest neighbour C∗ in T ′ is updated to λS∗φC∗ (the
update defined in Equation (10.10)). Hence, using φ∗C∗ to denote the update of φC∗ and
φ∗S∗ to denote the update of φS∗ and using the inductive hypothesis that a flow does not
alter the contraction of a charge on T ∗, it follows that

fU∗(xU∗) =
φC∗(xC∗)

φS∗(xS∗)
αU ′ =

φ∗C∗(xC∗)

φ∗S∗(xS∗)
α∗U ′ .

Recall Equation (10.8); the potential over the separator φS∗(xS∗) is updated to

φ∗S∗(xS∗) =
∑

z∈XC∗ \S∗
φC∗(z, xS∗).

Since the flow is from C∗ to T ′, φ∗C∗ = φC∗ . It follows that∑
XU∗ \U ′

fU∗(xU∗) =
∑

z∈XC∗ \S∗

φC∗(xC∗)

φ∗S∗(xS∗)
α∗U ′ = α∗U ′,
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from which it follows that after the flow,∑
U \U ′

f =
∏

C∈C′ φC(xS)∏
S∈S′ φS(xS)

,

which is the definition of the contraction of the charge on T ′. It follows that after the
flow, the contraction of the charge on T ′ is

∑
U \U ′ f , as required. The proof is complete.

Corollary 10.1 Let {φC, C ∈ C, φS, S ∈ S} denote the current potentials over the cliques
and separators. For any set A ⊆ V , let fA =

∑
XV \A

f ; the marginal over A. Whenever
a clique C is live, its potential is φC = fC =

∑
XV \C

f .

Proof of Corollary 10.1 A single clique is a sub-tree. The result is immediate from
Proposition 10.5. �

Corollary 10.2 Using the notation of Corollary 10.1, whenever active flows have passed
in both directions across an edge in T, the potential for the associated separator is φS =
fS =

∑
XV \S

f .

Proof of Corollary 10.2 The potential φS for the associated separator is, by definition
of the update,

φS =
∑
XC\S

φC,

so that ∑
XC\S

φC =
∑
XC\S

fC = fS,

because φC is fC by the previous corollary. �

Proposition 10.6 (The Main Result) After passage of a fully active schedule of flows, the
resulting charge is the charge consisting of the marginals over the cliques and separators
and its contraction represents f . In other words, the following formula, known as the
Aalborg formula (see [52]);

f (x) =
∏

C∈C fC(xC)∏
S∈S fS(xS)

.

Proof of Proposition 10.6 This follows from the previous two corollaries and Lemma
10.1, stating that the contraction is unaltered by the flows. �

Thin junction trees Sometimes the cliques in a junction tree may contain rather many
variables, which may be problematic if one is using numerical methods to compute
marginal distributions. This problem is addressed by R.G. Cowell, A.P. Dawid, S.L.
Lauritzen and D.J. Spiegelhalter in [67], who discuss methods of breaking the probability
distributions of the cliques into smaller marginal distributions. The paper [133] develops
an algorithm that tries to keep the maximum size of cliques below a prescribed bound.
Such junction trees are known as thin junction trees . The thin junction trees cannot be
created after the graph is fixed; the restriction on the graph width has to be enforced
during the learning process.
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10.8 Local and global consistency

Recall that T denotes the junction tree, the set of cliques which form the nodes of T is
denoted C and the intersection of neighbours in the tree T are the separators , denoted by
S. Recall that the potentials associated with C ∈ C and S ∈ S are denoted by φC and φS

respectively, and that the charge on T, � is defined as:

� = {φC : C ∈ C, φS : S ∈ S}.

Definition 10.10 (Local Consistency) A junction tree T is said to be locally consistent if
whenever C1 ∈ C and C2 ∈ C are two neighbours with separator S, then∑

XC1\(C1∩C2)

φC1 = φS =
∑

XC2\(C1∩C2)

φC2 .

Definition 10.11 (Global Consistency) A junction tree T (or its charge) is said to be
globally consistent if for every C1 ∈ C and C2 ∈ C it holds that∑

XC1\(C1∩C2)

φC1 =
∑

XC2\(C1∩C2)

φC2 .

Global consistency means that the marginalization to C1 ∩ C2 of φC1 and φC2 coincide
for every C1 and C2 in C. The following results show that, for a junction tree, local
consistency implies global consistency.

Proposition 10.7 After a passage of a fully active schedule of flows, a junction tree T is
locally consistent.

Proof of Proposition 10.7 The two corollaries of the main result give that for any two
neighbouring C1 and C2, ∑

C1\S

fC1 = fS =
∑
C2\S

fC2 .

�

An equilibrium, or fixed point has been reached, in the sense that any new flows passed
after passage of a fully active schedule do not alter the potentials. The update ratio for
another message from C1 to C2 becomes

λS =
∑

C1\S fC1

fS

= 1.

Global consistency of junction trees Here it is shown that for junction trees , local
consistency implies global consistency.

By definition, a junction tree is a tree such that the intersection C1 ∩ C2 of any pair
C1 and C2 in C is contained in every node on the unique trail in T between C1 and C2.
The set C1 ∩ C2 can be empty and, in this case it is therefore (by convention) a subset
of every other set.

The following example is instructive.



LOCAL AND GLOBAL CONSISTENCY 303

Example 10.4 Consider the junction tree given in Figure 10.10. Let C1 = EK and
C2 = BDE. Then C1 ∩ C2 = E. There is a unique trail

EK ↔ ELT ↔ BEL↔ BDE

from EK to BDE. Clearly E = C1 ∩ C2 is a subset of every separator on the path.
The potentials will be denoted (for example) φEK(xe, xk) =: φEK(ek). The following
abbreviated notation will be used for a marginalization:∑

xe∈Xe

φEK(xe, xk) =
∑

e

φEK(ek).

Now assume that the junction tree is locally consistent. Then, an application of the result
that ∑

XC1\(C2∩C2)

φC1 = φS =
∑

XC2\(C1∩C2)

φC2

gives ∑
k

φEK(ek) =
∑
lt

φELT (elt),

∑
t

φELT (elt) =
∑

b

φBEL(bel),

∑
l

φBEL(bel) =
∑

d

φBDE(bde).

Using these, it follows that

∑
k

φEK(ek) =
∑

l

(∑
t

φELT (elt)

)
=
∑

l

(∑
b

φBEL(bel)

)

=
∑

b

(∑
l

φBEL(bel)

)
=
∑

b

∑
d

φBDE(bde),

so that ∑
k

φEK(ek) =
∑

b

∑
d

φBDE(bde).

The potential on the right hand side is the marginalization of φBDE to E.
The property of local consistency has therefore been extended to the nodes C1 = EK

and C2 = BDE. The rest of the conditions can be checked; the details are left to the
reader.

Proposition 10.8 A locally consistent junction tree is globally consistent.

Proof of Proposition 10.8 In a junction tree the intersection C1 ∩ C2 of any pair C1 and
C2 in C is contained in every node on the unique path in T between C1 and C2. Assume
that C1 ∩ C2 is non empty. Consider the unique path from C1 to C2. Let the nodes on
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the path be denoted by {C(i)}ni=0 with C(0) = C1 and C(n) = C2, so that C(i) and C(i+1)

are neighbours. Denote the separator between C(i) and C(i+1) by

S(i) = C(i) ∩ C(i+1).

Then, for all i,

C1 ∩ C2 ⊆ S(i).

For a set of variables C, let
∑

C denote
∑

XC
. The assumption of local consistency means

that for any two neighbours∑
C(i)\(C(i+1)∩C(i))

φC(i) =
∑

C(i+1)\(C(i)∩C(i+1))

φC(i+1) .

Since C(i)\(C(i+1) ∩ C(i)) = C(i)\S(i) and C(i+1)\(C(i+1) ∩ C(i)) = C(i+1)\S(i), local con-
sistency may be written equivalently as∑

C(i)\S(i)

φC(i) =
∑

C(i+1)\S(i)

φC(i+1) .

For any two neighbours C1 and C2, their associated potentials have to be marginalized
to C1 ∩ C2. This is equivalent to computing the sum∑

C(i)\(C1∩C2∩C(i))

φC(i) and
∑

C(i+1)\(C1∩C2∩C(i+1))

φC(i+1) .

Starting with the leftmost marginalization,∑
C(i)\(C1∩C2∩C(i))

φC(i) =
∑

C(i)\S(i)

∑
S(i)\(C1∩C2∩S(i))

φC(i) ,

since the nodes (variables) in C(i)\(C1 ∩ C2 ∩ C(i)) can be split into two disjoint sets,
namely S(i)\(C1 ∩ C2 ∩ S(i)) (which can be empty: those outside C1 ∩ C2 but inside the
separator S(i)) and C(i)\S(i) (those outside the separator).

Next, the order of summation may be exchanged so that∑
C(i)\S(i)

∑
S(i)\(C1∩C2∩S(i))

φC(i) =
∑

S(i)\(C1∩C2∩S(i))

∑
C(i)\S(i)

φC(i) .

Now, using local consistency,

∑
S(i)\(C1∩C2∩S(i))

 ∑
C(i)\S(i)

φC(i)

 = ∑
S(i)\(C1∩C2∩S(i))

 ∑
C(i+1)\S(i)

φC(i+1)

 .
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This gives

∑
S(i)\(C1∩C2∩S(i))

 ∑
C(i+1)\S(i)

φC(i+1)

 = ∑
C(i+1)\S(i)

 ∑
S(i)\(C1∩C2∩S(i))

φC(i+1)


=

∑
C(i+1)\(C1∩C2∩C(i+1))

φC(i+1) .

It follows that ∑
C(i)\(C1∩C2∩C(i))

φC(i) =
∑

C(i+1)\(C1∩C2∩C(i+1))

φC(i+1) .

This operation can be repeated using C(i+1) and C(i+2). Therefore, the first step is to
marginalize the potential φC1 to C1 ∩ C2 and the next step is to move over to the next
node C(1) on the unique path between C1 and C2. The marginalization of φC1 and φC(1)

coincide. This procedure is continued along the path until the node C2 is reached. The
result is proved. �
Corollary 10.3 After the passage of a fully active schedule of flows, a junction tree is
globally consistent.

Proof of Corollary 10.3 This follows from the proposition stating that after passage
of a fully active schedule of flows a junction tree T is locally consistent, together with
Proposition 10.4. �
The algorithm for updating considered the cliques of a junction tree, which sent and
received messages locally; the global update is performed entirely by a series of local
computations. By organizing the variables into cliques and separators on a junction tree
and determining a schedule, there is no need for global computations in the inference
problem; the global update is achieved entirely by passing messages between neighbours
in the tree according to a schedule and the algorithm terminates automatically when the
update is completed.

10.9 Message passing for conditional Gaussian
distributions

This section uses the junction tree approach for finding a suitable conditional Gaussian
approximation for the update of a conditional Gaussian distribution. The problem here
is that CG distributions are convenient to use, but while marginalizing a CG distribution
over one of its continuous variables gives another CG distribution, marginalizing a CG
distribution over one of its discrete variables does not necessarily give a CG distribution.
Therefore, in the message passing algorithm, approximating CG distributions are used,
which return the true CG distribution after the fully active schedule has been completed.

To ensure that the result is the correct CG distribution, some restrictions have to be
made on the variables that are permitted in the cliques and separators. It is therefore
convenient to modify the junction tree construction a little, using a marked graph to
describe the dependence structure. For this section, marked graphs are graphs with two
types of nodes, corresponding to the discrete and continuous variables.
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W Min Mout

F E D

B C L

Figure 10.11 Marked graph.

Example 10.5 Consider the following example, taken from [77]. The emissions from a
waste incinerator differ because of compositional differences in incoming waste. Another
important factor is the way in which the waste is burnt, which can be monitored by
measuring the concentration of carbon dioxide in the emissions. The efficiency of the
filter depends on its technical state and also on the amount and composition of the
waste. The emission of heavy metals depends both on the concentration of metals in the
incoming waste and the emission of dust particles in general. The emission of dust is
monitored by measuring the penetration of light.

This example may be modelled using the directed acyclic marked graph (DAMG) in
Figure 10.11. The categorical variables are F : filter state, W : waste type, B method of
burning. The continuous variables are Min: metals in the waste, Mout : metals emitted,
E: filter efficiency, D: Dust emission, C: carbon dioxide concentration in emission and
L: light penetration.

Recall the notation introduced for CG distributions in Section 8.9: � is the set of
discrete variables, while � is the set of continuous variables. For marked graphs , the
notion of a decomposition has to be extended:

Definition 10.12 (Strong Decomposition) A triple (A, B, S) of disjoint subsets of the
node set V of an undirected marked graph G is said to form a strong decomposition
of G if V = A ∪ B ∪ S and the following three conditions hold:

1. S separates A from B,

2. S is a complete subset of V ,

3. Either S ⊆ �, or B ⊆ �, or both.

When this holds, (A, B, S) is said to decompose G into the components GA∪S and GB∪S .
If only the first two conditions hold, then (A, B, S) is said to form a weak decompo-

sition. Thus, a weak decomposition ignores the markings of the graph.

Definition 10.13 (Strongly Decomposable) An undirected marked graph is said to be
strongly decomposable if it is complete, or if there exists a strong decomposition (A, B, S),
where both A and B are non empty, into strongly decomposable sub-graphs GA∪S, and
GB∪S .

Decomposable unmarked graphs are triangulated; any cycle of length four or more
has a chord. Strongly decomposable marked graphs are further characterized by not
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having any path between two discrete variables that contains two adjacent continuous
variables.

Proposition 10.9 For an undirected marked graph G, the following are equivalent:

1. G is strongly decomposable.

2. G is triangulated, and for any path (δ1, α1, . . . , αn, δ2) between two discrete nodes
(δ1, δ2) where (α1, . . . , αn) are all continuous, δ1 and δ2 are neighbours.

3. For any α and β in G, every minimal (α, β) separator is complete. If both α and β

are discrete, then their minimal separator contains only discrete nodes.

Proof of Proposition 10.9, 1 �⇒ 2 The proof, as before for unmarked graphs,
is by induction. The inductive hypothesis is: All undirected strongly decompos-
able graphs with n or fewer nodes are triangulated and satisfy the conditions of
Statement 2.

This is clearly true for a graph on one node.
Let G be a strongly decomposable graph on n+ 1 nodes.
Either G is complete, in which case the properties of statement 2 clearly

follow,
Or There exist sets A, B, S, where V = A ∪ B ∪ S, where either B ⊆ � or S ⊆ �

or both, and such that GA∪S and GB∪S are strongly decomposable. Then any cycle
of length 4 without a chord must pass through both A and B. By decomposability,
S separates A from B. Therefore the cycle must pass through S at least twice.
Since S is complete, the cycle will therefore have a chord. Since GA∪S and GB∪S

are triangulated, it follows that G is also triangulated. If the nodes of S are discrete,
it follows that any path between two discrete variable passing through S satisfies
the condition of Statement 2. If B ⊆ �, then since all paths in GA∪S and all paths
in GB∪S satisfy the condition of Statement 2, it is clear that all paths passing
through C will also satisfy the condition of Statement 2. It follows that G is strongly
decomposable. �

Proof of Proposition 10.9, 2 �⇒ 3 Assume that G is triangulated, with the additional
property in Statement 2. Consider two nodes α and β and let S be their minimal sep-
arator. Let A denote the set of all nodes that may be connected to α by a trail that
does not contain nodes in S and let B denote all nodes that may be connected to β

by a trail that does not contain nodes in S. Every node γ ∈ S must be adjacent to
some node in A and some node in B, otherwise GV \(S\{γ }) would not be connected. This
would contradict the minimality of S, since S\{γ } would separate α from β. Suppose that
the condition in Statement 2 holds and consider the minimal separator for two discrete
nodes α, β, which are not neighbours. The separator is complete. Denote the separator
by S. Consider Ŝ, which is S with the continuous nodes removed. Then Ŝ separates α

and β on the sub graph induced by the discrete variables. But the condition of state-
ment 2 implies that α and β are also separated on G. Therefore, Ŝ separates α and
β. It follows that the minimal separator for two discrete nodes contains only discrete
nodes. �

Proof of Proposition 10.9, 3 �⇒ 1 If G is complete, it follows that every node
is discrete and the result is clear. Let α and β be two discrete nodes that are not
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contained within their minimal separator. Let S denote their minimal separator.
Let A denote the maximal connected component of V \S and let B = V \(A ∪ S).
Then (A, B, S) provides a decomposition, with S ⊆ �. Suppose that two such
discrete nodes cannot be found. Let α and β be two nodes that are not contained
within their minimal separator, where β is continuous. Let S denote the minimal
separator. Let B denote the largest connected component of V \S containing β.
Suppose that B contains a discrete node γ . Then S separates γ from α and
therefore consists entirely of discrete nodes. Therefore, either S ⊆ �, or B ⊆ �, as
required. �

The construction of the junction tree has to be modified. Starting from the directed
acyclic graph, the graph is first moralized by adding in the links between all the
parents of each variable and then making all the edges undirected, as before. Then,
sufficient edges are added in to ensure that the graph is a decomposable marked
graph .

Next, a junction tree is constructed. As before, this is an organization of a collection
of subsets of the variables V into a tree, such that if A and B are two nodes on the
junction tree, then the variables in A ∩ B appear in each node on the path between A

and B.

Definition 10.14 (Strong Root) A node R on a junction tree is a strong root if any pair
of neighbours A, B, such that A lies on the path between R and B (so that A is closer to
R than B) satisfies

B\A ⊆ � or B ∩ A ⊆ � or both.

This condition is equivalent to the statement that the triple (A\(A ∩ B), B\(A ∩ B),A ∩
B) forms a strong decomposition of GA∪B . This means that when a separator between
two neighbouring cliques is not purely discrete, the clique furthest away from the root
has only continuous nodes beyond the separator.

Theorem 10.1 The cliques of a strongly decomposable marked graph can be organized
into a junction tree with at least one strong root.

Proof of Theorem 10.1 As before, start with a simplicial discrete node X1. Then FX1

is a clique. Continue choosing nodes from FX1 that only have neighbours in FX1 . Set i1
the number of nodes in FX1 that only have neighbours in FX1 . Name the set of nodes in
FX1 Vi1 and the set of nodes in FX1 that have neighbours not in FX1 Si1 .

Now remove the nodes of FX1 that do not have neighbours outside FX1 . Choose a
new discrete simplicial node X2, such that FX1 ∩ FX2 
= φ, the empty set, and repeat the
process with index i2, where i2 is i1 plus the number of nodes in FX2 that only have
neighbours in FX2 .

Continue this process, by choosing Xj such that FXj
∩ (∪j−1

k=1FXk
) 
= φ, until there

are no discrete simplicial nodes left with which to continue the process. Let Xn denote
the last discrete simplicial node, following this procedure.

Now continue the procedure, for, j = n+ 1, . . . , N , choosing Xj such that FXj
∩

(∪j−1
k=1FXk

) 
= φ, until there are no nodes left.
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Since the minimal separator of any two discrete nodes contains only discrete nodes,
it follows that if there is a discrete node in V \(∪n

j=1Vij ), then there is a discrete simpli-
cial node among those remaining, such that FXn+1 ∩ (∪n

j=1FXn) 
= φ, contradicting the
assertion. It follows that all the nodes in V \(∪n

j=1Vij ) are continuous.
By construction, the cliques Vi1, . . . , Vin may be organised as a junction tree. If cliques

Vik and Vil are adjacent in the tree, it is clear that their separator is the minimal separator
between Xk and Xl . These are both discrete. Because the minimal separator between two
discrete nodes contains only discrete variables, it follows that all the separators in this
junction tree are discrete.

Now continue the construction of the junction tree as in Theorem 4.3, where the
remaining cliques have index greater than in. The resulting construction will have the
desired properties; any of the cliques Vi1 , . . . , Vin may be chosen as the strong root. �

To exploit the properties of CG distributions, the following further assumption needs to
be made:

Hypothesis 10.1 No continuous nodes have discrete children.

This is because, conditioned on the discrete variables, the distribution is Gaussian, which
makes certain aspects of the computation rather easy.

The prior conditional probability distributions corresponding to the directed acyclic
marked graph need to be specified. The assumption is that for a continuous variable X,
with parents �(X) = (�d(X), �c(X)), where �d(X) are the discrete parents and �c(X)

are the continuous parents,

X|(�d(X) = y, �c(X) = z) ∼ N(α(y)+ β(y)t z, γ (y)).

Following Definition 1.4, the random vectors are taken as row vectors when they are
several attributes measured on a single run of an experiment. Here, α is a function, β is
a (row) vector of the same length as z and γ is the conditional variance. The assumption
is that the variance is only affected by the discrete parents; the continuous parents only
enter linearly through the mean. The conditional density is then a CG potential,

φX(y, z, x) = 1

(2πγ (y))1/2
exp

{
(x − α(y)− β(y)zt )2

2γ (y)

}
.

From this, expanding the parentheses, taking logarithms and identifying terms gives the
canonical parameters (gX, hX, KX). The log partition function is

gX(y) = − α(y)2

2γ (y)
− 1

2
log(2πγ (y)),

and the other parameters are given by

hX(y) = α(y)

γ (y)

(
1 −β(y)

)
and

KX(y) = 1

γ (y)

(
1 −β(y)

−β(y)t β(y)tβ(y)

)
.
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Marginalization: Continuous variables Suppose φY,X1,X2
is a CG potential, where Y

are discrete variables and X1 and X2 are continuous variables. That is, φ is given by

φY,X1,X2
(y, x1, x2)

= χ(y) exp

{
g(y)+ h1(y)xt

1 + h2(y)xt
2 −

1

2
(x1, x2)

(
K11 K12

Kt
12 K22

)(
xt

1

xt
2

)}
,

where χ(y) is a function returning the value 1 if pY (y) > 0 and 0 if pY (y) = 0, K is
symmetric and the triple (g, h, K) represents the canonical characteristics. Recall the
standard result that, taking z ∈ Rp as a row vector, and K a positive definite p × p

symmetric matrix,

1

(2π)p/2

∫
Rp

exp

{
−1

2
zKzt

}
dz = 1√

det(K)

and hence that for a ∈ Rp and K a positive definite p × p symmetric matrix∫
Rp

exp

{
(a, z)− 1

2
ztKz

}
dz = exp

{
1

2
atK−1a

}
(2π)p/2

√
det(K)

.

From this, it follows, after some routine calculation, that if X1 is a random p-vector with
positive definite covariance matrix, then∫

Rp

φY,X1,X2
(y, x1, x2)dx1 = χ(y) exp

{
g̃(y)+ h̃(y)xt

2 −
1

2
x2K̃xt

2

}
,

where

g̃(y) = g(y)+ 1

2

(
p log(2π)− log det(K11(y))+ h1(y)K11(y)−1h1(y)t

)
,

h̃(y) = h2(y), K̃ = −K21(y)K11(y)−1K12(y).

Marginalization: Discrete variables Consider a CG potential φY 1,Y 2,X, where Y 1 and
Y 2 denote sets of discrete variables and X a set of continuous variables. Consider
marginalization over Y 2. Firstly, if h(y

1
, y

2
) = h̃(y

1
) and K(y

1
y

2
) = K̃(y

1
) for some

functions h̃ and K̃ (i.e. they do not depend on y
2
), then φ̃, the marginal of φY 1,Y 2,X is

simply

φ̃(y
1
, x) = exp

{
h̃(y

1
)t x − 1

2
xtK̃(y

1
)x

}∑
y

2

χ(y
1
, y

2
) exp

{
g(y

1
, y

2
)
}

.

The potential φ̃ is therefore CG with canonical characteristics
g̃(y

1
) = log

∑
y

2
exp

{
g(y

1
, y

2
)
}

and h̃, K̃ as before.

If either h or K depends on y
2
, then a marginalization will not produce a CG dis-

tribution, so an approximation is used. For this, it is convenient to consider the mean
parameters , (p, C, µ), where p(y

1
, y

2
) = p((Y 1, Y 2) = (y

1
, y

2
)) and

X|{(Y 1, Y 2) = (y
1
, y

2
)} = N(µ(y

1
, y

2
), C(y

1
, y

2
)).
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The approximation is as following: φ̃ is defined as the CG potential with mean parameters
(p̃, C̃, µ̃) defined as:

p̃(y
1
) =

∑
y

2

p(y
1
, y

2
),

µ̃(y
1
) = 1

p̃(y
1
)

∑
y

2

p(y
1
, y

2
)µ(y

1
, y

2
),

C̃(y
1
) = 1

p̃(y
1
)

∑
y

2

p(y
1
, y

2
)
(

C(y
1
, y

2
)+ (µ(y

1
, y

2
)− µ̃(y

1
))t (µ(y

1
, y

2
)− µ̃(y

1
))
)

.

It is relatively straightforward to compute that this approximate marginalization has the
correct expected value and second moments.

Marginalizing over both discrete and continuous When marginalizing over both types
of variables, first the continuous variables are marginalized, and then the discrete.

The fully active schedule may now be applied. Firstly, the evidence is inserted. This
is hard evidence, that certain states of the discrete variables are impossible, or that the
continuous variables take certain fixed values. The information then has to be propagated.
Start at the leaves, send all messages to a strong root, then propagate back out to the
leaves. Since messages are propagated to and from a strong root, all marginalizations are
proper marginalizations. This is clear: marginalizing continuous variables gives a proper
marginalization. If the separator is purely discrete, then once the continuous variables have
been marginalized, the remaining discrete marginalizations are proper marginalizations.
The directed acyclic marked graph, and its strong decomposition, have ensured that the
propagation is exact.

Having inserted hard evidence and run the schedule, the resulting potentials are not
necessarily probability distributions, but after the schedule, the same constant is required
to normalize each of them. The updating is finished, therefore, by finding the constant
that normalizes potential over one of the cliques or separators to make it a probability
distribution.

If the graph is not strongly decomposable, then the approximate marginalization may
be used, to obtain an approximate update.

10.10 Using a junction tree with virtual evidence
and soft evidence

The methods discussed so far in this chapter may be extended to the problem of updating
in the light of virtual evidence and soft evidence.

Dealing with virtual evidence is straightforward; for each virtual finding, one adds
in a virtual node, as illustrated in Figure 3.3, which will be instantiated according to the
virtual finding. This simply adds the virtual finding node to the clique containing the
variable for which there is a virtual finding.

Incorporating soft evidence cannot be carried out in such a straightforward manner,
because when there is a soft finding on a variable, the DAG is altered by removing the
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directed arrows from the parent nodes to the variable. One method for incorporating soft
evidence is discussed in [134]. The input is a Bayesian network with a collection of soft
and hard findings. The method returns a joint probability distribution with two properties:

1. The findings are the marginal distributions for the updated distribution.

2. The updated distribution is the closest to the original distribution (where the
Kullback-Leibler divergence is used) that satisfies this constraint (that the findings
are the marginals of the updated distribution).

The lazy big Clique algorithm The method described in chapter 10 is modified to
incorporate soft evidence in the following way.

1. Construct a junction tree, in which all the variables that have soft evidence are in
the same clique–the big clique C1.

2. Let C1 (the big clique) be the root node, apply the hard evidence and run the first
half of the fully active schedule; that is, propagating from the leaves to the root
node.

3. Once the big clique C1 has been updated with the information from all the other
cliques, absorb all the soft evidence into C1. This is described below.

4. Distribute the evidence according to the method described in Section 10.7 for
sending messages from the updated root out to the leaves.

If the big clique is updated to provide a probability function (namely a potential that
sums to 1), then the distribution of evidence will update the potentials over the cliques
and separators to probability distributions over the respective cliques and separators.

Absorbing the soft evidence Suppose the big clique C1 has soft evidence on the vari-
ables (Y1, . . . , Yk). Suppose soft evidence is received that Y1, . . . , Yk have distributions
qY1 , . . . , qYk

respectively. Let qC1 denote the probability function over the variables in C1

after the soft evidence has been absorbed. Then it is required that, for each j ∈ {1, . . . , k},
qYj
=∑XC1\{Yk }

qC1 . That is, the marginal of qC1 over all variables other than Yk is qYk
.

The important feature of soft evidence (Definition 3.1) is that after soft evidence has
been received, the variable has no parent variables. The Iterative Proportional Fitting
Procedure (IPFP), therefore, may be employed. It goes in cycles of length k. Firstly,
normalize the potential over C1 (after the hard evidence has been received) so that it is
a probability distribution pC1 . Then

p
(0)
C1
= pC1

for j = 1, . . . , k, set p
(mk+j−1)

Yj
=∑XC1\{Yj }

p
(mk+j−1)

C1
, and

p
(mk+j)

C1
= p

(mk+j−1)

C1
qYj

p
(mk+j−1)

Yj

.
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This is repeated until the desired accuracy is obtained. It has been well established that,
for discrete distributions with finite state space, the IPFP algorithm converges to the
distribution that minimises the Kullback-Leibler distance from the original distribution
(see [135]). �

Notes The original paper describing the use of junction trees for updating a Bayesian
network is by S.L. Lauritzen and D.J. Spiegelhalter [131]. The terminology Aalborg
formula is found in [52]. Much of the material is taken from ‘Probabilistic Networks and
Expert Systems’ by R.G. Cowell, A.P. David, S.L. Lauritzen and D.J Spiegelhalter [67].
The proofs or the main results were originally presented in [68]. The reference [136] gives
a mathematically rigorous presentation of an alternative message passing scheme known
as Schachter’s method. This method is also valid for more general influence diagrams.
The application of junction tree methods to conditional Gaussian distributions was taken
from S.L. Lauritzen [77]. The Iterative Proportion Fitting Procedure dates back to W.E.
Deming and F.F. Stephan (1940) [137]; this is the basis for updating a junction tree in
the light of soft evidence. The basic technique is taken from [134].
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10.11 Exercises: The junction tree and probability updating
1. Let V = {X1, X2, X3, X4, X5, X6} be a set of variables, where for j = 1, . . . , 6,

variable Xj has state state space Xj . Consider the potentials φ1 : X1 × X2 × X3 →
R+, φ2 : X2 × X3 × X5 → R+, φ3 : X1 × X3 × X4 → R+, φ4 : X5 × X6 → R+.

(a) Determine the domain graph.

(b) Eliminate X3 and determine the resulting set of potentials and their domain graph.

(c) For the original domain graph, determine a perfect elimination sequence ending
with X1.

2. Let V = {X1,X2,X3,X4,X5, X6, X7, X8} where, for j = 1, . . . , 8, variable Xj has
state space Xj . Consider the potentials φ1 : X1 × X2 × X3 → R+, φ2 : X2 × X4 ×
X5 → R+, φ3 : X4 × X6 × X7 → R+ and φ4 : X1 × X6 × X8 → R+.

(a) Determine the domain graph.

(b) Eliminate X1 and determine the resulting set of potentials and their domain graph.

(c) For the original domain graph, is there a perfect elimination sequence?

3. Consider the Bayesian network in Figure 10.12.

(a) Determine the domain graph.

(b) Does the domain graph have a perfect elimination sequence?

(c) Triangulate the graph, adding as few fill ins as possible.

X6

X2 X4

X1 X7

X3 X5

X8

Figure 10.12 Bayesian network for exercises 3 and 4.

4. Consider again the Bayesian network in Figure 10.12.

(a) Write down the elimination sequence corresponding to your triangulation in the
previous exercise.



THE JUNCTION TREE AND PROBABILITY UPDATING 315

(b) Suppose each variable has three states and let Xj = (x
(1)
j , x

(2)
j , x

(3)
j ) for j =

1, . . . , 8. Calculate the total number of entries in all the tables needed to define

pX1,X2,X3,X4,X5,X6,X7,X8(., ., ., ., ., ., x
(1)
7 , x

(1)
8 )

(c) Consider the calculation of

pX1|X7,X8(.|x(1)
7 , x

(1)
8 )

where the variables are marginalized in the following order: X2, X6, X4, X5, X3.
Calculate the size of each table to be marginalized in the process.

(d) Try to find an elimination sequence resulting in smaller tables to be marginal-
ized.

5. Let G = (V, E) be an undirected graph, with node set V = {α1, . . . , αd} Recall that
an elimination sequence of a graph G is a linear ordering of its nodes. Let σ be an
elimination sequence and let � denote the fill-ins produced by eliminating the nodes
of G in the order σ . Let Gσ denote the graph G extended by �. Note that in Gσ any
node α ∈ V together with its neighbours of higher elimination order form a complete
subset in the sense that they are all pairwize linked. Let Nσ(α) denote the set that
contains α and its neighbours of a higher elimination order.

(a) Let G−αv denote the graph G, after the node αv has been eliminated. Prove
that G−αv is the domain graph for �−αv , the potential � with the variable αv

eliminated.

(b) Prove that the sets Nσ(α) are the elimination domains corresponding to the elim-
ination sequence σ .

6. Construct a junction tree for the Bayesian network shown in Figure 10.13.

(a) Construct a fully active schedule.

(b) Assume, now, that you have hard evidence that {(X4, X5, X8) =
(x

(1)
4 , x

(3)
5 , x

(2)
8 )}. Which communications are necessary to update the

network?

X1 X2

X3 X9

X4 X5 X6

X7 X8

Figure 10.13 Bayesian network.
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7. a(a) Consider the Bayesian network shown in Figure 10.14, where for each j , the
number inside the node j indicates the number of possible states that variable
Xj can take. Construct a junction tree using the following ‘greedy’ algorithm:
take a simplicial node, if possible. Otherwise, take the node that requires as few
fill-ins as possible. Once the number of fill-ins has been determined, take the node
associated with the potential with the smallest table. Once the number of fill-ins
and table size has been determined, take the node, satisfying these conditions,
with the largest number of states.

(b) Write a MATLAB code to implement the procedure outlined above, when there
are six variables. The input should be the parents of each node. The algorithm
should then determine the edges required for the moral graph. The output should
be the elimination sequence.

X13, 2 X1, 2 X7, 2

X2, 2 X3, 2 X8, 3

X4, 3 X5, 3 X11, 4 X9, 2

X12, 2 X6, 5 X10, 5

Figure 10.14 Bayesian network for Exercise 7.

8. Consider the Bayesian network in Figure 4.28. Suppose the network receives hard
evidence: {(X5, X6, X9) = (x

(1)
5 , x

(3)
6 , x

(2)
9 )}. From the junction tree computed for

Exercise 5 in Chapter 4, describe an active schedule to update the distribution of the
other variables, conditioned on these instantiations.

9. Let C denote the set of cliques from a triangulated graph. A pre-I -tree is a tree
over C with separators S = C1 ∩ C2 for adjacent cliques C1 and C2. The weight of
a pre-I-tree is the sum of the number of variables in the separators.

(a) Prove that a junction tree is a pre-I-tree of maximal weight.

(b) Prove that any pre-I-tree of maximal weight is a junction tree.

10. Consider the DAG given in the Bayesian network in Figure 10.15.

(a) Determine the minimal set of conditioning variables for the DAG to reduce it to
a singly connected DAG.

(b) The numbers attached to the variables indicate the number of states. Determine
a conditioning resulting in a minimal number of singly connected DAGs.
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X1, 2 X2, 2 X3, 4 X9, 2

X4, 3 X5, 5 X6, 2

X8, 2 X7, 2

Figure 10.15 Bayesian network for Exercise 10.

11. This exercise is taken from S. Lauritzen [77]. It is a fictitious problem connected
with controlling the emission of heavy metals from a waste incinerator. The type
of incoming waste W affects the metals in the waste Min, the dust emission D and
the filter efficiency E. The quantity of metals in the waste Min affects the metals
emission Mout . Another important factor is the waste burning regimen B, which
is monitored via the carbon dioxide concentration in the emission C. The burning
regimen, the waste type and the filter efficiency E affect the dust emission D. The
dust emission affects the metals emission and it is monitored by recording the light
penetration L. The state of the filter F (whether it is intact or defective) affects E.

The variables F , W , B are qualitative variables with states (the filter is either
intact or defective, the waste is either industrial or household, the burning regimen is
either stable or unstable). The variables E, C, D, L, Min and Mout are continuous.
The directed acyclic marked graph is given in Figure 10.11.

• Moralize the graph.

• By adding in as few links as possible, construct a strongly decomposable graph.

• Construct a junction tree. What are the possible strong roots for the junction tree?





11

Factor graphs and the sum
product algorithm

The last few chapters treated the algorithmic problem of marginalizing a global potential
which is expressed as a product of local potentials, each with a domain that is a subset of
the global domain. This chapter addresses the same problem, but introduces a different
algorithm is, which does not require (at least explicitly) the construction of junction trees.
The algorithm is known as the sum product algorithm and it operates on factor graphs .

11.1 Factorization and local potentials

As usual, let Ṽ = {1, . . . , d}, and for each j ∈ Ṽ let Xj = (x
(1)
j , . . . , x

(kj )

j ) denote a finite
state space. Let X = ×d

j=1Xj . The space X is the configuration space. Let φ denote a
potential defined on X.

Let x = (x1, . . . , xd) ∈ X denote a configuration and, for a subset D ⊆ {1, . . . , d},
where D = {j1, . . . , jm}, let xD = (xj1 , . . . , xjm) and XD = ×v∈DXv .

A domain XD for D ⊂ {1, . . . , d} (where the subset is strict) is called a local domain .

Definition 11.1 (Factorizability) The potential φ is said to be factorizable if it factors into
a product of several local potentials γj each defined on local domains, such that

φ(x) =
∏
j∈J

γj (xSj
) (11.1)

for a collection of local domains XSj
, j ∈ J where J = {1, 2, . . . , q} and q ≤ d .

Bayesian Networks: An Introduction T. Koski, J. Noble
 2009 John Wiley & Sons, Ltd
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For a factorizable potential φ, consider the problem of computing the marginal

φi(xi) =
∑

z∈XṼ \{i}

∏
j∈J

γj (z, xi), (11.2)

where the domains of the potentials have been extended to X (Definition 2.25). This is
also known as the ‘one i (eye) problem’. The aim of this section is to develop an efficient
procedure for computing the marginalization, which exploits the way in which the global
potential is factorized and uses the current values to update the values assigned to each
variable. The method involves a factor graph , which is an example of a bipartite graph .

Definition 11.2 (Bipartite Graph) A graph G is bipartite if its node set can be partitioned
into two sets W and U in such a way that every edge in G has one node in W and another
in U .

Bipartite graphs can be (roughly) characterized as graphs that have no cycles of odd
length, but this property is not used here. A factor graph is a bipartite graph that expresses
the structure of the factorization given by Equation (11.1). The graph is constructed as
follows.

• there is a variable node (an element of U ) for each variable. A capital letter X will
be used to denote the variable node, a small letter the value x in the state space
XX associated with the variable.

• there is a function node (an element of W ) for each potential γj . γj will be used
to denote both the potential and the node.

• an undirected edge connecting variable node Xi to factor node γj if and only if Xi

is in the local domain of γj .

In other words, a factor graph is a representation of the relation ‘is an argument of’.

11.1.1 Examples of factor graphs

Example 11.1: Error correcting codes The following example is taken from N. Wiberg
[138]. Consider the system of equations:

x1 + x2 + x3 = 0

x3 + x4 + x5 = 0

x1 + x5 + x6 = 0

x2 + x4 + x6 = 0 (11.3)

The variables are binary (taking values 0 or 1) and addition is binary (modulo 2). This
system of equations may be expressed as the factor graph given in Figure 11.1. The
boxes correspond to the operation + and the circles correspond to the variables of the
system. The notation Xj will be used to denote both the variable and the corresponding
variable node in the graph for the variable that takes its values in state space Xj . Similar
notation will be used throughout. �



FACTORIZATION AND LOCAL POTENTIALS 321

X1 X3

X2

X6 X4

X5

Figure 11.1 A Factor Graph for Equations (11.3).

X1 X2

X3 X4

Figure 11.2 A directed acyclic graph.

p(X1) X1 p(X2|X1) X2

p(X3|X1,X2)

X3 p(X4|X3) X4

Figure 11.3 The factor graph corresponding to the directed acyclic graph in Figure 11.2.

Example 11.2: Bayesian networks as factor graphs A Bayesian network has a joint
probability distribution that factorizes according to a DAG. This joint distribution can be
converted into a factor graph. Each function is the local potential pXi |�i

and edges are
drawn from this node to Xi and to its parents �i . The DAG is shown in Figure 11.2 and
the corresponding factor graph in Figure 11.3.

Example 11.3: A factor graph of a probability distribution
1. A general joint probability distribution p(X1, X2, X3, X4) over four variables has

the trivial factor graph shown in Figure 11.4.

2. The definition of conditional probability yields

pX1,X2,X3,X4 = pX1pX2|X1pX3|X1,X2pX4|X1,X2,X3 .

The factor graph corresponding to this chain rule is given in Figure 11.5.
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X1 X2

X3 X4

Figure 11.4 Trivial factor graph for a probability distribution.

p(X1) X4

X1 p(X4|X1,X2,X3)

p(X2|X1) X2 p(X3|X1,X2) X3

Figure 11.5 The chain rule as a factor graph.

p(X1) X1 p(X2|X1) X2 p(X3|X2) X3

Figure 11.6 A Markov chain as a factor graph.

3. A hidden Markov model (HMM) has

pX1,X2,X3,Y1,Y2,Y3

= pX1pX2|X1pX3|X2pX4|X3pY1|X1pY2|X2pY3|X3

and the corresponding factor graph is given in Figure 11.7. The factor graph
corresponding to a Markov chain is illustrated in Figure 11.6.

p(X1) X1 p(X2|X1) X2 p(X3|X2) X3

p(Y1|X1) p(Y2|X2) p(Y3|X3)

Y1 Y2 Y3

Figure 11.7 A hidden Markov model as a factor graph.
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11.2 The sum product algorithm

The following algorithm computes the marginalization for the one eye problem of
Equation (11.2) without the introduction of junction trees. Consider Figure 11.8.

The following notation is introduced:

µXk→γj
(x) x ∈ Xk : Variable to local potential.

This is the message sent from node X to node γj in the sum product algorithm and

µγj→Xk
(x) x ∈ Xk : Local potential to variable.

This is the message sent from the function node γj to the variable node X.
Recall the definition of neighbour (Definition 2.3). Nv will be used to denote the set

of neighbours of a node v. A factor graph is undirected. By the definition of a factor
graph, all the neighbours of a node will be of the opposite type to the node itself.

The message sent from node v on edge e is the product of the local potential at v (or
the unit function if v is a variable node) with all messages received at v on edges other
than e and then marginalized to the variable associated with e. The messages are defined
recursively as follows.

Definition 11.3 (Sum Product Update Rule) For x ∈ Xk , and for each Xk ∈ Nγj
,

µXk→γj
(x) =

{ ∏
h∈NXk

\{γj } µh→Xk
(x) ∀x ∈ Xk NXk


= φ

1 NXk
= φ.

(11.4)

and for each γj ∈ NXk
,

µγj→Xk
(x) =

∑
y∈XṼ \{k}

γj (y, x)
∏

Y∈Nγj
\{Xk}

µY→γj
(yj ) ∀x ∈ Xk (11.5)

where φ denotes the empty set, and where the domain of γj has been extended to X and
variable Xk takes the last position; yj is the value taken by variable Xj (j 
= k).

The flow of computation in a factor graph is illustrated in Figure 11.9.

Definition 11.4 (Initialization) The initialization is

µXk→γj
(x) = 1 ∀x ∈ Xj

X gj

mgj→X(x)

mX→gj(x)

Figure 11.8 Updates in a factor graph.
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Figure 11.9 Updates in a fragment of a factor graph.

for each Xk ∈ Nγj
and

µγj→Xk
(x) = 1 ∀x ∈ Xj

for each γj ∈ NXk
, for each variable node Xk and each function node γj .

Definition 11.5 (Termination) The termination at a node is the product of all messages
directed towards that node.

µXk
(x) =

∏
γj∈NXk

µγj→Xk
(x), x ∈ Xk (11.6)

and
µγj

(xDj
) =

∏
Xk∈Nj

µXk→γj
(xk) ∀xDj

∈ XDj
.

Note that the function node receives communications from precisely those variables that
are in the domain of the function.

After sending sufficiently many messages according to a suitable schedule, the ter-
mination at the variable node yields the marginalization , or a suitable approximation to
the marginalization, over that variable. That is,

µXi
(x) =

∑
y∈XṼ \{i}

φ(y, x) ∀x ∈ Xi ,

where the arguments of φ have been rearranged, so that variable Xi appears last.
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The schedule One node is arbitrarily chosen as a root and, for the purposes of con-
structing a schedule, the edges are directed to form a directed acyclic graph, where the
root has no parents. If the graph is a tree, then the choice of directed acyclic graph is
uniquely defined by the choice of the root node. Computation begins at the leaves of the
factor graph.

• Each leaf variable node sends the trivial identity function to its parents.

• Each leaf function node sends a description of γ to its parents.

• Each node waits for the message from all its children before computing the message
to be sent to its parents.

• Once the root has received messages from all its children, it sends messages to all
its children.

• Each node waits for messages from all its parents before computing the message
to be sent to its children.

This is repeated from root to leaves and is iterated a suitable number of times. No
iterations are needed if the factor graph is cycle free. This is known as a generalized
forward and backward algorithm .

The following result was proved by N. Wiberg [138].

Theorem 11.1 (Wiberg). Let

φ(x) =
∏
j

γj (xDj
)

and let G be a factor graph with no cycles, representing φ. Then, for any variable node
Xk , the marginal of φ at x ∈ Xk is

µXk
(x) =

∑
y∈XṼ \{k}

φ(y, x),

where the arguments of φ have been rearranged so that the kth variable appears last and
µXk

(x) is given in Equation (11.6).

Example 11.4 Before giving a proof of Wiberg’s theorem, the following example may
be instructive. Consider

φ(x1, x2, x3) = γ1(x1, x2)γ2(x2, x3).

The factor graph is then a tree given in Figure 11.10.

X1 g1(x1, x2) X2 g2(x2, x3) X3

Figure 11.10 An example on three variables and two functions.

In this case, the messages are:

µX1→γ1(x1) = µX3→γ2(x3) = 1.
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µγ1→X2(x2) =
∑

x1∈X1

γ1(x1, x2)µX1→γ1(x1) =
∑

x1∈X1

γ1(x1, x2)

µγ2→X2(x2) =
∑

x3∈X3

γ2(x2, x3)µX3→γ2(x3) =
∑

x3∈X3

γ2(x2, x3)

µX2→γ2(x2) = µγ1→X2(x2) =
∑

x1∈X1

γ1(x1, x2)

µX2→γ1(x2) = µγ2→X2(x2) =
∑

x3∈X3

γ2(x2, x3)

µγ1→X1(x1) =
∑

x2∈X2

γ1(x1, x2)µX2→γ1(x2) =
∑

(x2,x3)∈X2×X3

γ1(x1, x2)γ2(x2, x3)

µγ2→X3(x3) =
∑

(x1,x2)∈X1×X2

γ1(x1, x2)γ2(x2, x3).

Note that the variable terminations are

µX1(x1) = µγ1→X1(x1) =
∑

(x2,x3)∈X2×X3

γ1(x1, x2)γ2(x2, x3)

µX2(x2) = µγ1→X2(x2)µγ2→X2(x2) =
∑

(x1,x3)∈X1×X3

γ1(x1, x2)γ2(x2, x3)

µX3(x3) = µγ2→X3(x3) =
∑

(x1,x2)∈X1×X2

γ1(x1, x2)γ2(x2, x3),

which are the required marginalization. The Wiberg’s theorem states that if the factor
graph is a tree, then after a full schedule, the terminations give the required marginaliza-
tion.

Proof of Theorem 11.1 Consider Figure 11.11. Suppose that a full schedule has been
performed on a tree. The proof proceeds in three steps. �

Step 1: Decompose the factor graph into n components, R1, . . . , Rn Choose a variable
Xi and suppose that n edges enter the variable node Xi . Since there are no cycles, the
margin

∑
y∈XṼ \{i}

φ(y, xi) (where the arguments of φ have been suitably rearranged) may
be written as∑

y∈XṼ \{i}

φ(y, xi) =
∑

y∈X|yi=xi

∏
j∈R1

γj (yDj
)
∏
j∈R2

γj (yDj
) . . .

∏
j∈Rn

γj (yDn
)

=
n∏

k=1

∑
y

Rk
∈XRk

|yi=xi

∏
j∈Rk

γj (yDj
)

=
n∏

k=1

νRk
(xi),
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x1

R1

R2

g1
ο

g2

mγ 
ο x1

x1

1

mγ 
2

Figure 11.11 Step 1.

where the notation is clear. The last expression has the same form as the termination
formula . Therefore the assertion is proved if it can be established that

νRk
(xi) = µγ 0

k
→Xi

(xi), k = 1, . . . , n,

where γ 0
1 , . . . , γ 0

n are the n function nodes that are neighbours of Xi . Due to the clear
symmetry, it is only necessary to consider one of these.

Step 2: Consider the decomposition of R1 shown in Figure 11.12, where the function
node γ 0

1 has three edges. In the three variable case shown in Figure 11.12, X1 is the
node under consideration and γ 0

1 is outside R3 and R4. For this case,

νR1(x1) =
∑

y∈XR1 |y1=x1

∏
j∈R1

γj (yDj
)

=
∑

(y3,y4)∈X3×X4

γ 0
1 (x1, y3, y4)

∑
zR3
∈XR3 |z3=y3

∏
j∈R3

γj (zDj
)

∑
zR4
∈XR4 |z4=y4

∏
j∈R4

γj (zDj
)

=
∑

(x3,x4)∈X3×X4

γ 0
1 (x1, x3, x4)ν̃R3(x3)ν̃R4(x4)

where XR1 denotes all the variable nodes that are neighbours of function nodes with R1,
retaining the same indices as the full set of variables, and similar. It is straightforward
to derive a similar expression when the function node has m neighbours.

This expression has the same form as the update rule given for µγj→X in Equation
(11.5). In other words, if ν̃R3(x3) = µX3→γ 0

1
(x3) and ν̃R4(x4) = µX4→γ 0

1
(x4), then the

result is proved. The algorithm proceeds to the leaf nodes of the factor graph.

Step 3: There are two cases. If the leaf node is a function node (as in Step 1, going
from a variable to functions), then (clearly from the graph) this is a function (h say) of
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Figure 11.12 Step 2.

a single variable (say Y ) and (from Formula (11.5)),

ν(y) = h(y) = µh→Y (y).

If the leaf node is a variable node X (as in Step 2, going from functions to variables),
then the leaf variable is adjacent to a single function h (or else it is not a leaf), which
has neighbours (Y1, . . . , Ym,X), say, then

ν̃(x) = 1 = µX→h(x),

since if X is a leaf, then h is the only neighbour of X and hence µX→h(x) ≡ 1 from
Equation (11.4).

By tracing backward from the leaf nodes, it is now clear, by induction, that

∑
y∈XṼ \{i}

φ(y, xi) =
n∏

j=1

µγ 0
j
→Xi

(xi),

where (γ 0
1 , . . . , γ 0

n ) are the neighbours of node Xi .

Termination Consider the termination formula

µX(x) =
∏

γj∈NX

µγj→X(x),
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together with the formula for the message from a variable node to a function node:

µX→γj
(x) =

∏
h∈NX \{γj }

µh→X(x).

Suppose the factor graph is a tree. Then, since any variable to function message is the
product of all but one of the factors in the termination formula, it is clear that µX(x) may
be computed as the product of the two messages that were passed in opposite directions,
a) from the variable X to one of the functions and b) from the function to the variable X.

11.3 Detailed illustration of the algorithm

The example in this section is taken from taken from Frey [139]. The following figure
shows the flow of messages that would be generated by the sum product algorithm applied
to the factor graph of the product

g(x1, x2, x3, x4, x5) = fA(x1)fB(x2)fC(x1, x2, x3)fD(x3, x4)fE(x3, x5).

shown in Figure 11.13.
The messages are generated in five steps, indicated with circles in the figure. The

same flow is detailed below.

Step 1:

µfA→x1(x1) =
∑
\x1

fA(x1) = fA(x1).

µfB→x2(x2) =
∑
\x2

fB(x2) = fB(x2).

µx4→fD
(x4) = 1

µx5→fE
(x5) = 1

E
f

D
fx1

x3

x2 x5

x4

Cf

Bf

Af

1

4

45

5

4

3

3

4

2

5

1

5

2
2

2

1

1

Figure 11.13 Flows of messages.
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Step 2:

µx1→fC
(x1) = µfA→x1(x1) = fA(x1)

µx2→fC
(x2) = µfB→x2(x2) = fB(x2)

µfD→x3(x3) =
∑
\x3

µx4→fD
(x4)fD(x3, x4) =

∑
x4

fD(x3, x4)

µfE→x3(x3) =
∑
\x3

µx5→fE
(x5)fE(x3, x5) =

∑
x5

fE(x3, x5)

Step 3:

µfC→x3(x3) =
∑
\x3

µx1→fC
(x1)µx2→fC

(x2)fC(x1, x2, x3)

=
∑
x1,x2

fA(x1)fB(x2)fC(x1, x2, x3)

µx3→fC
(x3) = µfD→x3(x3)µfE→x3(x3) =

∑
x4,x5

fD(x3, x4)fE(x4, x5)

Step 4:

µfC→x1(x1) =
∑
\x1

µx3→fC
(x3)µx2→fC

(x2)fC(x1, x2, x3)

=
∑

x2,x3,x4,x5

fD(x3, x4)fE(x4, x5)fB(x2)fC(x1, x2, x3)

µfC→x2(x2) =
∑
\x2

µx3→fC
(x3)µx1→fC

(x1)fC(x1, x2, x3)

=
∑

x1,x3,x4,x5

fD(x3, x4)fE(x4, x5)fA(x1)fC(x1, x2, x3)

µx3→fD
(x3) = µfC→x3(x3)µfE→x3(x3)

=
∑

x1,x2,x4,x5

fA(x1)fB(x2)fC(x1, x2, x3)fE(x3, x5)

µx3→fE
(x3) = µfC→x3(x3)µfD→x3(x3)

=
∑

x1,x2,x4,x5

fA(x1)fB(x2)fC(x1, x2, x3)fD(x3, x4).
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Step 5:

µx1→fA
(x1) = µfC→x1(x1) =

∑
x2,x3,x4,x5

fB(x2)fC(x1, x2, x3)fD(x3, x4)fE(x4, x5)

µx2→fB
(x2) = µfC→x2(x2) =

∑
x1,x3,x4,x5

fA(x1)fC(x1, x2, x3)fD(x3, x4)fE(x4, x5)

µfD→x4(x4) =
∑
\x4

µx3→fD
(x3)fD(x3, x4)

=
∑

x1,x2,x3,x5

fA(x1)fB(x2)fC(x1, x2, x3)fD(x3, x4)fE(x4, x5)

µfE→x5(x5) =
∑
\x5

µx3→fE
(x3)fE(x3, x5)

=
∑

x1,x2,x3,x4

fA(x1)fB(x2)fC(x1, x2, x3)fD(x3, x4)fE(x3, x5).

Termination

g1(x1) = µfA→x1(x1)µfC→x1(x1) =
∑

x2,x3,x4,x5

g(x1, x2, x3, x4, x5)

g2(x2) = µfB→x2(x2)µfC→x2(x2) =
∑

x1,x3,x4,x5

g(x1, x2, x3, x4, x5)

g3(x3) = µfC→x3(x3)µfD→x3(x3)µfE→x3(x3) =
∑

x1,x2,x4,x5

g(x1, x2, x3, x4, x5)

g4(x4) = µfD→x4(x4) =
∑

x1,x2,x3,x5

g(x1, x2, x3, x4, x5)

g5(x5) = µfD→x5(x5) =
∑

x1,x2,x3,x4

g(x1, x2, x3, x4, x5).

In the termination step, gi(xi) is computed as the product of all messages directed towards
xi . Equivalently, gi(xi) may be computed as the product of the two messages that were
passed in opposite directions over any single edge incident on xi , because the message
passed on any given edge is equal to the product of all but one of these messages.
Therefore (for example), there are three ways to compute g3(x3) by multiplying only two
messages together:

g3(x3) = µfC→x3(x3)µx3→fC
(x3) = µfD→x3(x3)µx3→fD

(x3) = µfE→x3(x3)µx3→fE
(x3).
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Notes Chapter 11 presents a brief outline of some aspects of S.M. Aji and R.J. McEliece
(2000) [140], F.R. Ksischang, B.J. Frey and H.A. Loeliger [141], B.J. Frey [139] and N.
Wiberg [138], as related to Bayesian networks. Most of the ideas are originally developed
in N. Wiberg [138]. A well written treatise on bipartite graphs is found in [142].
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11.4 Exercise: Factor graphs and the sum product
algorithm

Consider the directed acyclic graph below.

B E

A R

Figure 11.14 Burglary, earthquake and radio.

The variables are B – Burglary, A – Alarm, E – Earthquake and R – news broad-
cast.

These are random variables with the states (0 – no (false), 1 – yes (true)). The
alarm is reliable for detecting burglary, but also responds to minor earthquakes.
Radio broadcasts tell about occurrences of such earthquakes, but are not always
correct. The conditional probability distributions for this problem are given below.

PR|E =
R\E 0 1

0 0.99 0.05
1 0.01 0.95

PA|B,E(0|., .) =
E\B 0 1

0 0.97 0.05
1 0.05 0.02

PB(1) = 0.01, PE(1) = 0.999

Assume that the joint distribution PA,B,E,R factorizes recursively according to the
Bayesian network shown in Figure 11.14. Using the sum-product algorithm, compute

1. The conditional probability pB|A(1|1)

2. the conditional probability pB|A,R(1|1, 1).
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