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This book on Analytic Hyperbolic Geometry 
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that gave birth to the Special Theory of Relativity, 

and the 50th anniversary of his death in April 18, 1955. 
This book is dedicated 

to the Centenary Celebration of 
Einstein’s Special Relativity and to the practice of 
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by means of 
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Preface 

This book is about the foundations and applications of analytic hyperbolic 
geometry from the viewpoint of hyperbolic vectors, called gyrouectors. The 
underlying mathematical tools, gyrogroups and gyrovector spaces, are de- 
veloped along analogies they share with groups and vector spaces. As a 
result, a gyrovector space approach to hyperbolic geometry, fully analogous 
to the standard vector space approach to Euclidean geometry, emerges. 

Owing to its strangeness, some regard themselves as excluded from the 
profound insights of hyperbolic geometry so that this enormous portion of 
human achievement is a closed door to them. But this book opens the door 
on its mission to  make the hyperbolic geometry of Bolyai and Lobachevsky 
widely accessible by introducing a gyrovector space approach to hyperbolic 
geometry guided by analogies that it shares with the common vector space 
approach to Euclidean geometry. 

Writing this first book on analytic hyperbolic geometry became possible 
following the successful adaption of vector algebra for use in hyperbolic 
geometry in the author’s 2001 book “Beyond the Einstein Addition Law 
and its Gyroscopic Thomas Precession: The Theory of Gyrogroups and 
Gyrouector Spaces” (Kluwer Acad.). A most convincing way to describe 
the success of the author’s adaption of vector algebra for use in hyperbolic 
geometry is found in Scott Walter’s review of the author’s 2001 book, part 
of which is therefore quoted below. 

Over the years, there have been a handful of attempts 
to promote the non-Euclidean style for use in problem solv- 
ing in relativity and electrodynamics, the failure of which 
to attract any substantial following, compounded by the 
absence of any positive results must give pause to anyone 
considering a similar undertaking. Until recently, no one 
was in a position to offer an improvement on the tools 
available since 1912. In his [2001] book, Ungar furnishes 

vii 
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the crucial missing element from the panoply of the non- 
Euclidean style: an elegant nonassociative algebraic for- 
malism that fully exploits the structure of Einstein’s law 
of velocity composition. The formalism relies on what the 
author calls the “missing link” between Einstein’s velocity 
addition formula and ordinary vector addition: Thomas 
precession . . . 

Ungar lays out for the reader a sort of vector alge- 
bra in hyperbolic space, based on the notion of a gyrovec- 
tor. A gyrovector space differs in general from a vector 
space in virtue of inclusion of Thomas precession, and ex- 
clusion of the vector distributive law. As a result, when 
expressed in terms of gyrovectors, Einstein (noncommu- 
tative) velocity addition law becomes “gyrocommutative” 
, . . . One advantage of this approach is that hyperbolic ge- 
ometry segues into Euclidean geometry, with notions such 
as group, vector, and line passing over to their hyperbolic 
gyro-counterparts (gyrogroup, etc.) . . . 

One might suppose that there is a price to pay in math- 
ematical regularity when replacing ordinary vector addi- 
tion with Einstein’s addition, but Ungar shows that the 
latter supports gyrocommutative and gyroassociative bi- 
nary operations, in full analogy to the former. Likewise, 
some gyrocommutative and gyroassociative binary opera- 
tions support scalar multiplication, giving rise to gyrovec- 
tor spaces, which provide the setting for various models of 
hyperbolic geometry, just as vector spaces form the setting 
for the common model of Euclidean geometry. In particu- 
lar, Einstein gyrovector spaces provide the setting for the 
Beltrami ball model of hyperbolic geometry, while Mobius 
gyrovector spaces provide the setting for the Poincark ball 
model of hyperbolic geometry. 

Scott Walter 
Foundations of Physics 32, pp. 327-330 (2002) 

Analytic hyperbolic geometry, as presented in this book, is now per- 
forming better than ever, emphasizing the interdisciplinary collaborations 
required to further develop this extraordinary mathematical innovation and 
its applications. But, there have been some challenges during the initial 
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phase of its development, challenging preconceived notions like the dogma 
of Einsteinian relativity vs. Minkowskian relativity, which was not struck 
down until the emergence of analytic hyperbolic geometry. 

Armed with a gyrovector space structure, hyperbolic geometry is perfect 
for use in relativity physics. It is therefore fitting that the completion 
of this book, the first book on analytic hyperbolic geometry and on the 
central role it plays in special relativity, comes to fruition this year, the 
100th anniversary of Einstein's miraculous year, 1905 [Einstein (1998)l. 
In this year Einstein submitted his doctoral dissertation (April 30) (i) on 
the determination of molecular dimensions; and he published four seminal 
papers (ii) on the photoelectric effect (published June 9), for which he 
was awarded the Nobel Prize in 1921; (iii) on the existence of atoms by 
measuring Brownian motion of particles in solution (published July 18); 
(iv) on the electrodynamics of moving bodies (published September 26), his 
first paper on special theory of relativity and a landmark in the development 
of modern physics; and a second, shorter paper (v) on the special theory 
of relativity, that  contains the famous E = mc2 [Einstein and Calaprice 
(2005), p. m i ] .  

As a mathematical prerequisite for a fruitful reading of this book it 
is assumed familiarity with Euclidean geometry from the point of view 
of vectors and, occasionally, with differential calculus and functions of a 
complex variable. I t  includes 
both elementary and advanced topics, and is structured so that it can 
be enjoyed equally by undergraduates, graduate students, researchers and 
academics in geometry, algebra, mathematical physics, theoretical physics 
and astronomy. 

The book is aimed at a large audience. 

Abraham A. Ungar 
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Chapter 1 

Introduction 

This introductory chapter presents a few hyperbolic gems from the book to 
amaze both the uninitiated and the practicing expert. The actual study of 
analytic hyperbolic geometry, thus, begins in Chap. 2. 

Geometry, according to Herodotus, and the Greek derivation of the 
word, had its origin in Egypt in the mensuration of land, and fixing of 
boundaries necessitated by the repeated inundations of the Nile. It con- 
sisted at first of isolated facts of observation and crude rules for calculation 
until it came under the influence of Greek thought. Following the intro- 
duction of geometry from Egypt to Greece by Thales of Miletus, 640- 546 
B.C., geometric objects were abstracted, thus paving the way for attempts 
to give geometry a connected and logical presentation. The most famous 
of these attempts is that of Euclid, about 300 B.C. [Sommerville (1914), 

According to the Euclid parallel postulate, given a line L and a point P 
not on L there is one and only one line L' which contains P and is parallel to 
L. Euclid's parallel postulate does not seem as intuitive as his other axioms. 
Hence, it was felt for many centuries that it ought to be possible to find a 
way of proving it from more intuitive axioms. The history of the study of 
parallels is full of reproaches against the lack of self-evidence of the Euclid 
parallel postulate. According to Sommerville [Sommerville (1914), p. 31, 
Sir Henry Savile referred to it as one of the great blemishes in the beautiful 
body of geometry [Praelectiones, Oxford, 1621, p. 1401. Following Bolyai 
and Lobachevsky, however, the parallel postulate became the property that 
distinguishes Euclidean geometry from non-Euclidean ones. 

The Hungarian Geometer Jdnos Bolyai (1802 - 1860) and the Russian 
Mathematician Nikolai Ivanovich Lobachevsky (1793 - 1856) independently 
worked out a geometry that seemed consistent and yet negated the Eu- 

P. 11. 
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2 Analytic Hyperbolic Geometry 

clidean parallel postulate, published in 1832 and 1829. Carl Friedrich Gauss 
(1777- 1855), who was the dominant figure in the mathematical world a t  
the time, was probably the first to understand clearly the possibility of a 
logically and sound geometry different from Euclid’s. According to Harold 
E. Wolfe [Wolfe (1945), p. 451, it was Gauss who coined the term non- 
Euclidean geometry. The contributions of Gauss to the birth of hyperbolic 
geometry are described by Sonia Ursini in [Ursini (2001)]. According to 
Duncan M. Y. Sommerville [Sommerville (1914), p. 241, the ideas inaugu- 
rated by Bolyai and Lobachevsky did not attain any wide recognition for 
many years, and it was only after Baltzer had called attention to them in 
1867 that non-Euclidean geometry began to be seriously accepted and stud- 
ied. In 1871 Felix Klein suggested calling the non-Euclidean geometry of 
Bolyai and Lobachevsky hyperbolic geometry [Sommerville (1914), p. 251. 
The discovery of hyperbolic geometry and its development is one of the 
great stories in the history of mathematics; see, for instance, the accounts 
of [Rosenfeld (1988)l and [Gray (1989)l for details. 

1.1 The Vector and Gyrovector Approach 
to Euclidean and Hyperbolic Geometry 

Commonly, three methods are used to study Euclidean geometry: 

(1) The Synthetic Method: This method deals directly with geometric 
objects (figures). It derives some of their properties from other 
properties by logical reasoning. 

(2) The Analytic Method: This method uses a coordinate system, ex- 
pressing properties of geometric objects by numbers (coordinates). 
It derives properties from other properties by numerical expres- 
sions and equations, numerical results being interpreted in terms 
of geometric objects [Boyer (2004)l. 

(3) The Vector Method: The vector method occupies a middle position 
between the synthetic and the analytic method. It deals with geo- 
metric objects directly and derives properties from other properties 
by computation with vector expressions and equations [Hausner 
(1998)l. 

Euclid treated his Euclidean geometry synthetically. Also Bolyai and 
Lobachevsky treated their hyperbolic geometry synthetically. Because 
progress in geometry needs computational facilities, the invention of an- 
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alytic geometry by Descartes (1596-1650) made simple approaches to more 
geometric problems possible. Later, further simplicity for geometric calcu- 
lations became possible by the introduction of vectors and their addition 
by the parallelogram law. The parallelogram law for vector addition is so 
intuitive that its origin is unknown. It may have appeared in a now lost 
work of Aristotle (384-322). I t  was also the first corollary in Isaac Newton’s 
(1642-1727) “Principia Mathematica” (1687), where Newton dealt exten- 
sively with what are now considered vectorial entities, like velocity and 
force, but never with the concept of a vector. The systematic study and 
use of vectors were a 19th and early 20th century phenomenon. Vectors 
were born in the first two decades of the 19th century with the geometric 
representations of complex numbers. The development of the algebra of 
vectors and of vector analysis as we know it today was first revealed in sets 
of notes made by J. Willard Gibbs (1839-1903) for his students at Yale 
University. 

The synthetic and analytic methods for the study of Euclidean geometry 
are accessible to the study hyperbolic geometry as well. Hitherto, however, 
the vector method had been deemed inaccessible to that study. 

In the years 1908 - 1914, the period which experienced a dramatic flow- 
ering of creativity in the special theory of relativity, the Croatian physicist 
and mathematician Vladimir VariEak (1865 - 1942), professor and rector of 
Zagreb University, showed that this theory has a natural interpretation in 
hyperbolic geometry [VariEak (1910a)I. For his chagrin, however, VariEak 
had to admit in 1924 [VariEak (1924), p. 801 that the adaption of vector 
algebra for use in hyperbolic geometry was just not feasible, as Scott Walter 
notes in [Walter (1999b), p. 1211. 

Following VariEak’s 1924 realization that, unlike Euclidean geome- 
try, the hyperbolic geometry of Bolyai and Lobachevsky does not ad- 
mit vectors, there are in the literature no attempts to treat hyperbolic 
geometry vectorially. There are, however, few attempts to treat hy- 
perbolic geometry analytically [Jackson and Greenspan (1955); Patrick 
(1986)], dating back to Sommerville’s 1914 book [Sommerville (1914); 
Sommerville (1919)l. Accordingly, following Bolyai and Lobachevsky, most 
books on hyperbolic geometry treat the geometry synthetically, some treat 
it analytically, but no book treats it vectorially. 

Fortunately, some 80 years since VariEak’s 1924 realization, the adaption 
of vectors for use in hyperbolic geometry, where they are called gyrovectors, 
has been accomplished in [Ungar (2000); Ungar (2001)], allowing Euclidean 
and hyperbolic geometry to be united [Ungar (2004c)I. Following the adap- 
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tion of vector algebra for use in hyperbolic geometry, the hyperbolic geom- 
etry of Bolyai and Lobachevsky is now effectively regulated by gyrovector 
spaces just as Euclidean geometry is regulated by vector spaces. Accord- 
ingly, we develop in this book a gyrovector space approach to hyperbolic 
geometry that is fully analogous to the common vector space approach to 
Euclidean geometry [Hausner (1998)l. In particular, we find in this book 
that gyrovectors are equivalence classes of directed gyrosegments, Def. 5.4, 
p. 119, that add according to the gyroparallelogram law, Figs. 8.21-8.22, 
p. 291, just like vectors, which are equivalence classes of directed segments 
that add according to the common parallelogram law. 

It  should be remarked here that in applications to Einstein’s spe- 
cial theory of relativity, Chap. 10, Einsteinian velocity gyrovectors are 
3-dimensional gyrovectors fully analogous to Newtonian velocity vectors. 
Hence, in particular , relativistic gyrovectors are different from the common 
4-vectors of relativity physics. In fact, the passage from n-gyrovectors to 
(n + 1)-vectors is illustrated in Remark 4.20, p. 107, and employed in the 
study of the special relativistic Lorentz transformation group in Chap. 10. 
The 4-vectors are important in special relativity and in its extension to 
general relativity. Early attempts to employ 4-vectors in gravitation, 1905 - 
1910, are described in [Walter (2005)]. 

In the same way that vector spaces are commutative groups of vectors 
that admit scalar multiplication, gyrovector spaces are gyrocommutative 
gyrogroups of gyrovectors that admit scalar multiplication. Accordingly, 
the nonassociative algebra of gyrovector spaces is our framework for ana- 
lytic hyperbolic geometry just as the associative algebra of vector spaces 
is the framework for analytic Euclidean geometry. Moreover, gyrovector 
spaces include vector spaces as a special, degenerate case corresponding to 
trivial gyroautomorphisms. Hence, our gyrovector space approach forms 
the theoretical framework for uniting Euclidean and hyperbolic geometry. 

1.2 Gyrolanguage 

In order to elaborate a precise language for dealing with analytic hyper- 
bolic geometry, which emphasizes analogies with classical notions, we ex- 
tensively use the prefix “gyro”, giving rise to gyrolanguage, the language 
that we use in this book. The resulting gyrolanguage rests on the unifica- 
tion of Euclidean and hyperbolic geometry in terms of analogies they share 
[Ungar (2004c)I. The prefix “gyro” stems from Thomas gyration. The lat- 
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ter, in turn, is the mathematical abstraction of the peculiar relativistic 
effect known as the Thomas precession into an operator, called a gyrator 
and denoted “gyr” . The gyrator generates special automorphisms called 
gyroautomorphisms. The effects of the gyroautomorphisms are called gyra- 
tions in the same way that the effects of rotation automorphisms are called 
rotations. 

The natural emergence of gyrolanguage is well described by a 1991 let- 
ter that the author received from Helmuth Urbantke of the Institute for 
Theoretical Physics, University of Vienna, sharing with him instructive ex- 
perience [Ungar (1991), ft. 361: 

“While giving a seminar about your work, the word 
gyromorphism instead of [Thomas] precession came over 
my lips. Since it ties in with the many morphisms the 
mathematicians love, it might appeal to you.” 

Helmuth K. Urbantke, 1991 

Indeed, we will find in this book that the translation of hyperbolic geometry 
into the gyrolanguage of gyrovector spaces is possible, and the pursuit of 
this translation entails no pain for unlimited profit. 

Analytic Euclidean geometry in n dimensions models points by n-tuples 
of numbers that form an n-dimensional vector space with an inner prod- 
uct. Vector spaces thus algebraically regulate analytic Euclidean geometry, 
allowing the principles of (associative) algebra to manipulate Euclidean ge- 
ometric objects. Contrastingly, synthetic Euclidean geometry is the kind 
of geometry for which Euclid is famous and that the reader learned in high 
school. 

Analytic hyperbolic geometry in n dimensions is the subject of this 
book. It models points by n-tuples of numbers that form an n-dimensional 
gyrovector space with an inner product. Gyrovector spaces thus alge- 
braically regulate analytic hyperbolic geometry, allowing the principles of 
(nonassociative) algebra to manipulate hyperbolic geometric objects. Con- 
trastingly, synthetic hyperbolic geometry is the kind of geometry for which 
Bolyai and Lobachevsky are famous and that one learns from the literature 
on classical hyperbolic geometry. 

With one exception, proofs are obtained in this book analytically. The 
exceptional case is the proof of the gyrotriangle defect identity which is 
the identity shown at the bottom of Fig. 1.2. Instructively, this identity is 
verified both analytically, Theorem 8.44, and synthetically, Theorem 8.47. 
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It is the gyrotriangle defect identity at the bottom of Fig. 1.2 that gives 
rise to the elegant values of the squared hyperbolic length (gyrolength) of 
the sides of a hyperbolic triangle (gyrotriangle) in terms of its hyperbolic 
angles (gyroangles), also shown in Fig. 1.2 as well as in Theorem 8.48 on 
p. 280. 

While Euclidean geometry has a single standard model, hyperbolic ge- 
ometry is studied in the literature by several standard models. In this 
book, analytic hyperbolic geometry appears in three mutually isomorphic 
models. These are: 

(I) The Poincar4 ball (or disc, in two dimensions) model. 
(11) The Beltrami (also known as the Klein) ball (or disc, in two di- 

(111) The Proper Velocity (PV, in short) space (or plane, in two dimen- 
mensions) model. 

sions) model. 

The P V  space model of hyperbolic geometry is also known as Ungar 
space model [Ungar (2001)l. The terms “Ungar gyrogroups” and “Ungar 
gyrovector spaces” were coined by Jing-Ling Chen in [Chen and Ungar 
(2001)] following the emergence of gyrolanguage in [Ungar (1991)l. Ungar 
gyrogroups and gyrovector spaces may be used to describe algebraic struc- 
tures of relativistic proper velocities. Hence, in this book these are called 
PV gyrogroups and PV vector spaces. 

Before the emergence of gyrolanguage the author coined the term “K- 
loop” in [Ungar (1989b)I to honor related pioneering work of Karzel in the 
1960s, and to emphasize relations with loops that have later been studied 
in [Krammer (1998); Sabinin, Sabinina and Sbitneva (1998); Issa (1999); 
Issa (2001)l. With the emergence of gyrolanguage, however, since 1991 
the author’s K-loops became “gyrocommutative gyrogroups” following the 
need to accommodate “non-gyrocommutative gyrogroups” and to empha- 
size analogies with groups. The ultimate fate of mathematical terms de- 
pends on their users. Thus, for instance, some like the term “K-loop” that 
the author coined in 1989 (as recorded in [Kiechle (2002), pp. 169-1701 
and, in more detail, in [Sexl and Urbantke (2001), pp. 141- 142]), and some 
prefer using the alternative term “Bruck-loop” (as evidenced, for instance, 
from MR:2000j:20129 in Math. Rev.). 

A new term, “dyadic symset”, which has recently emerged from an in- 
teresting work of Lawson and Lim in [Lawson and Lim (2004)], turns out 
to be identical to a two-divisible, torsion-free, gyrocommutative gyrogroup 
according to [Lawson and Lim (2004), Theorem 8.81. It thus seems that, as 
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L(t)  = A@(eA@B)@t, --oo < t < -oo 

L(0) = A,  L(1) = B 

d(A, B )  = ))8A@B11 

Fig. 1.1 Analytic generation of gyrolines (hyperbolic lines) and gyrosegments in the 
Poincare disc (and ball) model of hyperbolic geometry in terms of Mobius addition G3 
and scalar multiplication 8. The analogies between analytic lines and analytic gyrolines 
are obvious. Thus, for instance, the gyrodistance of B from A is d(A,  B )  = lleA@Bll. 
Furthermore, v = @A@B is a gyrovector with tail A and head B.  Two gyrovectors 
are shown in Fig. 1.5. As in Euclidean geometry, gyrovectors are equivalence classes 
of directed gyrosegments that  add according to  the gyroparallelogram law, as shown in 
Figs. 8.21-8.22 on p. 291. 

Michael Kinyon notes in his MR:2003d:20109 review in Math. Rev. of Hu- 
bert Kiechle’s nice introductory book on the “Theory of K-loops” [Kiechle 
(2002)], “It is unlikely that there will be any convergence of terminology in 
the near future.” 

Since the models of hyperbolic geometry are regulated algebraically by 
gyrovector spaces just as the standard model of Euclidean geometry is regu- 
lated algebraically by vector spaces, the theory of gyrogroups and gyrovec- 
tor spaces develops in this book an internal ecology. It includes the special 
gyrolanguage, key examples, definitions and theorems, central themes, and 
a few gems, like those illustrated in Figs. 1.1-1.8 to amaze both the unini- 
tiated and the practicing expert on hyperbolic geometry. 



Analytic Hyperbolic Geometry 

/-\ . .  . .  

a = eB@C 

b = eC@A 

c = eA@B 

d = x - a - P - y > O  

Fig. 1.2 Elegance and Beauty. A Mobius hyperbolic triangle ABC (that is, a gyrotrian- 
gle) in the Poincar6 disc model of hyperbolic geometry (that is, in the Mobius gyrovector 
plane (Ill:=, , @, @), with Mobius addition @ and scalar multiplication @ in the open unit 
disc Ill$, of the Euclidean plane Rz). Its vertices are the points A, B, C, and its sides are 
formed by corresponding gyrovectors a, b, c, that link its vertices, in full analogy with 
Euclidean triangles. Its hyperbolic side lengths (that is, side gyrolengths), ((all, ((bl(, ((c((, 
are uniquely determined by its hyperbolic angles (gyroangles). Its gyrotriangle defect, 
6 ,  is determined by any two sides and their included gyroangle by an elegant identity. 

1.3 Analytic Hyperbolic Geometry 

One of the tasks of the geometer who is interested in analytic hyperbolic ge- 
ometry is to construct mathematical models and a theory that correspond 
to elements of the relativistic and quantum physical world. The criteria 
for judging the success of our analytic hyperbolic geometry are general- 
ity, simplicity, and beauty. These are illustrated in Figs. 1.1-1.8 of this 
introductory chapter. 

Figures 1.1 - 1.6 present hyperbolic geometric objects along with related 
hyperbolic geometric formulas. No knowledge of any of the formulas in this 
introductory chapter is assumed. These will be introduced and explained 
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Fig. 1.3 The Hyperbolic Pythagorean Theorem in the Poincarb disc model of hyper- 
bolic geometry (that is, in the Mobius gyrovector plane (Ra=,, @, @) with Mobius addi- 
tion @ and scalar multiplication 8). Both graphically and symbolically the hyperbolic 
Pythagorean theorem shares visual analogies with its Euclidean counterpart. Classi- 
cally, a different hyperbolic Pythagorean theorem appears in the literature in a form 
that shares no analogies with its Euclidean counterpart, leading authors [Wallace and 
West (1998)l t o  assert that  “the Pythagorean theorem is strictly Euclidean” since “in the 
hyperbolic model the Pythagorean theorem is not valid.” The ability of analytic hyper- 
bolic geometry to capture a hyperbolic Pythagorean theorem which is fully analogous to  
its Euclidean counterpart is remarkable, allowing us to embark on gyrotrigonometry, a 
hyperbolic trigonometry fully analogous to the standard Euclidean trigonometry, shown 
in Fig. 1.4. 

in the following chapters. The formulas involve the Mobius addition @ and 
scalar multiplication @ in the disc 

rw; = (VER2 : llvll < s} (1.1) 

of the Euclidean plane R2, with radius s > 0 and center at the origin. 
Mobius addition @ stems from the well known Mobius transformation with- 
out rotation of the complex open disc of radius s > 0, presented in Sec. 3.4, 
p. 72. Recalling that a groupoid is a nonempty set with a binary operation, 
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Fig. 1.4 Hyperbolic trigonometry (that is, gyrotrigonometry) in the Poincark disc model 
of hyperbolic geometry (that is, in the Mobius gyrovector plane; or, more generally, in any 
gyrovector space with gyrogroup operation @), fully analogous to standard trigonometry 
in vector spaces, is illustrated. It is particularly convenient to illustrate gyrotrigonometry 
in the Poincark disc model since this model is conformal: the measure of the hyperbolic 
angle (gyroangle) included by two intersecting hyperbolic lines (gyrolines) in the Poincark 
disc model equals the measure of the Euclidean angle included by two corresponding 
intersecting Euclidean tangent lines. Employing gyrotrigonometric identities, we verify in 
this book analytically the standard congruence theorems of hyperbolic geometry, known 
as the AAA, AAS, ASA, SAS, SsA, and SSS Gyrotriangle Congruence Theorems. All 
these congruence theorems are valid in both Euclidean and hyperbolic geometry with 
one exception. It is only the AAA congruency that is valid in hyperbolic geometry but 
invalid in Euclidean geometry. 

Mobius addition @ gives rise to the Mobius groupoid (I@, @). In the limit 
of large s the disc expands to the whole of its Euclidean plane R2, and its 
Mobius addition reduces to ordinary vector addition in the plane R2; see 
(3.127) on p. 75. 

Mobius addition is neither commutative nor associative, but it gives 
rise to automorphisms of the Mobius groupoid (R,", @) that repair the two 
deficiencies as we will see in (1.2) - (1.7) below. 
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Hyperbolic par lel transport.of a / 
gyrovector a1 ng a geodesic.. . \ in the P o i n i  disc Model / 

Fig. 1.5 A gyrovector is a curved vector. The hyperbolic parallel transport of a gyrovec- 
tor involves a gyroautomorphism. The hyperbolic parallel transport of the gyrovector 
e a o @ b o ,  rooted at ao,  to the gyrovector @ a l @ b l ,  rooted at al ,  along the geodesic 
that links a0 and a1 in the Poincar6 disc model of hyperbolic geometry (that is, in the 
Mobius gyrovector plane (Rz, @, @) with Mobius addition @ and scalar multiplication @) 
is shown. Both graphically and symbolically the hyperbolic parallel transport shares vi- 
sual analogies with its Euclidean counterpart. For instance, the geodesic passing through 
a0 and a1 is generated by the formula ao@(@ao@al)@t, t E R, illustrated in Fig. 1.1. 

For any a, bElW:, let us consider the map gyr[a, b] : (R:, @) -+ (R:, @) 
given by the equation 

gyr[a, b]v = e(a@b)@(a@(b@v)) (1.2) 

The map gyr[a, b] of the Mobius groupoid (Rz, @) measures the nonassocia- 
tivity of Mobius addition @ in the disc R:. It  becomes trivial, gyr[a, b] = I ,  
when @ is associative. 

Surprisingly, the map gyr[a, b] turns out to be an automorphism of the 
Mobius groupoid. We recall that a map 4 : R: 4 R: of the groupoid (R:, @) 
is an automorphism if it is bijective (that is, one-to-one) and preserves the 
groupoid binary operation, that is, $(a@b) = q5(a)@$(b). 
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Fig. 1.6 A gyrotriangle uvw in the Poincark disc model of hyperbolic geometry (that 
is, in the Mobius gyrovector plane (iR:,@,@)) is shown with the gyromidpoints muv, 
mu, and mvw of its sides, its gyromedians urnvw, vm,, and wm,,, and its gyrocen- 
troid C,,, . The gyrotriangle gyrocentroid, that is, the hyperbolic triangle centroid, is 
expressed in terms of the three gyrovectors u, v,  w that form the gyrotriangle vertices, 
and their gamma factors 7,  = (1 - V ~ / S ~ ) - ~ / ~ ,  etc. Note that in the limit of large s ,  
s + co, the gyro-operations @ and @ reduce to their classical counterparts, vector addi- 
tion and scalar multiplication, so that gyromidpoints reduce to corresponding midpoints, 
mu, -+ (u + v)/2, etc., and the gyrotriangle gyrocentroid reduces to a corresponding 
triangle centroid, C,,, + (u + v + w)/3; see Sec. 6.20. A translation of this figure from 
its Poincark disc model into a corresponding one in the Beltrami (also known as the 
Klein) disc model gives the gyrotriangle gyrocentroid in Einstein gyrovector spaces and 
reveals remarkable analogies between classical and relativistic mechanics. In particu- 
lar, the analogies that gyromidpoints and gyrocentroids capture reveal that the Einstein 
relativistic mass (which is velocity dependent) is nothing else but the gyro-Newtonian 
mass; see Chap. 10. 

Furthermore, the resulting gyroautomorphisms gyr[a, b], a, b E R ~ ,  “re- 
pair” the breakdown of commutativity and associativity in Mobius addition, 
giving rise to their gyro-counterparts, the gyrocommutative law, 

a@b = gyr[a, b](b@a)) (1.3) 
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and the gyroassociative law (left and right), 

for all a, b, VER;. 
As in the gyroassociative and gyrocommutative laws, (1.3) - (1.4), and in 

the hyperbolic parallel transport, Fig. 1.5, the gyroautomorphisms capture 
remarkable analogies with classical results, allowing Euclidean and hyper- 
bolic geometry to be united. In addition, the gyroautomorphisms have 
their own rich structure as we see, for instance, from the gyroautomorphism 
inversion property 

from the loop property (left and right) 

and from the elegant nested gyroautomorphism identity 

gyr[a, bl = gyrIegyrla, bib, a1 (1.7) 

a, b€@, that they possess. 
Owing to its gyroassociative and gyrocommutative laws, (1.3) - (1.4), 

Mobius addition is a grouplike operation. Suggestively, the key features 
of Mobius addition @ give rise to the definition of the abstract gyrogroup 
(both gyrocommutative and non-gyrocommutative) in Defs. 2.5, p. 23, and 
2.6, p. 24. Moreover, Mobius addition admits scalar multiplication, @, 
Def. 6.80, p. 185, turning the Mobius gyrocommutative gyrogroup (EX:, @) 
into a Mobius gyrovector plane (R:, @, @). The use of Mobius addition 
and scalar multiplication to generate gyrolines analytically in a Mobius 
gyrovector plane is shown in Fig. 1.1. Mobius gyrolines are identical to the 
well known geodesics of the Poincark disc model of hyperbolic geometry as 
we see, visually, in Fig. 1.1 and, analytically, in Sec. 7.3. Remarkably, the 
analytic generation of gyrolines in hyperbolic geometry is fully analogous 
to the analytic generation of lines in Euclidean geometry. 

In gyrolanguage we prefix a gyro to any term that describes a con- 
cept in Euclidean geometry and in associative algebra to mean the anal- 
ogous concept in hyperbolic geometry and nonassociative algebra. The 
prefix gyro stems from Thomas gyration. Thomas gyration, in turn, is 
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a special automorphism abstracted from the relativistic effect known as 
Thomas precession. The destiny of Thomas precession in the founda- 
tions of hyperbolic geometry thus began to unfold following its exten- 
sion by abstraction in [Ungar (1988a); Ungar (1988b); Ungar (1989b); 
Ungar (1989a)l since 1988. 

Following the extension of groups and vector spaces of associative alge- 
bra and Euclidean geometry to nonassociative counterparts, gyrolanguage 
gives rise to gyroterms like gyrogroups and gyrovector spaces, gyrolines 
and gyroangles, of nonassociative algebra and hyperbolic geometry. Simi- 
larly, commutativity and associativity in associative algebra and Euclidean 
geometry are extended in gyrolanguage to  gyrocommutativity and gyroas- 
sociativity in nonassociative algebra and hyperbolic geometry. 

We sometimes abuse gyrolanguage a bit and drop the prefix gyro when it 
coincides with a classical term. Thus, for instance, elements of a gyrovector 
space are called points rather than gyropoints, as they should be called in 
gyrolanguage. But, “vectors” of a gyrovector space are called gyrovectors 
since they do not exist classically. Furthermore, we use the terms gyro- 
geodesics and (hyperbolic) geodesics interchangeably since, for instance, 
the gyrogeodesics (also called gyrolines) of Mobius gyrovector spaces are 
nothing else but the familiar geodesics of the Poincark model of hyperbolic 
geometry. 

The most impressive examples of the need to abuse gyrolanguage a bit 
come (i) from the gyro-Euclidean geometry, which is nothing else but the 
hyperbolic geometry of Bolyai and Lobachevsky and (ii) from the gyro- 
mass, which is nothing else but the Einstein relativistic mass. We certainly 
do not recommend to abandon the classical term “hyperbolic geometry” in 
favor of its gyrolanguage equivalent term “gyro-Euclidean geometry” and, 
similarly, we do not recommend to abandon the term “relativistic mass” in 
favor of its gyrolanguage equivalent term “gyro-mass” . 

In contrast, we find it useful to adopt the term “gyrotrigonometry”. I t  
is, in fact, hyperbolic trigonometry, but i t  is more similar, in terms of analo- 
gies, to Euclidean trigonometry than to traditional hyperbolic trigonome- 
try, which is expressed in terms of the familiar hyperbolic functions cosh 
and sinh [McCleary (2002), p. 521. 

Three other examples come from gyrolines, gyroangles, and gyrotrian- 
gles, which coincide with hyperbolic lines, hyperbolic angles, and hyperbolic 
triangles respectively. Thus, when a gyroterm in gyrolanguage coincides 
with a classical term, abuse of gyrolanguage may occur. Some gyroterms 
that coincide with classical terms cannot be abandoned since they come 
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with dual counterparts that, classically, are not recognized as duals since 
their duality symmetries can only be captured by gyrotheoretic techniques. 
Thus, for instance, gyrolines, gyroangles, and gyrotriangles are associated 
with their corresponding dual counterparts, cogyrolines, cogyroangles, and 
cogyrotriangles. 

Gyrolanguage abuse must be done with care, as the example of the gy- 
rocosine function in Fig. 1.2 indicates. The definition of the gyrocosine of 
a gyroangle is presented in Fig. 1.2. We cannot view it as the “hyperbolic” 
cosine of a hyperbolic angle since the term “hyperbolic cosine” is already 
in use in a different sense. Abusing notation, we use the same notation 
for the trigonometric functions and their gyro-counterparts. Thus, for in- 
stance, the gyrocosine function in Fig. 1.2 is denoted by cos. This notation 
for the elementary gyrotrigonometric functions cos, sin, tan, etc. is jus- 
tified since the gyrotrigonometric functions are interrelated by the same 
identities that interrelate the trigonometric functions. Thus, for instance, 
the trigonometric identity cos2 Q + sin2 a = 1 (along with all other trigono- 
metric identities between elementary trigonometric functions) remains valid 
in gyrotrigonometry as well. Furthermore, in the conformal model of the 
Poincark ball, corresponding gyroangles and angles have the same measure, 
so that the elementary trigonometric functions are identical with their gyro- 
counterpart in all the hyperbolic models that are isomorphic (in the sense 
of gyro-algebra) to the Poincar6 ball model, as verified in Theorem 8.3, 
p. 238. 

1.4 The Three Models 

There are infinitely many models of hyperbolic geometry. The three models 
that we study in this book are particularly interesting, as we describe below. 

(I) The Poincar6 ball model of hyperbolic geometry is algebraically reg- 
ulated by Mobius gyrovector spaces where Mobius addition plays a role 
analogous to the role that vector addition plays in vector spaces. The 
geodesics of this model (gyrolines) are Euclidean circular arcs (with finite 
or infinite radius, the latter being diameters of the ball.) that intersect 
the boundary of the ball orthogonally, shown in Figs. 1.1 - 1.6 for the two- 
dimensional ball, that is, the disc. The model is conformal to the Euclidean 
model in the sense that the measure of the hyperbolic angle between two in- 
tersecting gyrolines is equal to the measure of the Euclidean angle between 
corresponding intersecting tangent lines, Figs. 8.1 - 8.3, pp. 240-242. 
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Mobius addition is a natural generalization of the Mobius transforma- 
tion without rotation of the complex open unit disc from the theory of 
functions of a complex variable, as we will see in Sec. 3.5. Thus, although 
more than 150 years have passed since August Ferdinand Mobius first stud- 
ied the transformations that now bear his name [Ahlfors (1984)], this book 
demonstrates that  the rich structure he thereby exposed is still far from 
being exhausted. 

(11) The Beltrami ball model of hyperbolic geometry is algebraically 
regulated by Einstein gyrovector spaces where Einstein addition plays a 
role analogous to the role that vector addition plays in vector spaces. The 
geodesics of this model (gyrolines) are Euclidean straight lines in the ball, 
Fig. 6.8, p. 196. Einstein addition, in turn, is the standard velocity addi- 
tion of relativistically admissible velocities that  Einstein introduced in his 
1905 paper that founded the special theory of relativity. In this book, ac- 
cordingly, the presentation of Einstein’s special theory of relativity is solely 
based on Einstein velocity addition law, taking the reader to the immen- 
sity of the underlying hyperbolic geometry. Thus, 100 years after Einstein 
introduced the relativistic velocity addition law that now bears his name, 
this book demonstrates that placing Einstein velocity addition centrally in 
special relativity theory is an old idea whose time has come back. 

The approach to special relativity from Einstein velocity addition fills 
a noticeable gap in the relativity physics arena. Thus, for instance, 

(1) the seemingly notorious Thomas precession, which is either ignored 
or studied as an isolated phenomenon in most relativity physics 
books; and 

(2) the seemingly confusing relativistic mass, which does not mesh up 
with Minkowskian relativity 

mesh extraordinarily well with the analytic hyperbolic geometric approach 
to Einsteinian relativity [Ungar (2005)l. The term “Minkowskian relativ- 
ity”, as opposed to Einsteinian relativity, was coined by L. Pyenson in 
[Pyenson (1982), p. 1461. The historical struggle between Einsteinian rel- 
ativity and Minkowskian relativity is skillfully described by S. Walter in 
[Walter (1999b)l where, for the first time, the term “Minkowskian relativ- 
ity” appears in a title. 

Rather than being notorious and confusing, Thomas precession and Ein- 
stein’s relativistic mass provide unexpected insights that are not easy to 
come by, by means other than analytic hyperbolic geometric techniques, as 
Figs. 1.7 and 1.8 indicate. Hence, this 2005 book on analytic hyperbolic 
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V 

Fig. 1.7 Euclidean triangle centroid in a 
vector space, and its classical mechanics in- 
terpretation as a barycenter. The barycen- 
ter is the center of momentum in a New- 
tonian velocity space of three equal masses 
m located at the triangle vertices u, v, w. 
These masses have, accordingly, Newto- 
nian velocities u, v and w relative to some 
inertial rest frame. Following [Hausner 
(1998)], many Euclidean geometric facts 
may be made quite vivid and intuitive with 
the help of the center of momentum notion, 
as this Fig. 1.7  indicates. Fig. 1.8 indicates 
the natural extension to the hyperbolic tri- 
angle centroid. 

Fig. 1.8 Gyrotriangle gyrocentroid in an 
Einstein gyrovector space, and its rela, 
tivistic mechanics interpretation as a gy- 
robarycenter. The gyrobarycenter is the 
relativistic center of momentum in an Ein- 
steinian velocity space of three equal rest 
masses m located at the gyrotriangle ver- 
tices u,v,w. These masses have Ein- 
steinian velocities u,v and w relative to 
some inertial rest frame, and they are, ac- 
cordingly, relativistically corrected by cor- 
responding Lorentz factors yu, -yv , -yw. 
The gyrovector space approach to hyper- 
bolic geometry has, thus, much to show in 
terms of creative power of discovery. 

geometry is dedicated to the centenary of the birth of Einstein's special 
theory of relativity, 1905 - 2005. 

The remarkable fit between geometry and physics that Figs. 1.7 and 1.8 
exhibit is not fortuitous. It demonstrates that the relativistic mass plays 
in relativistic mechanics and its underlying hyperbolic geometry the same 
important role that the Newtonian mass plays in classical mechanics and its 
underlying Euclidean geometry. The relativistic mass is thus an asset rather 
than a liability. The relativistic center of momentum and gyrobarycentric 
coordinates associated with the relativistic mass are studied in Chap. 10. 

(111) The PV space model of hyperbolic geometry (also called the Ungar 
model, a term coined by Jing-Ling Chen in 2001 [Chen and Ungar (2001)l) is 
governed by PV gyrovector spaces where PV addition plays a role analogous 
to the role that vector addition plays in vector spaces. The geodesics of this 
model (gyrolines) are Euclidean hyperbolas with asymptotes that intersect 
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at the space origin, Fig. 6.12. PV addition turns out to be the “proper 
velocity” addition of proper velocities in special relativity. As opposed to 
(i) coordinate velocity in special relativity, measured by observer’s time and 
composed by Einstein addition, (ii) proper velocity in special relativity is 
measured by traveler’s time and composed by PV addition. 

The power and elegance of the gyrovector space approach to hyper- 
bolic geometry is convincingly illustrated by the analytic expressions that 
represent the (i) hyperbolic angle (gyroangle), Fig. 1.2; (ii) the hyper- 
bolic Pythagorean theorem, Fig. 1.3; (iii) the hyperbolic trigonometry (gy- 
rotrigonometry), Fig. 1.4; (iv) the hyperbolic parallel transport, Fig. 1.5; 
and (v) the hyperbolic triangle centroid (gyrotriangle gyrocentroid), side 
hyperbolic midpoints (gyromidpoints) and hyperbolic medians (gyromedi- 
ans), Fig. 1.6, where in their analytic hyperbolic form they share symbolic 
and visual analogies with their Euclidean counterparts. 

Along with remarkable analogies, a striking disanalogy is presented in 
Fig. 1.2, indicating quantitatively that unlike the Euclidean side lengths of 
a Euclidean triangle, the hyperbolic side lengths of a hyperbolic triangle are 
uniquely determined by its hyperbolic angles. In gyrolanguage we say that 
the side gyrolengths of a gyrotriangle in a gyrovector space are uniquely 
determined by the gyrotriangle gyroangles. 

Aesthetic criteria are fundamental to the development of mathemat- 
ical ideas [Penrose (2005), p. 221. The conversion law from gyrotrian- 
gle gyroangles (Y, p, y to their corresponding gyrotriangle side gyrolengths 
Ilall, llbll, llcll in a gyrotriangle ABC is shown in Fig. 1.2, and in the AAA 
to SSS Conversion Theorem 8.48, p. 280. It presents an extraordinary 
unexpected hidden beauty that analytic hyperbolic geometry reveals. We 
thus encounter here one of the remarkable interrelations between truth and 
beauty, which are abound in the area of analytic hyperbolic geometry. 

1.5 Applications in Quantum and Special Relativity Theory 

The applicability in physics of the gyrovector space approach to hyperbolic 
geometry is demonstrated in Chaps. 9 and 10. 

Chapter 9 demonstrates that Bloch vector of quantum computation 
theory is, in fact, a gyrovector rather than a vector. This discovery of the 
relationship between “Bloch vector” and the Poincar6 model of hyperbolic 
geometry led P6ter LBvay to realize in [Lkvay (2004a)l and [LBvay (2004b)l 
that the so called bures metric in quantum computation is equivalent to the 
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metric that results from the distance function d(A,  B )  presented in Fig. 1.1. 
Like Mobius addition, Einstein velocity addition is neither commuta- 

tive nor associative. Hence, the study of special relativity in the literature 
follows the lines laid down by Minkowski, in which the role of Einstein veloc- 
ity addition and its interpretation in the hyperbolic geometry of Bolyai and 
Lobachevsky are ignored [Barrett (1998)]. The breakdown of commutativ- 
ity and associativity in Einstein velocity addition, thus, poses a significant 
problem. Einstein’s opinion about significant problems in science is well 
known: 

The significant problems we have cannot be solved at 
the same level of thinking with which we created them. 

Albert Einstein (attributed) 

Indeed, it is the gyrovector space approach to Einstein’s special rela- 
tivity and to hyperbolic geometry that resolves the significant problem of 
commutativity and associativity breakdown in Einstein velocity addition. 
In this novel approach, 

(1) Einstein velocity addition emerges triumphant as a gyrocommuta- 
tive, gyroassociative binary operation between gyrovectors in hy- 
perbolic geometry; fully analogous to 

(2) Newton velocity addition, which is a commutative, associative bi- 
nary operation between vectors in Euclidean geometry. 

Chapter 10 demonstrates that the gyrovector space approach, which 
unifies Euclidean and hyperbolic geometry, unifies some aspects of classical 
and relativistic mechanics as well. The way to unite the geometry and the 
physics of the concept of the center of momentum (CM), for instance, is 
indicated in Figs. 1.7 and 1.8. 

In classical mechanics the CM of three equal masses with velocities 
u, v, w in a Newtonian velocity space (R3, +, a )  is the centroid of triangle 
uvw, Fig. 1.7. In full analogy, in relativistic mechanics the CM of three 
equal rest masses with velocities u, v, w in an Einsteinian velocity gyrospace 
(R:, @, @) is the gyrocentroid of triangle uvw, Fig. 1.8, where each of the 
three rest masses is relativistically corrected according to its individual 
velocity. 

Accordingly, it is Einstein’s relativistic mass correction that comes to 
the rescue of the analogies that triangle centroids and gyrotriangle gyrocen- 
troids share in Figs. 1.7 and 1.8. These analogies are by no means restricted 
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to equal rest masses. They are extended in Chap. 10 to analogies between 
barycentric and gyrobarycentric coordinates that correspond to arbitrary 
non-negative masses, thus seeing analytic hyperbolic geometry at work. By 
listening to the sounds of relativistic velocities and their Einstein veloc- 
ity addition, analytic hyperbolic geometry significantly extends Einstein’s 
unfinished symphony. 



Chapter 2 

Gyrogroups 

The reason for starting a book on analytic hyperbolic geometry with chap- 
ters on gyrogroups and gyrovector spaces is that  some gyrocommutative 
gyrogroups give rise to gyrovector spaces just as some commutative groups 
give rise to vector spaces. Gyrovector spaces, in turn, algebraically regulate 
analytic hyperbolic geometry just as vector spaces regulate algebraically 
analytic Euclidean geometry. To elaborate a precise language we prefix a 
gyro to any term that describes a concept in Euclidean geometry to mean 
the analogous concept in hyperbolic geometry. The prefix gyro stems from 
Thomas gyration which is, in turn, the mathematical abstraction of a spe- 
cial relativistic effect known as Thomas precession. 

Developing gyrogroup and gyrovector space theoretic concepts and tech- 
niques, we will find that the hyperbolic geometry of Bolyai [Gray (2004)l 
and Lobachevsky is just the gyro-counterpart of Euclidean geometry. We 
start with the presentation of the concepts of gyroassociativity and gyro- 
commutativity of gyrogroup operations, that strikingly preserve the fla- 
vor of their classical counterparts. The extension of gyrocommutative gy- 
rogroups into gyrovector spaces will be studied in Chap. 6 ,  thus paving 
the way to our gyrovector space approach to analytic hyperbolic geometry, 
Chap. 8, and its applications, Chaps. 9-10, In gyrolanguage analytic hyper- 
bolic geometry is a branch of gyrogeometry, and its trigonometry is called 
gyrotrzgonometry. The link between gyrogeometry a,nd the hyperbolic ge- 
ometry of Bloyai and Lobachevsky is uncovered in Chap. 7 by elementary 
methods of differential geometry. 

21 
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2.1 Definitions 

Definition 2.1 (Binary Operations, Groupoids, and Groupoid 
Automorphisms). A binary operation + in a set S is a function + : 
Sx  S -+ S.  W e  use the notation a + b to denote +(a,  b) for any a ,  b E S .  
A groupoid (S ,  +) is a nonempty set, S ,  with a binary operation, +. An 
automorphism 4 of a groupoid (S ,  +) is a bijective (that is, one-to-one) 
self-map of S ,  6 : S 4 S ,  which preserves its groupoid operation, that is, 
4(a + b )  = 4(a)  + 4 ( b )  f o r  all a ,  b E S .  

Groupoids may have identity elements. An identity element of a 
groupoid (S ,  +) is an element 0 E S such that 0 + s = s + 0 = s for 
all s E S. 

Definition 2.2 (Loops). A loop is a groupoid (S,+) with an identity 
element in which each of the two equations a + x = b and y + a = b for the 
unknowns x and y possesses a unique solution. 

Definition 2.3 (Groups). A group is a groupoid (G, +) whose binary 
operation satisfies the following axioms. I n  G there is at least one element, 
0, called a left identity, satisfying 
(GI)  O+a=a 
for all a E G. There is an element 0 E G satisfying m i o n  (Gl) such that for 
each a E G there is an element -a E G, called a left inverse of a ,  satisfying 
(G2) - a + a = O  
Moreover, the binary operation obeys the associative law 
(G3) 
for all a ,  b, c E G. 

( a  + b) + c = a + (b  + c)  

The binary operation in a given set is known as the set operation. The 
set of all automorphisms of a groupoid (S ,  @), denoted Aut(S, @), forms a 
group with group operation given by bijection composition. The identity 
automorphism is denoted by I .  We say that an automorphism r is trivial 
if r = I .  

Groups are classified into commutative and noncommutative groups. 

Definition 2.4 
tative if its binary operation obeys the commutative law 
(G6) a + b = b + a  
f o r  all a ,  b E G. 

(Commutative Groups). A group (G, +) is commu- 



A most natural, but hardly known, generalization of the group con- 
cept is the concept of the gyrogroup, the formal definition of which follows. 
Readers who, instructively, wish to see a good intuitive motivation for the 
gyro-extension of groups before embarking on the formal Def. 2.5 of gy- 
rogroups may find it in the Mobius transformation of the disc, as presented 
in Sec. 3.4, p. 72. 

Definition 2.5 (Gyrogroups). A groupoid (G,@) is a gyrogroup if its 
binary operation satisfies the following mioms.  I n  G there is at least one 
element, 0 ,  called a left identity, satisfying 

fo r  all a E G. There is an element 0 E G satisfying axiom (Gl) such that 
f o r  each a E G there is an element e a  E G, called a left inverse of a,  
satisfying 

Moreover, f o r  any a ,  b, c E G there exists a unique element gyr[a, b]c E G 
such that the binary operation obeys the left gyroassociative law 
(G3) a@(b@c) = (a@b)@gyr[a, b]c 
The map gyr[a, b] : G -+ G given by c H gyr[a, b]c is an automorphism of 
the groupoid (G, @), 
(G4) 
and the automorphism gyr[a, b] of G is called the gyroautomorphism of G 
generated by  a ,  b E G. The operation gyr : G x G -+ Aut(G, @) is called 
the gyrator of G. Finally, the gyroautomorphism gyr[a, b] generated by any 
a ,  b E G possesses the left loop property 

( G I )  O@a = a 

(W e m u  = o 

gyr[a, bl E Aut(G, @) 

(G5) gyr[a, bl = gyr[a@b, bl 

The gyrogroup axioms in Def. 2.5 are classified into three classes. 

(1) The first pair of axioms, (Gl) and (G2), is a reminiscent of the 

(2) The last pair of axioms, (G4) and (G5), presents the gyrator ax- 

(3) The middle axiom, (G3), is a hybrid axiom linking the two pairs 

group axioms; 

ioms; and 

of axioms in (1) and (2). 

As in group theory, we use the notation 

a e b  = a @ ( e b )  

in gyrogroup theory as well. 

GyrogroupsGyrogroups 23
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In full analogy with groups, gyrogroups are classified into gyrocommu- 
tative and non-gyrocommutative gyrogroups. 

Definition 2.6 (Gyrocommutative Gyrogroups). A gyrogroup 
(G, @) is gyrocommutative if its binary operation obeys the gyrocommutative 
law 
(G6) 
f o r  all a ,  b E G. 

a @ b = gyr[a, b](b @ a) 

Definition 2.7 
(G,@) be a gyrogroup. 
second binary operation, W, in G given by the equation 

(The Gyrogroup Cooperation (Coaddition)). Let 
The  gyrogroup cooperation (or, coaddition) is a 

a R b = a@gyr[a, e b ] b  (2.2) 

f o r  all a ,  b E G. 

We will find that the gyrogroup cooperation captures useful analogies 
between gyrogroups and groups, and uncovers duality symmetries. 

The gyrogroup gyroautomorphisms are uniquely determined by the gy- 
rogroup axioms, as we will see in Theorem 2.8. In the special case when 
all the gyrations of a (gyrocommutative) gyrogroup are trivial, the (gy- 
rocommutative) gyrogroup reduces to a (commutative) group, where the 
gyrogroup operation and cooperation coincide, being jointly reduced to the 
group operation. 

2.2 First Gyrogroup Theorems 

While it is clear how to define right identity and right inverse, the existence 
of such elements is not presumed. Indeed, the existence of unique identity 
and unique inverse, both left and right, is a consequence of the gyrogroup 
axioms, as the following theorem shows. 

Theorem 2.8 
we have: 

Let (G, +) be a gyrogroup. For any elements a ,  b, c ,  x E G 

(1) If  a + b = a + c, then b = c (general left cancellation law; see (9)). 
(2) gyr[O,a] = I f o r  any left identity 0 in G. 
(5’) gyr[x,a] = I f o r  any left inverse x of a in G. 

(5) There is a left identity which is a right identity. 
(4) gyr[a,aI = I 
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(6) There is only one left identity. 
(7) Every left inverse is  a right inverse. 
(8) There is  only one left inverse of a. 
(9) -a + (a + b)  = b (Left Cancellation Law). 

(10) gyr[a, b]z = -(a + b) + { a  + ( b  + z)} (The  Gyrator Identity). 
(11) gyr[a, b]O = 0 
(12) gyr[a, bl(-z) = -gYr[a, bl. 
(13) gYr[a,oI = I 

Proof. 

(1) Let z be a left inverse of a corresponding to a left identity, 0, in 
G. We have z + (a  + b )  = z + ( a  + c). By left gyroassociativity, 
(z + a) + gyr[z, a]b = (z + a )  + gyr[z, a]c. Since 0 is a left identity, 
gyr[z, a]b = gyr[z, a]c. Since automorphisms are bijective, b = c. 

(2) By left gyroassociativity we have for any left identity 0 of GI a + z 
= 0 + ( a  + z) = (0 + a )  + gyr[0, a]z = a + gyr[0, a]z .  By (1) we 
then have z = gyr[0, a]% for all z E G so that gyr[O, a] = I .  

(3) By the left loop property and by (2) above we have gyr[z,a] = 

gyr[a: + a ,  a] = gyr[O, a] = I .  
(4) Follows from an application of the left loop property and (2) above. 
(5) Let z be a left inverse of a corresponding to a left identity, 0, of 

G. Then by left gyroassociativity and (3) above, z + ( a  + 0) = 
(z + a )  + gyr[z, a10 = 0 + 0 = 0 = z + a. Hence, by (l), a + 0 = a 
for all a E G so that 0 is a right identity. 

(6) Suppose 0 and O* are two left identities, one of which, say 0, is also 
a right identity. Then 0 = O* + 0 = O*. 

(7) Let z be a left inverse of a. Then z + ( a  + z) = (z + a )  + gyr[z, a]z 
= 0 + z = z = z + 0, by left gyroassociativity, (G2), (3), (5), and 
(6) above. By (1) we have a + z = 0 so that z is a right inverse of 

(8) Suppose z and y are left inverses of a. By (7) above, they are also 
right inverses, so a + z = 0 = a + y. By (1)) z = y. 

(9) By left gyroassociativity and by (3) above, -a + ( a  + b )  = (-a + 
a )  + gyr[-a, a]b = b. 

(10) Follows from an application of the left cancellation law (9) to the 
left gyroassociative law (G3).  

(11) Follows from (10) with z = 0. 
(12) Since gyr[a,b] is an automorphism of (GI+) we have from (11) 

a. 
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gyr[a, b](-z) + gyr[a, b]z = gyr[a, b](-z + z) = gyr[a, b]O = 0, and 
hence the result. 
Follows from (10) with b = 0 and a left cancellation, (9). 

Following items (2) and (13) of Theorem 2.8, the cooperation H in a 
gyrogroup (G, @) satisfies 

a H 0 = 0 H a = ~  (2.3) 

Using the abbreviations a b = a 83 (eb) and Ea = 0 a, it follows 
from Def. 2.7 of B1 that the cosubtraction takes the form 

a 1 3 b  = a EB ( 8 6 )  

= a@gyr[a, e(eb)J(eb) (2.4) 
= aegyr[a, b]b 

and 

6 a  = 0 6 a  = e a  

By (2.5) and Theorem 2.8 (4), 

Similarly, by (2.5) and Theorem 2.8 (4), 

aH(Ea)=aB(ea)  

= a@gyr[a, a ] ( e a )  
= a0a  

= O  

Hence, the operation @ and the cooperation B1 of a gyrogroup (G, @) 
share a common identity element, 0, and a common inversion, 

ea = Ea (2.8) 

for all a E G. These results about the gyrogroup cooperation will be for- 
malized in Theorem 2.34. 
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The cooperation of a gyrogroup (G, @) or (G, +) is denoted by H. The 
cooperation of a gyrogroup (G, eM), for instance, will be denoted by HM, 
etc. 

Theorem 2.9 
nested gyroautomorphism identities 

Any three elements a,  b, c of a gyrogroup (G, +) satisfy the 

and the gyroautomorphism identities 

gyr[-a, a + b]gyr[a, b] = I (2.11) 

Proof. By two successive applications of the left gyroassociative law in 
two different ways, we obtain the following two chains of equations for all 
a, b, c, x E G, 

a + ( b  + (c + x)) = a + ( ( b  + c) + gyr[b, c]x> 
(2.13) 

= (a + ( b  + c)) + gyr[a, b + cIgyr[b, c]x 

and 

By comparing the extreme right hand sides of these two chains of equations, 
and by employing the left cancellation law, Theorem 2.8 (I) ,  we obtain (2.9). 

In the special case when c = -b, (2.9) reduces to 
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from which (2.10) follows by a left loop (that is, by applying the left loop 
property) and the left gyroassociative law, 

I = gyr[a + b, -gYr[a, blb]gyr[a, bl 

= gyr[(a + b )  - gyr[a, bib, -gyr[a, bIblgyr[a, bl 

= gyrb  + ( b  - b),  -gY& blblgyrb, bl 

= gyrb,  -gYr[a, bIblgyr[a, bl 

(2.16) 

To verify (2.11) we consider the special case of (2.9) when b = -a, 

gyr[a, -a + c]gyr[-a, c] = gy@, gyr[a, -aIclgyr[a, -4 = I 

Replacing a by -a and c by b we obtain (2.11). 

morphism in (2.11) followed by a left cancellation, Theorem 2.8 (9), 
Finally, (2.12) is derived from (2.11) by left looping the first gyroauto- 

I = gyr[-a, a + b]gyr[a, b] 
= gyr[-a + ( a  + b ) ,  a + b]gyr[a, b] (2.17) 

0 

The nested gyroautomorphism identity (2.10) in Theorem 2.9 allows the 
equation that defines the coaddition H to be dualized as we see from the 
following 

Theorem 2.10 
Def. 2.7, 

= gyrp, a + bIgyr[a, bl 

Let (G,@) be a gyrogroup with cooperation El3 given by 

u EE b = a@gyr[a, e b ] b  (2.18) 

Then 

a@b = a gyr[a, b]b (2.19) 

Proof. Let a and b be any two elements of G. By (2.10) we have 

(2.20) 

thus verifying (2.19). 0 

a EB gyr[a, b]b = egyr[a, blblgyrb, blb 
= a@b 

In view of the duality symmetry that Identities (2.18) and (2.19) share, 
the gyroautomorphism gyr[a, eb] is called the cogyroautomorphism associ- 
ated with the gyroautomorphism gyr[a, b]. 
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2.3 The Associative Gyropolygonal Gyroaddi t ion 

As an application of the nested gyroautomorphism identity (2.15) we 
present in the next theorem the gyrogroup counterpart (2.21) of the group 
identity (-a + b) + (-b + c )  = --a + c. 

Theorem 2.11 Let (G, +) be a gyrogroup. Then 

(-a+b)+gyr[-a,b](-b+c)  = - a + c  (2.21) 

for all a ,  b, c E G. 

Proof. By left gyroassociativity and (2.15) we have 

(-a + b) + gyr[-a, b](-b + c )  = (-a + b) + (-gyr[-a, b]b + gyr[-a, blc) 
= {( -a + b) - gyr[-a,@} + gyr[-a + b, -gyr[-a, b]b]gyr[-a, b]c 
= { -a+ ( b  - b)}  + c 

= - a + c  
(2.22) 

0 

Theorem 2.12 
gyrogroup. Then 

(The Gyrotranslation Theorem, I). Let (G, +) be a 

-(-a + b )  + (-a + c )  = gyr[-a, b](-6 + c )  (2.23) 

for  all a ,  b, c E G. 

Proof. The proof follows from Identity (2.21) and a left cancellation. 0 

The identity of Theorem 2.11 can readily be generalized to any number 
of terms, for instance, 

(-a + b) + gyr[-a, b]{(-b + c )  + gyr[-b,c](-c + d ) }  = --a + d 

Theorem 2.11 suggests the following definition: 

(2.24) 

Definit ion 2.13 (Gyropolygonal Gyroaddition of Adjacent 
Sides). Let (G,+) be a gyrogroup, and let ( a , b ) ,  a ,b  E G be a pair of 
two elements of G. 

(i) The value of the pair (a ,  b) is -a + b E G. 
(ii) a and b are called the tail and the head of the pair ( a ,  b ) ,  respectively. 

(iii) Two pairs, (a, b) and ( c ,  d ) ,  are adjacent if b = c. 
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( iv)  A gyropolygonal path P(ao,  . . . ,an)  from a point a0 to  a point an 
in G is a finite sequence of successive adjacent pairs 

(aoyal),  (a17 a ~ ) ,  . . * (an-Z,an-l)r (an-1, an) 

an G. The pairs ( a k - 1 ,  a k ) ,  k = 1 , .  . . , n, are the sides of the gy- 
ropolygonal path P(a0 , .  . . ,an) ,  and the points ao, . . . ,an are the 
vertices of the gyropolygonal path P(a0 , .  . . , an). 

( v )  The gyropolygonal gyroaddition, $, of two adjacent sides 

(a, b)  = -a + b and (c, d )  = -c + d 

of a gyropolygonal path is given by  the equation 

( - a + b ) @ ( - b + c )  = ( -a+b)  +gyr[-a,b](-b+c) 

We may note that two pairs with, algebraically, equal values need not be 
equal geometrically. Indeed, geometrically they are not equal if they have 
different tails (or, equivalently, different heads). To reconcile this seem- 
ingly conflict between algebra and geometry we will introduce in Chap. 5 
equivalence classes of pairs in our way to convert pairs of points in a gyro- 
commutative gyrogroup to gyrovectors and, similarly, to cogyrovectors. 

Following Def. 2.13, the identity of Theorem 2.11 can be written as the 
identity 

(emb) + ( eb@c)  = e a w  (2.25) 

in a gyrogroup (G, @). 

Theorem 2.14 
rogroup (G, +). 
Proof. On the one hand 

The gyropolygonal gyroaddition is associative in any gy- 

( -a  + b)  @ ((4 + c) @ (-c + d ) }  = (-a + b)  @ (4 + d )  = -a + d 

and on the other hand 

0 
The gyropolygonal gyrosubtraction is just the gyropolygonal gyroad- 

dition in the reversed direction along the gyropolygonal path. Thus, for 
instance, left gyrosubtracting gyropolygonally ea@b from both sides of 
(2.25) amounts to left adding eb@a to both sides of (2.25), 

{ ( -a  + b)  @ ( -b  + c)} + (-c + d )  = (-a + C) @ ( -C + d )  = -a + d 

(ebm) + (ea@b) + ( e b w )  = (ebm) + (caw) (2.26) 
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Identity (2.26), in turn, is equivalent to 

eb@c = (eb@a) @ (em.) (2.27) 

owing to the associativity of the gyropolygonal gyroaddition and to the 
identity 

(eb@a) @ (emb) = eb@b = 0 (2.28) 

Interestingly, Theorem 2.14 uncovers an associative addition, the gy- 
ropolygonal gyroaddition, defined under special circumstances in the nonas- 
sociative environment of the gyrogroup. 

2.4 Two Basic Gyrogroup Equations and Cancellation Laws 

We wish to solve the equation 

U@X = b (2.29) 

in a gyrogroup (G,@) for the unknown x. Assuming that a solution x 
exists, we have by the left cancellation law, Theorem 2.8 (9), 

(2.30) 

Conversely, if x = ea@b then it is a solution of (2.29) as we see by 

We now wish to solve the slightly different equation 
substitution followed by a left cancellation. 

x@a = b (2.31) 

in the gyrogroup (G,@) for the unknown 2. Assuming that a solution 2 
exists, we have the following chain of equations 

(2.32) 
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where we employ (i) the identity element 0 of G; (ii) the left gyroassociative 
law; (iii) property (12) in Theorem 2.8; (iv) the left loop property; and 
finally (v) we eliminate x by means of its equation (2.31), and use the 
notation in (2.4). Hence, if (2.31) possesses a solution, it must be the one 
given by (2.32). 

Conversely, substituting x from (2.32) in its equation (2.31), we have by 
the nested gyroautomorphism identity (2.10) and the left gyroassociative 
law 

x@a = ( b  E a)@a 

= (begyr[b, a]a)@a 
= (begyr[b, ala)@g~r[b,  e g d k  alalg~r[b,  ala 

= b@(egyr[b, a]a@gyr[b, a].) 
(2.33) 

= b@O 
= b  

as desired. 
Formalizing the results in (2.29) - (2.33) we have the following theorem: 

Let (G, @) be a gyrogroup, and let a ,  b E G. The unique Theorem 2.15 
solution of the equation 

U @ X  = b (2.34) 

in G for the unknown x is 

x = emb (2.35) 

and the unique solution of the equation 

x@a = b (2.36) 

in G f o r  the unknown x is 

x = b E a  (2.37) 

Having established the unique solution of each of the gyrogroup equa- 
tions (2.29) and (2.31), we see that gyrogroups are loops. Indeed, gy- 
rogroups are special loops that share remarkable analogies with groups. 
This, in turn, explains the origin of the term “loop property”. It is owing 
to that property that gyrogroups are loops, as we see from (2.32). In- 
deed, it is clear from (2.32) that it is the loop property that makes the left 
gyroassociative law effective in solving a basic gyrogroup equation. 
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Substituting the solution 3: from (2.30) in its equation (2.29) we obtain 
the left cancellation law 

a@(ea@b) = b (2.38) 

already established in Theorem 2.8(9). 

we obtain a right cancellation law 
Similarly, substituting the solution 3: from (2.32) in its equation (2.31) 

( b  E U)@U = b (2.39) 

The right cancellation law (2.39) can be dualized, 

(bea )  m a  = b (2.40) 

as we see from the chain of equations 

b = b@O 

= b@(ea@a) 

= (bea)@gyr[bea, e a ] ~  
= (bea)@gyr[b, e a ] ~  (2.41) 

= (&a) 83 a 

where we employ the left gyroassociative law and the left loop property. 
The cancellation laws in (2.38), (2.39) and (2.40) demonstrate that in 

order to capture analogies with classical results, both the gyrogroup opera- 
tion and its associated cooperation are necessary. The various cancellation 
laws are shown in Table 2.1. 

Table 2.1 Main Cancellation Laws. Unlike groups, there are var- 
ious cancellation laws in gyrogroups (G, @). To capture analogies 
with groups, both the gyrogroup operation and cooperation are 
needed. 

Formula Terminology Source 

a69(8a@b) = b Left Cancellation Law Eq. (2.38) 
(&a) m a  = b (First) Right Cancellation Law Eq. (2.40) 
(b E a)@a = b Eq. (2.39) (Second) Right Cancellation Law 

The use of the right cancellation law is exemplified in the proof of the 
following theorem: 
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Theorem 2.16 
a gyrogroup. Then  fo r  all a ,  b, x E G, 

(The Cogyrotranslation Theorem). Let (G, @) be 

(a@gyr[a, b ] x )  E (b@x)  = a E b (2.42) 

I n  particular, i f  the condition 

holds, then 

(a@z)  E (b@z) = a E b = a e b  (2.44) 

By the left gyroassociative law, a right cancellation, and a left Proof. 
loop followed by a right cancellation we have 

( a  E b)@(b@x) = ( ( a  b)@b)@gyr[a E b, b ] z  
= a@gyr[a, b]z  

(2.45) 

from which (2.42) follows by a right cancellation. 
The special case (2.44) follows from the condition gyr[a, b] = I and from 

(2.42) and (2.4). 

Theorem 2.17 Let (G, +) be a gyrogroup. Then  

(a  E b)  + ( b  E c )  = a - gyr[a, b]gyr[b, c]c (2.46) 

for  all a ,  b, c E G. 

Proof. 
(2.45) that 

I t  follows from the definition of the gyrogroup cooperation and 

(a  El b)  + ( b  E c )  = ( a  El b)  + ( b  - gyr[b, c]c)  

= a + gyr[a, bl(-gyr[b, .I.) (2.47) 

0 = a - gyr[a, bIgyr[b, CIC 

Definition 2.18 
a gyrogroup. Gyrotranslations an G are the self-maps of G given by 

(Left and Right Gyrotranslations). Let (G, @) be 

L,  : a H x@a 
R, : a H a@x 

Left Gyrotranslation of a by 5 
Right Gyrotranslation of a by z 

By Theorem 2.15, gyrotranslations are bijective. 
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2.5 Commuting Automorphisms with Gyroautomorphisms 

Theorem 2.19 
automorphism A of (G, +), A E Aut(G, +), 

For any two elements a, b of a gyrogroup (G, +) and any 

Agyr[a, b] = gyr[Aa, Ab]A (2.48) 

For any three elements a, b, 5 E (G, +) and any automorphism Proof. 
A E Aut(G, +) we have by the left gyroassociative law, 

(Aa + Ab) + Agyr[a, b ] ~  = A((a + b)  + gyr[a, bJz) 
= A(. + (b + z)) 
= A a + ( A b + A z )  

(2.49) 

= (Aa + Ab) -I- gyr(Aa, A b ] h  

Hence, by a left cancellation, Theorem 2.8(1), 

Agyr[a, b]a: = gyr[Aa, Ab]Ax 

for all z E G, implying (2.48). 0 

As an application of Theorem 2.19 we have the following 

Theorem 2.20 
let A E Aut(G) be an automorphism of G. Then 

Let a, b be any two elements of a gyrogroup (G, +) and 

gyrb, bl = gyr[Aa, Abl 

if and only if the automorphisms A and gyr[a, b] commute. 

Proof. If gyr[Aa,Ab] = gyr[a,b] then by Theorem 2.19 the automor- 
phisms gyr[a, b] and A commute. Conversely, if gyr[a, b] and A commute 

0 

As a simple, but useful, consequence of Theorem 2.20 we note the iden- 

then by Theorem 2.19 gyr[Aa, Ab] = Agyr[a, b1A-l = gyr[a, b]. 

tity 

gyr[gyr[a, bla, gyr[a, blbl = gyr[a, bl (2.50) 

As another application of Theorem 2.19 we have the following 

Theorem 2.21 
rogroup cooperation possess the same automorphism group, 

A gyrogroup (G,@) and the groupoid (G,H) of its gy- 

Aut(G, f3) = Aut(G, cB) (2.51) 
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Proof. Let T E Aut(G, @). Then by Theorem 2.19 

T(a H b)  = T(a@gyr[a, e b ] b )  
= Ta@Tgyr[a, &]b 
= .ra@gyr[.ra, @ ~ b ] ~ b  
= T U H T b  

(2.52) 

so that T E Aut(G,H), implying 

Aut(G, H) 2 Aut(G, @) (2.53) 

Conversely, let T E Aut(G,H). Then, owing to the first right cancella- 
tion law, (2.40), and (2.52), we have 

Ta = ~ ( ( a e b )  EI b) 
= T(a@b) T b  

so that by the second right cancellation law, (2.39), 

(2.54) 

T(a@b) = Ta@Tb (2.55) 

Hence, T E Aut(G, a), implying 

Aut(G, H) 5 Aut(G, @) (2.56) 

so that by (2.53) and (2.56), we have the the desired equality 

Aut(G, H) = Aut(G, 63) (2.57) 
0 

Theorem 2.21 enhances the duality symmetry in Theorem 2.10. 

2.6 The Gyrosemidirect Product Group 

Definition 2.22 (Gyroautomorphism Groups, Gyrosemidirect 
Product Groups). Let G = (G, +) be a gyrogroup, and let Aut(G) = 
Aut(G, +) be the automorphism group of G. A gyroautomorphism group, 
Auto(G), of G is any subgroup of Aut(G) containing all the gyroautomor- 
phisms gyr[a, b] of G, a, b E G. The gyrosemidirect product group 

G x Auto (G)  (2.58) 
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of a gyrogroup G and any gyroautomorphism group, Auto(G), is a group of 
pairs (z, X), where z E G and X E Auto(G), with operation given by  the 
gyrosemidirect product 

In analogy with the notion of the semidirect product in group theory, the 
gyrosemidirect product group 

G x Aut(G) (2.60) 

is called the gyroholomorph of G. 

It is anticipated in Def. 2.22 that the gyrosemidirect product (2.58) of a 
gyrogroup and any one of its gyroautomorphism groups is a set that forms 
a group. In the following theorem we show that this is indeed the case. 

Theorem 2.23 Let (G, +) be a gyrogroup, and let Auto(G, +) be a gy-  
roautomorphism group of G. Then the gyrosemidirect product G x Auto(G) 
is a group, with group operation given by  the gyrosemidirect product (2.59). 

Proof. We will show that the set GX Auto(G) with its binary operation 
(2.59) satisfies the group axioms. 
(i) Existence of a left identity: A left identity element of G x Auto(G) is 
the pair (0 ,  I ) ,  where 0 is the identity element of G, and I is the identity 
automorphism of G, 

(0, I ) (a ,  A )  = (0 + l a ,  gyr[O, Ia]IA) 
(2.61) 

= ( . ,A) 

(ii) Existence of a left inverse: A left inverse of (a ,  A )  E GxAuto(G) is the 
pair (-A-'a,A-'), where A-' is the inverse automorphism of A, 

(-A-la, A-l)(a,  A )  = (-A-'a + A-'a, gyr[-A-'a, A-laIA-lA) 

= (0, I )  
(2.62) 

(iii) Validity of the associative law: We have to show that 
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(2.65) 

we have to establish the identity 

(2.66) 

This identity between two pairs is equivalent to the two identities between 
their corresponding entries, 

(a + ( b  + c), gyr[a, b + c]gyr[b, clA1AzA3) 
= ( ( a  f b)  + gyr[a, b]c, gYr[a + b, gYr[a, b]c]gYr[a, bIAiA2A3) 

a + ( b  -t c) = ( a  + b)  + gyr[a, b]c 

gyrb,  b + c]gyr[b, CI = gyrb  + b, gyrb,  blcIgyr[a, bl 
(2.67) 

The first identity is valid, being the left gyroassociative law, and the second 
0 

The gyrosemidirect product group enables problems in gyrogroups to 
be converted to the group setting thus gaining access to the powerful group 
theoretic techniques. An illustrative example is provided by the following 

identity is valid by (2.9). 

(1) the two successive products

where we employ (2.59) and (2.48), and
(2) the two successive products

where we employ (2.59), are identically equal,. Hence, using the nation
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Theorem 2.24 Let (G, +) be a gyrogroup, let a ,  b E G be any two ele- 
ments of G, and let YEAut(G) be any automorphism of (G, +). Then, the 
unique solution of the automorphism equation 

Y = -gyr[b, X a ] X  (2.68) 

for the unknown automorphism X E Aut(G) is 

X = -gyr[b, Ya]Y (2.69) 

Proof. 
equation 

Let X be a solution of (2.68), and let z E G be given by the 

z = b E X a  (2.70) 

so that, by a right cancellation, (2.39), b = z + X u .  
Then we have the following gyrosemidirect product 

so that 

(z, X )  = (b ,  - Y ) ( U ,  I)-1 
= (b ,  -Y)(-a, I )  (2.72) 
= (b + Y a ,  -gyr[b, Ya]Y) 

Comparing the second entries of the extreme sides of (2.72) we have 

X = -gyr[b, Ya]Y (2.73) 

Hence, if a solution X of (2.68) exists, then it must be given by (2.69). 
Conversely, the automorphism X in (2.73) is, indeed, a solution of (2.68) 

as we see by substituting (2.73) in (2.68) and employing the nested gyration 
identity (2.10), 

-gyr[b, X a ] X  = gyr[b, -gyr[b, Ya]Ya]gyr[b, Ya]Y = Y (2.74) 
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2.7 Basic Gyration Properties 

We use the notation 

(gyr[a, bl1-l = gyr-l [a, bl (2.75) 

for the inverse gyroautomorphism. 

Theorem 2.25 (Gyrosum Inversion, Gyroautomorphism Inver- 
sion). For any two elements a ,  b of a gyrogroup (G, +) we have the gyrosum 
inversion law 

- ( a + b )  =gyr[a,b](-b-a) (2.76) 

and the gyroautomorphism inversion law 

gyr-'[a; b] = gyr[-b, -a] (2.77) 

Proof. Being a group, the product of two elements of the gyrosemidirect 
product group GX Auto(G) has a unique inverse. It can be calculated in 
two different ways. 

On the one hand, the inverse of the left hand side of the product 

(a ,  I ) @ ,  I )  = (a  + b, gyr[a, bl) (2.78) 

in G x Auto(G) is 

(b,I)-1(a,I)-l = ( -b , I ) ( -a , I )  
(2.79) 

On the other hand, the inverse of the right hand side of the product (2.78) 
is 

= (4 - a, gyr[-b, -a])  

(-gyr-l[a, bl(a + b) ,  gyr-l[a,bI) (2.80) 

for all a, b E G. Comparing corresponding entries in (2.79) and (2.80) we 
have 

gyr[-b, -a] = gyr-l[a, b] (2.82) 

Eliminating gyr-l[a, b] between (2.81) and (2.82) yields 

-b - a = -gyr[-b, -a](. + b)  (2.83) 
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Replacing ( a ,  b )  by (4, -a) ,  (2.83) becomes 

a + b = -gyr[a, b](-b - a )  (2.84) 

0 

Instructively, the gyrosum inversion law is verified in Theorem 2.25 
in terms of the gyrosemidirect product group. A direct proof is however 
simpler. By the gyroautomorphism identity in Theorem 2.8 (10) we have 

Identities (2.84) and (2.82) complete the proof. 

gyr[a, b](-b - a )  = - ( a @ b ) @ ( a ~ ( b @ ( - b e a ) ) )  
= - ( m b ) @ ( a e a )  
= -(a@b) 

gyr-'[a, bl = gyr[a, -gYr[a, blbl 

Lemma 2.26 Let (G,  +) be a gyrogroup. Then  for all a ,  b E G 

gyr-l [a, b] = gyr[-a, a + b] 

gyr-l [a,  b] = gyr[b, a + b] 

gyr[a, bl = gyrlb, -b - 4 

gyr[a, bl = gyr[-(a + b ) ,  a1 

gyr[a, b] = gyr[-a, -b - a] 

(2.85) 

(2.86) 

(2.87) 

(2.88) 

(2.89) 

(2.90) 

(2.91) 

Proof. Identity (2.86) follows from (2.10). Identity (2.87) follows from 
(2.11). Identity (2.88) results from an application to (2.87) of the left loop 
property followed by a left cancellation. Identity (2.89) follows from (2.77) 
and (2.87), 

gyr[a, b] = gyr- 1 [-b, -a] = gyr[b, -b - u] 

Identity (2.90) follows from an application, to the right hand side of (2.89), 
of the left loop property followed by a left cancellation. Identity (2.91) 

0 

Theorem 2.27 The gyroautomorphisms of any gyrogroup (G,+)  are 
even, 

follows by inverting (2.87) by means of (2.77). 

and inversive symmetric, 
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(2.94) 

Proof. By (2.77), by the left loop property, and by (2.77) again we have 

gyr-l[a, b] = gyr[-6, -a] 
= gyr[-b - a ,  -a] 
= gyr-'[a, -(-b - a)]  

(2.95) 

implying 

gyr[a, bl = gyr[a, 4 - b  - .)I (2.96) 

Hence we have, by (2.90), 

gyr[a, -(-b - a)]  = gyr[-a, -b - a] (2.97) 

for all a ,  b E G. If for any given c E G we select b to be the unique solution 
of the equation -b - a = -c, by Theorem 2.15, then the resulting equation 
can be written as 

gyr[a; .I = gyr[-a, -4 (2.98) 

for all a, c E G, thus verifying (2.92). Identity (2.93) follows from (2.77) and 
(2.92). Finally, the first identity in (2.94) follows from (2.86) and (2.93). 
By means of the gyroautomorphism inversion (2.93), the third identity in 
(2.94) is equivalent to the first one. The second (fourth) identity in (2.94) 
follows from the first (third) by replacing a by -a (or, alternatively, by 
replacing b by -b). 0 

We are now in a position to find that the left gyroassociative law and 
the left loop property of gyrogroups have right counterparts. 

Theorem 2.28 
have 

(i) (a@b)@c = a@(b@gyr[b, a]c) Right Gyroassociative Law 
(ii) gyr[a, b] = gyr[a, b@a] Right Loop Property 

Let (G, @) be a gyrogroup. Then, for a n y  a ,  b, c E G we 

satisfying the four mutually equivalent nested gyroautomorphism

for all            
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Proof. In a gyrogroup (G, +): (i) The right gyroassociative law follows 
from the left gyroassociative law and the inversive symmetry (2.93) of gy- 
roautomorphisms, 

a + ( b  + gyr[b, u]c) = ( a  + b) + gyr[a, b]gyr[b, a]c 
(2.99) 

= ( a  + b)  + c 

(ii) The right loop property follows from (2.88) and (2.93). 0 

The right cancellation law allows the loop property to be dualized in 
the following 

Theorem 2.29 (The Coloop Property - Left and Right). Let  
(G,@) be a gyrogroup. T h e n  

gyr[a, bl = gyr[a b, bl Left Coloop Property 

gyr[a, bl = gyr[a, b 4 Right Coloop Property 

for all a, b E G. 

proof. 
loop property followed by a right cancellation, 

The proof follows from an application of the left and the right 

gyr[a E b, b] = gyr[(a E b)@b, b] = gyr[a, b] 

gyr[a, b E a] = gyr[a, ( b  E a)@a] = gyr[a, b] 
(2.100) 

0 

A right and a left loop give rise to the identities in the following 

(2.101) 

Proof. By a right loop, a left cancellation and a left loop we have 

gyr[a@b, ea] = gyr[a@b, ea@(a@b)] 

= gyr[a@b, b] (2.102) 

= gyr[a, bl 
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thus verifying the first identity in (2.101). The second identity in (2.101) 
follows from the first one by gyroautomorphism inversion, (2.93). 

Theorem 2.31 (The Cogyroautomorphic Inverse Property). A n y  
gyrogroup (G, +) possesses the cogyroautomorphic inverse property, that is, 

- (a b)  = (-b) (-a) (2.103) 

f o r  any a ,  b g G .  

Proof. To verify (2.103) we note that by Def. 2.7 of the cooperation H, by 
gyrosum inversion (2.76), by (2.86), and by gyroautomorphism inversion, 
Theorem 2.27, we have, 

a b = a + gyr[a, -b]b 
= -gyr[a,gyr[a, -b]b]{-gyr[a, -bib - a }  
= gyr[a, gyr[a, -b]b]{-(-gyr[a, -b1b - a) )  

= gyr[a, -gyr[a, -b](-b)l{-(-g~r[a, -W - a) }  

= gyr-l[a, -b]{-(-gyr[a, -b]b - a) }  

= -(-b - gyr-'[a, -b]a) 
= -(-b - gyr[b, -u]u) 

= -{(-b)  ( -a ) }  

(2.104) 

Inverting both extreme sides we obtain the desired identity. 

Lemma 2.32 
have 

For any two elements a and b of a gyrogroup (G,+) we 

gyr[a, b]b = - { - (a  + b)  + a }  (2.105) 
gyr[a, -b]b = - (a  - b)  + a 

Proof. The first identity in (2.105) follows from Theorem 2.8(10) with 
5 = 4, and the second identity in (2.105) follows from the first one by 
replacing b by 4. 0 
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Theorem 2.33 The two equations 

(2.106) 

an a gyrogroup (G, +) are equivalent for any a ,  X, y E G. 

Proof. The two equations in (2.106) are symmetric so that it is enough 
to show that the first equation implies the second. By the first equation in 
(2.106) and Lemma 2.32 we have 

Y = -gYr[a, 515 
= - ( a + 5 )  + a  

implying, by a right cancellation and by (2.4), 

(2.107) 

(2.108) 

so that 

Hence, it follows from (2.109), (i) by a left cancellation, (ii) by the gyrosum 
inversion law (2.76) in Theorem 2.25, (iii) by the nested gyroautomorphism 
identity (2.94), (iv) by the gyroautomorphism inversion law (2.93), and (v) 
by a left cancellation again, that 

as desired. 0 
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Theorem 2.34 
the gyrogroup cooperation is a loop. 

Proof. The identity element of the groupoid (G,H) is the identity ele- 
ment, 0, of the gyrogroup (G,@) since, by Theorem 2.8 (2) and (13) we 
have 

Let (G,$) be a gyrogroup. Then the groupoid (G,B) of 

a B O = O H a = a  (2.111) 

If x H a = 0 then, by the right cancellation law we have 

= (x EEla)ea = 0 e a  = e a  (2.112) 

so that x = ea is a left inverse of a in (G,H). Furthermore, @a is also a 
right inverse of a in (G, B) since 

a (ea) = a@gyr[a, a]a = m a  = 0 (2.113) 

The unique solution of the equation 

x H a = b  (2.114) 

is, by a right cancellation, 

x = bea (2.115) 

The unique solution of the equation 

a @ z = b  

is 

x = gyr[b, e a ]  ( 8 a e b )  

as we show below. The equation in (2.116), 

b = a H x = a@gyr[a, 8s]z 

implies, by a left cancellation, the equation 

ea@b = gyr[a, 8x1~: 

or, equivalently, 

egyr[a, Z]Z = ea$b 

(2.1 16) 

(2.117) 

(2.118) 

(2.119) 

(2.120) 

where we use the notation z = ex. 
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Solving (2.120) for the unknown z by means of Theorem 2.33 we have 

z = @gyr[a, e a @ b ] ( e a @ b )  
= egyr[b, e~](e~@b)  (2.121) 

where we employ the second identity in (2.101). 
Replacing z by ea: in (2.121) we finally have 

z = gyr[b, ea] (ea@b)  (2.122) 

as desired. Hence, by definition 2.2, the groupoid (GI R) is a loop. 0 

We may remark that the solution (2.122) of (2.116) can be simplified 
by means of the even property (2.92) of gyroautomorphisms and a gyrosum 
inversion (2.76) as follows: 

z = gyr[b, e~](e~@b)  
= gyr[eb, a](ea@b)  (2.123) 

= e ( e b @ a )  

Furthermore, in the gyrocommutative case the solution (2.122) of 
(2.116) reduces to z = bea. 

Theorem 2.35 (A Mixed Gyroassociative Law). Let (G,@) be a 
gyrogroup. Then 

(a  b)@c = a@gyr[a, e b ] ( b @ c )  (2.124) 

for all a ,  b ,  c E G. 

Proof. Whenever convenient we use the notation ga,b = gyr[a, b ] ,  etc. By 
the definition of the gyrogroup cooperation, by the right gyroassociative 
law, and by the second nested gyroautomorphism identity in (2.94), we 
have 

( a  b)@C = (a@ga,bb)@c 

(2.125) 
= a@(8ga,bb~gyr[8ga,bb1 ~ I c )  

= a@gyr[a, b ] ( e b @ c )  
= a@(ega,bb@gyr[a, b]c )  

which gives the desired identity when b is replaced by eb. 0 

Useful identities in gyrogroups that need not be gyrocommutative and 
pointers to their proofs are listed in Table 2.2. 
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Table 2.2 List of identities in gyrogroups (G, @) that need not be gyrocommutative. 

Formula Source 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

a@(ea@b) = b (Left cancellation) 

(bea) H a  = b (Right cancellation) 

( b  a)@a = b (Right cancellation) 

a@(b@c) = (a@b)@gyr[a, b]c) (Left gyroassoc. ...) 
(a@b)@c = a@(b@gyr[b, a].) (Right gyroassoc. ...) 

a b = a@gyr[a, e b ] b  

a@b = a Bgyr[a, b]b 

@(a b) = (Gb) 83 (@a)  (Cogyroautomorphic ...) 

( a  EE b)@c = a @ u r [ a ,  8b](b@c) 

gyr[a, b]c = e(a@b)@{a@(b@c)> 

gyr[ea,  e b ]  = gyr[a, b] 

g y r - l [ a ,  b] = gyr[b, a] 

gyr[a@b, b] = gyr[a, b] 

gyr[a, b@a] = gyr[a, b] 

gyr[a E b, b] = gyr[a, b] 

gyr[a, b E a] = gyr[a, b] 

(Even symmetry) 

(Inversive symmetry) 

(Left loop property) 

(Right loop property) 

(Left coloop property) 

(Right coloop property) 

gyr[a@b, @a1 = gyr[a, bl 

gyr[ea, m b 1  = gyr[b, a1 

8(a@b) = gyr[a, b](ebea) 

(a@gyr[u, b].) (be.) = a E b 
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Chapter 3 

Gyrocommutative Gyrogroups 

In this book we are interested in gyrocommutative gyrogroups since some 
of these give rise to gyrovector spaces, which are our framework for analytic 
hyperbolic geometry. 

3.1 Gyrocommutative Gyrogroups 

Definition 3.1 
(G, +) possesses the gyroautomorphic inverse property i f  f o r  all a, b E G, 

(Gyroautomorphic Inverse Property). A gyrogroup 

- ( a + ! ) ) = - a - b  (3.1) 

Theorem 3.2 (The Gyroautomorphic Inverse Theorem). A gy- 
rogroup i s  gyrocommutative if and only if it possesses the gyroautomorphic 
inverse property. 

Proof. Let (G, +) be a gyrogroup possessing the gyroautomorphic inverse 
property. Then the gyrosum inversion law (2.76) specializes, by means of 
(2.92), to the gyrocommutative law (G6) in Def. 2.6, p. 24. Conversely, if 
the gyrocommutative law is valid then by the gyrosum inversion law, 

gyr[a ,b]{-(4-a)} = a + b = g y r [ a , b ] ( b + a )  (3.2) 

so that by eliminating the gyroautomorphism on both extreme sides and 
inverting the gyro-sign we have 

- @ + a )  = - b - a  (3.3) 

thus validating the gyroautomorphic inverse property. 0 

49 
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Lemma 3.3 For any given bEG, the self-map 

a H c = gyr[b, -a]a (3.4) 

of a gyrogroup (G, +) is surjective (that is, it maps G onto itself). 

Proof. By the even property (2.92) of gyroautomorphisms, and by 
Lemma 2.32 we have 

c = gyr[b, -a]a 
= gyr[-b, a]a 
= -{-(-b + U )  - b) 

(3.5) 

Hence, by inversion and by a right and a left cancellation, we have the 
following successive equivalent equations: 

-c=  -(-b+a) - b  
- c a b =  -(-b+a) 

-(-CHb) = -b+a  

b -  (-CHb) = a  

so that for any given b E G and for all c E G we have an element Ubc, 

a b c = b - ( - c B b ) € G  (3.7) 

satisfying 

Lemma 3.3 enables us to verify an interesting necessary and sufficient 
condition that a gyrogroup cooperation is commutative. 

Theorem 3.4 
is commutative if and only if the gyrogroup (G, +) is gyrocommutative. 

Proof. 
proof of Theorem 2.31, 

Let (G,+) be a gyrogroup. The gyrogroup cooperation ffl 

For any a ,  b E G we have, by the chain of equations (2.104) in the 

a H b = -(-b - gyr[b, +]a) (3.9) 

But by definition, 

b H a = b + gyr[b, -a]a (3.10) 
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Hence 

aEBb=bEEIa (3.11) 

if and only if 

-(-b-c) = b + c  (3.12) 

for all a ,  b E G, where 

c = gyr[b, -a]a (3.13) 

as we see from (3.9) and (3.10). But the self-map of G that takes a to c in 
(3.13), 

a H gyr[b, -a]a = c (3.14) 

is surjective, by Lemma 3.3, for any fixed b E G. Hence, the commutative 
relation (3.11) for H holds for all a,  b E G  if and only if (3.12) holds for all 
b, c E  G. The latter, in turn, is the gyroautomorphic inverse property that, 
by Theorem 3.2, is equivalent to the gyrocommutativity of the gyrogroup 
(G, +) * 0 

Theorem 3.5 Let (G, +) be a gyrocommutative gyrogroup. Then 

gyr[a, bIgyr[b + a ,  .I = gyr[a, b + c]gyr[b, .I (3.15) 

for all a ,  b, c E G. 

Proof. 
by Theorem 2.19, gyrocommutativity, and (2.9), 

Using the notation ga,b = gyr[a, b] whenever convenient, we have 

gyr[a, b]gYr[b -k a ,  c] = gYr[!?a,b(b + a) ,  ga,bC]gyr[a, b1 
= gyr[a + b, gyr[a, bIclgyr[a, bl (3.16) 

= gyr[a, b + cIgyr[b, .I 

Theorem 3.6 Let a ,  b, CEG be any three elements of a gyrocommutative 
gyrogroup (G, +)1 and let d E G be determined by the “gyroparallelogram 
condition” 

d = ( b  83 c) - a (3.17) 

Then, 
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for all a ,  b, c E G. 

Proof. By (3.15) and the right and left loop property we have 

gyr[a’, b’, +a’]gyr[b’ + a’, c’] = gyr[a’, b’, +c’]gyr[b’ + c’, c’] (3.19) 

Let 

a = -c‘ 

c =  --a’ 

b = b’ + a’ 

so that, by the third equation in (3.20), 

b’ + C’ = ( b  E a’) + C’ 

= (bRc)  - a  
= d  

(3.20) 

(3.21) 

Then (3.19), expressed in terms of (3.20) - (3.21), takes the form 

Finally, (3.22) implies (3.18) by gyroautomorphism inversion, (2.77), and 
0 by the gyroautomorphism even property (2.92). 

Remark 3.7 Naming (3.17) a “gyroparallelogram condition” will be jus- 
tified in Def. 6.40. The gyroparallelogram condition (3.17) is suficient but 
not necessary for the validity of (3.18), a counterexample being Theorem 
6.29. 

Theorem 3.8 The gyroparallelogram condition (3.17), 

d = (bHc)  - - a  (3.23) 

is equivalent to the identity 

-c + d = gyr[c, -b](b - a )  (3.24) 

Proof. In a gyrocommutative gyrogroup (G, +) the gyroparallelogram 
condition implies, by the commutativity of the gyrogroup cooperation, The- 
orem 3.4, by (2.92) - (2.94), by the definition of the gyrogroup cooperation 
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and the left gyroassociative law, 

d = ( b H c ) - a  

= (c EE b) - gyr[b, -c]gyr[c, -b]a 

= (c b)  - gyr[c, gyr[c, -b]b]gyr[c, -bIa 
= (c + gyr[c, -bib) - gyr[c, gyr[c, -blb]gyr[c, -bla 
= c + (gyr[c, -b]b - gyr[c, -b]a) 
= c + gyr[c, -b](b - a )  

(3.25) 

for all a ,  b,  c E G. 
Finally, (3.24) follows from (3.25) by a left cancellation. 

Theorem 3.9 Let  (G, +) be a gyrocommutative gyrogroup. T h e n  

gyr[a, b ] { b  + ( a  + c)} = ( a  + b) + c (3.26) 

for all a ,  b ,  c E G. 

Proof. 
of equations 

By gyroassociativity and gyrocommutativity we have the chain 

b + ( a  + c) = ( b  + a )  + gyr[b, a]c 

= gyr[b, .I(. + b)  + gyr[b, alc (3.27) 

= gyrlb, .I{(. + b )  + .I 
from which (3.26) is derived by gyroautomorphism inversion. 0 

The special case of Theorem 3.9 corresponding to c = -a provides us 
with a new cancellation law in gyrocommutative gyrogroups, called the 
left-right cancellation law. 

Theorem 3.10 
a gyrocommutative gyrogroup. T h e n  

(The Left-Right Cancellation Law). Let  (G, +) be 

(a  + b )  - a = gyr[a, b]b (3.28) 

for all a ,  b ,  CEG. 

Proof. Identity (3.28) follows from (2.105) and the gyroautomorphic in- 
verse property (3.1). 0 

The left-right cancellation law (3.28) is not a complete cancellation since 
the echo of the “canceled” a remains in the argument of the involved gy- 
roautomorphism. 
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Theorem 3.11 Let  (G,  +) be a gyrocommutative gyrogroup. T h e n  

a H b = a + { ( -a  + b)  + a }  (3.29) 

f o r  all a ,  bEG. 

Proof. 
explanation. 

The equalities in the following chain are numbered for subsequent 

(1) 
A a + { ( - a + b ) + a } =  {a+(-a+b)}+gyr[a , -u+b]a  

(2) 

= b + gyr[b, -a + b]a 
(3) 

b + gyr[b, -a]a 

(4) 

b + gyr[-b, a]a 

& 

(5) 

ek b + { ( - b + a ) + b }  
(6) 

62 { b  + (4 + a ) }  + gyr[b, -b + a]b 
(7) 
A = a + gyr[b, -b + a]b 

(8) 

a + gyr[a, -b]b 
(9) 

a H b  

The derivation of the equalities in (3.30) follows. 

(3.30) 

Follows from the left gyroassociative law. 
Follows by a left cancellation. 
Follows by a right loop. 
Follows from the even property, (2.92), of gyroautomorphisms 
Follows from Theorem 3.10 (in which gyrocommutativity is assumed). 
Follows by left gyroassociativity. 
Follows by a left cancellation. 
Follows by a right loop. 
Follows from the cooperation definition in Def. 2.7. 
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Theorem 3.12 Let (G, +) be a gyrocommutative gyrogroup. Then 

a H ( a + b )  = a + ( b + a )  (3.31) 

for all a ,  bEG. 

Proof. By a left cancellation and Theorem 3.11 we have 

a + ( b +  a )  = a + ({-a + (a + b)} + U )  
(3.32) 
0 

= a ( a  + b)  

Theorem 3.13 
a gyrocommutative gyrogroup. For all a ,  b, CEG, 

(The Gyrotranslation Theorem, 11). Let (G,+) be 

-(a + b) + (a  + c) = gyr[a, b](-b + c) 

(a  + b) - ( a  + c) = gyr[a, b](b - c) 
(3.33) 

Proof. The first identity in (3.33) follows from the Gyrotranslation The- 
orem 2.12 with a replaced by -a. Hence, it is valid in nongyrocommutative 
gyrogroups as well. The second identity in (3.33) follows from the first by 
employing the gyroautomorphic inverse property, Theorem 3.2. Hence, it 

0 is valid in gyrocommutative gyrogroups. 

Theorem 3.14 
gyrogroup (G, +) . Then, 

Let a,  b, CEG be any three elements of a gyrocommutative 

Hence, Identity (2.9) in Theorem 2.9 can be written as 

By gyroautomorphism inversion, the latter can be written as 

Proof. By Theorem 2.19 and by the gyrocommutative law we have
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Using the notation b + a = d, which implies a = -b + d, Identity (3.37) 
becomes, by means of Theorem 2.30, 

Renaming the elements b, c, dgG,  (b ,  c, d) -+ (-a, c, -b), (3.38) becomes 

gyr[a - b,  -a + c] = gyr[a, -b]gyr[-b, c]gyr[c, -a] (3.39) 

By means of the gyroautomorphic inverse property, Theorem 3.2, and the 
even property (2.92) of gyroautomorphisms in Theorem 2.27, Identity (3.39) 

0 

The special case of Theorem 3.14 when b = -c is interesting, giving 

can be written, finally, in the desired form (3.34). 

rise to the following 

Lemma 3.15 Let (G, +) be a gyrocommutative gyrogroup. Then 

gyr[a, -61 = gyr[-a + b, a + b]gyr[a, b] (3.40) 

Let a ,  b,  CEG be any three elements of a gyrocommutative Theorem 3.16 
gyrogroup (G, +). Then, 

a - gyr[a, b]gyr[b, c]c = a 6 gyr[a 6 b, b H c]c (3.41) 

( a  E b)  + ( b  E c) = a E gyr[a 8 b, b E c]c (3.42) 

and 

gyr[a, b]gyr[b, c]c = a - { ( a  E b)  + ( b  E c)} 

= a  + { ( b E a )  + ( c E b ) }  
(3.43) 

Proof. 
the loop properties, we have the following chain of equations 

By left cancellations, gyroassociativity, gyrocommutativity and 

u + b = u + (v + (-v + b ) )  
= {u + v} + gyr[u, v](-v + b)  
= { u  + ( b  - ( b  - v))} + gyr[u,v](-v + b)  

= { (u+b)  -gyr[u,b](b-v)}+gyr[u,v](-v+b) 

= {(u + b )  - gyr[u, b]gyr[b, -v](-v + b ) }  + gyr[u, v](-v + b)  
= { (u+b)  -gyr[u+b,b]gyr[b,-v+b](-v+b)}+gyr[u,v](-v+b) 

(3.44) 
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so that, by a right cancellation, 

(u + b)  Bgyr[u, w] (- w + b)  = (u + b)  - gyr[u + b, b]gyr[b, - w + b] (- w + b) (3.45) 

for all u, b,  WEG. Hence, if we use the notation 

then 

(3.46) 

(3.47) 

and Identity (3.45) takes the desired form (3.41). 
Identity (3.42) follows from (3.41) and Theorem 2.17. Finally, (3.43) 

follows from (3.41), (3.42), the gyroautomorphic inverse property, the com- 
0 mutativity of the cooperation, and a left cancellation. 

Gyrogroup theory encompasses a repertoire of identities that allow re- 
markable algebraic manipulations from which rich geometry is uncovered. 
The following theorem is interesting, as well as its proof, which exemplifies 
the use of several gyrogroup algebraic manipulations. 

Theorem 3.17 
posite gyration J of G, 

Let (G, +) be a gyrocommutatiwe gyrogroup. The com- 

x, a ,  b E G, is independent of x. 

Proof. 
phic inverse property, Theorem 3.2, we have for all c E G 

By the gyrator identity, Theorem 2.8(10), and the gyroautomor- 

gyr[-a, b]c = -(-a + 6) + (-a + ( b  + c)) 
(3.49) 

= ( a  - b) + (-a + ( b  + c)) 
Applying the composite gyration J in (3.48) to any c E G, the proof is 

provided by the following chain of equalities, which are numbered for later 
reference in the proof. 
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(1) 
A 

(2) 

J c  = gyr[a, x]gyr[-(x + a ) ,  x + b]gyr[x, b]c 

a g y r [ a ,  x]gyr[-(x + a ) ,  x + b]{-(x + b)  + (x + ( b  + c))} 

= gyr[a, x]{-[ - (x  + a )  + (x + b)]  
(3) 
A 

+ [-(.+a) + ((x + b) + {-(x + b)  + (x + ( b  + c))})]} 
(4) 

(5) 

/gyr[a,x]{[(x + a )  - (x + b)] + [-(x + a )  + (x + ( b  + c))]} 

6 - gyr[a, zI{gyr[x, 4. - b)  + [-(. + a )  + (. + ( b  + C ) ) l l  

e ( a - b )  + ~ - g y r [ a , x ] ( x + a ) + g y r ~ a , z ] ( x +  (b+c))} 

e ( u  - b)  + { - (a  + x) + gyr[a,z](z + ( b  + c))) 

a ( a  - b)  + {-a + [-x + (x + ( b  + c))]} 

e ( u  - b)  + {-a + ( b  + c)} 

e g y r [ - a ,  blc 

(3.50) 
(6) 

(7) 

(8) 

(9) 

(10) 

The derivation of (3.50) follows. 

(i) Equality (2) follows from (1) by applying the gyrator identity, The- 
orem 2.8(10). 

(ii) Similarly, Equality (3) follows from (2) by applying the gyrator 
identity. 

(iii) Equality (4) follows from (3) by applying the gyroautomorphic in- 
verse property of gyrocommutative gyrogroups, Theorem 3.2; and 
the left cancellation law, Theorem 2.8(9). 

(iw) Equality (5) follows from (4) by Theorem 3.13. 
(TJ) Equality ( 6 )  follows from (5) by applying the automorphism 

gyr[a, x] termwise, and using the gyration inversive symmetry 
(2.93). 

(wi) Equality (7) follows from (6) by the gyrocommutative law. 
( w i i )  Equality (8) follows from (7) by the left gyroassociative law noting 
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that gyrations are even, (2.92). 
(wiii) Equality (9) follows from (8) by a left cancellation. 
(iz) Equality (10) follows from (9) by (3.49). 

It follows from (3.50) that J c  = gyr[-a,b]c for all c E G, implying 
J = gyr[-a, b] ,  so that J is independent of 2, as desired. 

Theorem 3.17 implies 

gyr[a, "lgYr[a: + a,  4. + b)lgyr[z, bl = gYr[-a, bl (3.51) 

resulting in a "master" gyrocommutative gyrogroup identity. According to  
the gyrocommutative protection principle [Ungar (2003)l , it remains valid 
in nongyrocommutative gyrogroups as well. It is a master identity in the 
sense that it is a source of other identities obtained by the substitution of 
various gyrocommutative gyrogroup expressions for 2. Thus, for instance, 
the substitutions z = a and z = b in (3.51) give, respectively, the following 
two equivalent connections between gyr[-a, b] and gyr[a, b], 

(3.52) 

where we use the notation 2a = a + a for a in (G, +). 

(3.52) can be written as 
Noting that gyr[-2a,a + b] = gyr[-a + b,a + b], the first identity in 

(3.53) 
gyr[-a + b, a + b] = gyr[-a, b]gyr[b, a] 

= gyr[-a + b, b]gyr[b, a + b] 

The second identity in (3.52) can be manipulated by (2.48) of Theorem 
2.19 and by the gyrocommutative law into 

gyr[-a, bl = gy+, bIgyr[b + a,  -2bl 

= gyr[gyr[a, bl(b + a ) ,  -2gyrb, blbIgyr[al 61 
= gyr[a + b, -2gyr[a, blb]gyr[a, bl 

(3.54) 

Comparing (3.54) with the first identity in (3.52) we have, by the left loop 
property and (2.93), 

gyr[a + b, -2gyr[a, b]b] = gyr[-2a, a + b] 
= gyr[-a + b, a + b] 
= gyr-l [a + b, -a + b] 

(3.55) 
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The following theorem is similar to Theorem 3.17. 

Theorem 3.18 Let (G,+) be a gyrocommutative gyrogroup. The  com- 
posite gyration J of G,  

J = gY+, xIgyr[-gyr[z, al(a - b) ,  x + bIgyr[z, bl (3.56) 

x, a, b E G, is  independent of 2. 

Proof. By gyration algebra we have, on the one hand, 

{ ( L 7 : + a ) - ( x + b ) } - { ( z + a ) - ( a : + c ) }  
= gyr[x + a ,  -(z + b)]{-(z + b)  + (x + c)} 
= gyr[z + a, -(x + b)]gyr[z, b](-b + c)  

= gyr[(z + a) - (x + b ) ,  -(x + b)]gyr[z, b](-b + c )  

= gyr[gyr[x, .I(. - b), 4. + b)lgyr[z, bl(-b + c )  

(3.57) 

On the other hand, however, we have 

{(x++) - ( z + + ) } - { ( z + a ) - ( z + c ) }  
= {[(x + a )  - z] - gyr[x + a, -x]b} - {[(z + a )  - z] - gyr[z + a ,  -z]c} 

= -gyr[(z + a )  - z, -gyr[z + a, -x]b](gyr[z + a, -z]b - gyr[x + a ,  -z]c) 
= -gyr[(z + u )  - z, -gyr[z + a ,  -x]b]gyr[z + a, - 4 ( b  - c) 

= -gyr[z + a ,  -z]gyr[gyr[-z,x + a]((z + a )  - x), -b](b - c)  
= -gyr[z, a]gyr[-z + (x + a ) ,  -b](b - c )  

= gyr[z, aIgyr[a, -bl(-b + c)  
(3.58) 

Comparing the right hand sides of (3.57) and (3.58) we have for d = -b+c, 

gyr[z, aIgyr[a, -bid = gyr[gyr[z, .I(. - b ) ,  4% + b)lgyr[z, bld (3.59) 

for all z, a, b, d E G. 
Hence, 

gyrb,  4 1  = gyrb,  xlgyr[gyr[x, .I(. - b ) ,  -(. + b)lgyr[z, bl (3.60) 

proof is complete. 0 
In particular, the right hand side of (3.60) is independent of z, and the 

Theorem 3.19 
gyrogroup (G, +), and let T : G3 4 G be a map  given by the equation 

Let a ,  b, cCG be any three elements of a gyrocommutative 

T(u ,  b, C) = (b C )  - u (3.61) 
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Then, 

x i- T ( a ,  b,  c) = T ( x  + a ,  IC + b, 2 + C) (3.62) 

for  all XEG, and 

TT(u,  b, c) = T(Tu,  ~ b ,  TC) (3.63) 

for all T E A u ~ ( G ,  +). 

Proof. The proof of (3.63) follows from Identities (2.52) and (2.55). 
To prove (3.62) we have to verify the identity 

5 + { (b  c) - a }  = { (z + b)  ffl (z + c)} - (x + a )  (3.64) 

The proof of (3.64) is presented in the following chain of equalities, 
which are numbered for subsequent explanation. 

{ ( 5 S b )  EEI (x + c)} - (x + a )  
(1) 

(2) 

(3) 

(x + b)  + gyr[x + b, -(x + c)l{(z + c) - (x + a ) }  

(x + b)  + gyr[x + b,  -(x + c)]gyr[x, cI(c - a )  

x + { b  + gyr[b, x]gyr[z + b, -(x + c>lgyr[s, CI(C - a > )  

2 z + { b  + gyr[b, zlgyr[x, b]gyr[b, -cIgyr[c, xIgyr[z, cI(c - a ) }  
(4) 

( 5 )  

x + { b  + gyr[b, -c](c - a ) )  

(6) 

2 2 + { b  + (gyr[b, -c]c - gyr[b, -cia)) 
(7) 

(8) 

x + { ( b  + gyr[b, -c]c> - gyr[b, gyr[b, -c]cIg~r[b, -cia) 

z + { ( b  + gyrIb, -c]c) - gyr[c, -bIgyr[b, -cia) 
(9) e x + { ( b E l c ) - a }  

(3.65) 

as desired. 
The derivation of the equalities in (3.65) follows: 



Analytic Hyperbolic Geometry 

Follows from (2.124). 
Follows from the Gyrotranslation Theorem 3.13. Since we use the 
second identity in Theorem 3.13 rather than the first identity, 
gyrocommutativity must be imposed. 
Derived by right gyroassociativity. 
Follows from Theorem 3.14 and the gyroautomorphism even property 
(2.92). 
Derived by gyroautomorphism inversion, Theorem 2.27. 
Derived by automorphism expansion. 
Derived by left gyroassociativity. 
Follows from the nested gyration identity (2.94). 
Follows from the cooperation definition, 2.18 and gyroautomorphism 
inversion. 

0 

The identity in (3.62) and (3.64) uncovers an interesting symmetry 
called covariance under left gyrotranslations and automorphisms. Under 
left gyrotranslations and automorphisms, the elements a ,  b, c € G  and their 
image under T ,  T ( a ,  b, c), vary together, that  is, they co-vary. Accordingly, 
we say that the map T is covariant with respect to left gyrotranslations and 
automorphisms or, simply, the map T is gyrocovariant. Thus, gyrocovari- 
ance is covariance with respect to left gyrotranslations and automorphisms. 

The special case of Identity (3.64) when a = -X is interesting, giving 
rise to the identity 

( X + b ) m  (X+cc) = a : +  { ( b m c )  +a:> (3.66) 

in any gyrocommutative gyrogroup. It further specializes, when c = 4, to 
the interesting cancellation law, 

(X + b)  H (Z - b)  = 2@2 (3.67) 

where we use the notation 2@x = x + x. 
an interesting cancellation law in the following theorem. 

Theorem 3.20 

As an application of the gyrocovariance of T(a ,  b, c ) ,  (3.61), we verify 

Let (G, +) be a gyrocommutative gyrogroup. Then 

a + {(-a + b)  H (-0 +c)} = (bHc) - a  (3.68) 

for  all a ,  b, c E G. 
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Proof. Let 

d = ( b  B c )  - a (3.69) 

Owing to the gyrocovariance of d ,  Theorem 3.19, we have 

x + d = ( ( 2  + b )  (X + c)} - (X + a )  (3.70) 

for all a ,  b, c, 2 E G. In the special case when 
to 

= -a Identity (3.70) reduces 

-a+ d = { ( -a  + b)  (-a + c ) }  (3.71) 

implying, by a left cancellation, 

d =  a +  { ( -a+ b)  EE ( -a+c)} (3.72) 

Finally, (3.69) and (3.72) imply (3.68) as desired. 0 

Identities (3.66) - (3.67) and Theorem 3.20, which result from the gyro- 
covariance of the map T in Theorem 3.19, demonstrate the rich structure 
that gyrocovariant maps encode, suggesting the following two definitions 
and a theorem. 

Definition 3.21 (Gyrogroup Motions). Let (G, +) be a gyrogroup, 
let L,  be the left gyrotranslation of G by  X E G ,  

L , :G  + G, L , :a  H x + a  (3.73) 

and let Auto(G, +) be a gyroautomorphism group of the gyrogroup (G, +), 
Def. 2.22. Elements of the set GxAuto(G,+) are called motions of the 
gyrogroup in the sense that each element (5, X)€GxAuto(G,  +) gives rise 
to the motion (L,, X ) ,  

(L,, X ) a  = 2 + X a  (3.74) 

of G. 

Theorem 3.22 (Gyrogroup Group Of Motions). The set of motions 
G x Auto(G, +) of a gyrogroup (G, +) forms a group with group operation 
given by  motion composition. 
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Proof. 
(G,+).  Then 

Let ( L z ,  X )  and (Ly, Y )  be two successive motions of a gyrogroup 

(LZ, x w y ,  Y ) a  = (LZ, X)(Y  + Y a )  
= z + X ( y + Y a )  
= z + ( X y  + X Y a )  
= (x + X y )  + gyr[x, X y l X Y a  

= ( L + X y ,  gyr[z, X y l X Y ) a  

(3.75) 

for all z, y , a ~ G  and X ,  Y E Auto(G, +). 
Hence, the composition of two motions is, again, a motion, 

(L,  X ) ( L y ,  Y )  = ( L + X Y ,  gyr[z, X Y I X Y )  (3.76) 

The composite motion (LZ+xy, gyr[x, X y l X Y )  is recognized as the gy- 
rosemidirect product of its generating motions ( L z ,  X )  and (Ly, Y ) .  The 
latter, in turn, is a group operation, Theorem 2.23. Hence, the set of 
motions is a gyrosemidirect product group, with group operation, the gy- 
rosemidirect product, given by motion composition. In particular, the iden- 
tity motion is (LO,  I ) ,  and the inverse motion is 

( L Z ,  x)-I = (L-X-lz, x-1) (3.77) 

where X-' is the inverse automorphism of XEAuto(G,  +). 0 

Definition 3.23 (Gyrocovariance, Gyrogroup Objects). Let (G,  +) 
be a gyrogroup, let GxAuto(G, +) be its group of motions, and let T Gn -+ 
G be a map from n copies, Gn, of G to G,  n > 1. The map T is covariant 
(with respect to the motions of G )  i f  it obeys the laws 

z + T(a1,  * . . ,an) = T ( z  + a1, * . . ,z + a,) 
(3.78) 

T T ( U 1 , .  . . ,an) = T(Ta1,.  . . ,Tan) 

for all a l , .  . . ,an ,% E G and all T E Auto(G,+). 
Furthermore, the set of elements 

( ~ 1 , .  . ., an, T(a1, * an)} (3.79) 

of G is called a gyrogroup object in G. 

Example 3.24 
ing to Theorem 3.19, the set 

(Gyrocommutative Gyrogroup Objects). Accord- 

{a ,  b, c, ( a  H b)  - c} (3.80) 
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of four elements of any gyrocommutative gyrogroup (G,+) forms a gy- 
rogroup object. The gyrogroup object will be recognized in Sec. 6.7, p. 160, 
as the gyroparallelogram. 

Example 3.25 Slightly modifying (3.80), the set 

of four elements of a gyrocommutative gyrogroup (G, +) does not form, in 
general, a gyrogroup object. 

We will study more about gyrocovariance in Sec. 6.6 ,  p. 158 

3.2 Nested Gyroautomorphism Identities 

We study in this section several nested gyroautomorphism identities in 
addition to the two nested gyroautomorphism identities already studied 
in (2.94). We use the notation ga,b = gyr[a, b ] ,  etc., whenever convenient. 

Lemma 3.26 Let (G, +) be a gyrocommutative gprogroup. Then 

for all a, b, c E G. 

Proof. 
becomes 

Renaming the elements a ,b ,c  E G, (a,b,c) --f (c,b,a),  (3.43) 

gc,bgb,aa = c - { ( C  E b) + ( b  a)} (3.83) 

Owing to the gyroautomorphic inverse property of the gyrogroup oper- 
ation +, Theorem 3.2, and the commutativity of the gyrogroup cooperation 
E8, Theorem 3.4, Identity (3.83) can be written as 

gc,bgb,aa = c + { ( b  c) + (a E b ) }  
= C + Z  

(3.84) 

where 

z = ( b  c)  + (a b) (3.85) 
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Hence, by (3.84) and (3.85), and by Theorem 2.30, we have 

gYr[gc,bgb,aa, -c] = gyr[c + x, -4 
= gyr[c, XI (3.86) 

0 = gyr[c, (b El c) + (a 8 b)] 

Lemma 3.27 Let (G, +) be a gyrocommutative gyrogroup. Then 

gyr[a El b, b El .I = gyrb, bIgyr[b, ClgYr[gc,bgb,aa, -4 (3.87) 

for all a, b, c E G. 

Proof. 
are numbered for subsequent explanation. 

(1) 

gyr[a El b, b El c] = gyr[-b ffl a, b E c] 
(2) 

(3) 
A 
= gyr[b, -gb,aa]gYr[gb,aa, -gb,cC]gyr[gb,cc, -b] 
(4) 
A 
= gyr[a, b]gyr[gb,aa, -gb,cC]gyr[gb,cC, -b] 
( 5 )  
A 
= gyr[a, b]gYr[gb,aa, -gb,cc]gyr[b, c] 

( 6 )  e - gYr[a, b]gYr[b, c]gyr[gc,bgb,aar -4 

The equalities in the following chain verify Identity (3.87). They 

A 

gyr[-b gb,aa, b - gb,cC] 

(3.88) 

The derivation of the equalities in (3.88) follows. 

(1) 
(2) 
(3) Follows from Theorem 3.14. 
(4) 
(5) 

(6) 

Lemma 3.28 
G be three elements satisfying the condition 

Follows from the commutativity of the cooperation, Theorem 3.4. 
Follows from the cooperation definition in Def. 2.7. 

Follows from the nested gyroautomorphism identity (2.94). 
Follows from (i) the nested gyroautomorphism identity (2.94), and 
(ii) the gyroautomorphism even property, (2.92). 
Follows from Theorem 2.19 and (2.93). 

Let (G, +) be a gyrocommutative gyrogroup, and let a, b, c E 

gyr[b 8 c, a E b] = I (3.89) 



Gyrocommutative Gyrogroups 67 

Then 

gyr[gc,bgb,aa, -4 = gyr[c, a] (3.90) 

The equalities in the following chain are numbered for subsequent Proof. 
explanation. 

(1) - 
(2) 

(3) 

(4) 

( 5 )  

(6) 

(7) 

gyr[gc,bgb,aa, -c] = gyr[c, (b c, + (a b)l 

a gyr[c, gyr[b c, a H b]{(a E b) + ( b  H c)}] 

2 gyr[c, (a  'd b) + (b  E c)] 

2 gyr[c ,{(aEb)+(bEc)}+c]  

gyr [c , (aHb)+{(bEc)+c}]  

(3.91) 

Ck gyr[c, (a  b) + b] 

9 gyr[c,aI 

The derivation of the equalities in (3.91) follows. 

(1) Follows from Lemma 3.26. 
(2) Follows from the gyrocommutative law. 
(3) Follows from Condition (3.89). 
(4) Follows from a right loop. 
(5) Follows from the right gyroassociative law and Condition (3.89). 
(6) Follows from a right cancellation. 
(7) Follows from a right cancellation. 

Theorem 3.29 Let (G,+) be a gyrocommutative gyrogroup, and let 
a,  b, c E G be three elements satisfying the condition 

gyr[b 8 c, a R b] = I (3.92) 

Then 
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Proof. Inverting the gyroautomorphism in Condition (3.92), we have 

gyr[a E b, b E c] = I (3.94) 

By (3.94), Lemma 3.27, and Lemma 3.28 we have, as desired, 

I = gyr[a E b, b E c] 

= gYr[% b]gYr[b, c]gYr[gc,bgb,aa, -c] 

= gyrb,  bIgyr[b, cIgyr[c, .I 
(3.95) 
0 

Table 3.1 List of identities in gyrocommutative gyrogroups (G, @). 

Formula Source 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

Eq. (3.1), Thm 3.2 

Eq. (3.11), Thm 3.4 

Eq. (3.29), Thm 3.11 

Eq. (3.31), Thm 3.12 

Eq. (3.26), Thm 3.9 

Eq. (3.28), Thm 3.10 

Eq. (3.33), Thm 3.13 

Eq. (3.33), Thm 3.13 

Eq. (3.15), Thm 3.5 

Eq. (3.34), Thm 3.14 

Eq. (3.18), Thm 3.6 

Eq. (3.40), Lmm 3.15 

Eq. (3.41), Thm 3.16 

Eq. (3.42), Thm 3.16 

Eq. (3.66) 

Eq. (3.67) 

Eq. (3.43), Thm 3.16 

Eq. (3.82), Lmm 3.26 

Eq. (3.87), Lmm 3.27 

Eq. (3.89), Lmm 3.28 

Eq. (3.93), Lmm 3.29 

Eq. (3.64), Thm 3.19 
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Useful identities in gyrocommutative gyrogroups and pointers to  their 
proofs are listed in Table 3.1. 

3.3 Two-Divisible Two-Torsion Free Gyrocommutative 
Gyrogroups 

Definition 3.30 (Two-Torsion Free Gyrogroups). Let (G,+)  be a 
gyrogroup. A n  element g E G satisfying g + g = 0 is called a two-torsion 
element. The gyrogroup (G,  +) is two-torsion free if the only two-torsion 
element an G is g = 0.  

Definition 3.31 (Two-Divisible Gyrogroups). Let (G,+)  be a gy- 
rogroup. The half of ~ E G ,  denoted i @ g ,  is an element of G satisfying 

;@g + +@g = g (3.96) 

A gyrogroup in which every element possesses a haif is called a two-divisible 
g yrogroup. 

Theorem 3.32 
mutative gyrogroup. Then, the half b@g of any gEG is unique. 

Proof. Let each o f  a and b be half of g in G.  Then 

Let (G, +) be a two-divisible, two-torsion free, gyrocom- 

a + a = b + b  (3.97) 

Hence, 

- b + ( a + a )  = - b + ( b + b )  (3.98) 

Applying the left gyroassociative law to  both sides o f  (3.98), noting that 
gyr[-b, b] = I is trivial, we have 

(-b + a )  + gyr[-b, a]a = b (3.99) 

Solving (3.99) for (-b + a )  by a right cancellation, we have 

-b + a = b - gyr[b, gyr[-b, a]a]gyr[-6, a]a 
= b - gyr[a, -b]gyr[-b,a]a 
= b - a  
= - ( -b  + a )  

(3.100) 
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Hence, 

( -b  + u )  + ( -b  + a )  = 0 (3.101) 

so that -b+a is a two-torsion element of two-torsion free gyrogroup. Hence, 
-b + a = 0 so that b = a as desired. 0 

Since both - ( $ @ g )  and $ @ ( - g )  are halves of - g E G ,  it follows from 
Theorem 3.32 that 

- ( i @ g )  = $@(-g)  (3.102) 

in any two-divisible, two torsion-free gyrocommutative gyrogroup (G, +). 

Theorem 3.33 
tive gyrogroup. T h e n ,  

Le t  (G, +) be a two-divisible, torsion-free, gyrocommuta- 

gyrb,  b I ( i @ g )  = i@gyrb ,  blg (3.103) 

f o r  all a ,  b, g E G .  

Proof. Gyroautomorphisms are automorphisms. Hence, 

(3.104) 

0 

gyrb,  bl($@g) + gyrIa,bl(@Yd = gyrb,  b l ( i @ g  + $@g> 

= gyrla, blg 

implying (3.103) since, by Theorem 3.32, the half is unique. 

Theorem 3.34 
a two-divisible, torsion-free, gyrocommutative gyrogroup. T h e n ,  

(The Gyration Exclusion Theorem). Let  (G,  +) be 

gyrb,bI  # -1 (3.105) 

f o r  all a ,  b E G .  

Proof. Seeking a contradiction, we assume that gyr[a, b] = -I for some 
a,b E G. We have b = ;@b + %b 2 = i @ b  83 i @ b  so that by a right 
cancellation, b - $@b = ;@b. Hence, 

a +  $@b = a +  ( b -  ;@b) 

= (u + b)  - gyr[a, b]+@b 

= (u + b) - ;@gyr[a, b]b 

= ( a +  b)  + $@b 

(3.106) 
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Right cancellation of i @ b  in (3.106) gives a = a@b, implying by a left 
cancellation that b = 0. Hence, by Theorem 2.8(11), gyr[a, b] = I, thus 
contradicting the assumption. 0 

Theorem 3.35 Let (G, +) be a two-divisible, torsion-free, gyrocommuta- 
tive gyrogroup. If 

gyr[a, b]b = -b (3.107) 

in G,  then b = 0.  

Proof. As in (3.106), and by Theorem 3.33, we have 

a + i @ b = a + ( b - i @ b )  
= (a  + b) - gyr[a, b ] i @ b  
= (a  + b )  - ;@gyr[a, b]b 

(3.108) 

= (a  + b) + ;@'b 

implying a = a + b so that b = 0. 0 

As an application of Theorem 3.35, let us verify the following theorem: 

Let (G, +) be a two-divisible, torsion-free, gyrocommuta- Theorem 3.36 
tive gyrogroup. Then, the equation 

z - ( y - z ) = y  (3.109) 

x , y ~ G ,  holds i f  and only i f  x = y .  

Proof. It  follows from (3.109) that 

-y+z = -z+ y 

= -gYr[z, -Y](-Y + x) 
= -gyr[x, - y  + z](-y + z) 

so that 

(3.110) 

t = -gyr[z, t] t  (3.111) 

where t = -y + x. Hence, by Theorem 3.35, t = 0,  so that z = y .  Con- 
0 

Since the cooperation W of a gyrocommutative gyrogroup is commu- 
tative, a natural candidate for the gyromidpoint ma,, of any two distinct 
points a and b in a two-divisible, torsion-free, gyrocommutative gyrogroup 
arises. 

versely, if z = y then (3.109) clearly holds. 
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Definition 3.37 (Gyromidpoints, I). The gyromidpoint m a b  of any 
two distinct points a and b in a two-divisible, torsion-free, gyrocommutative 
gyrogroup (G, +) is given by  the equation 

mat, = ;@(a EI b)  (3.112) 

A different, but equivalent, definition of the gyromidpoint will be pre- 
sented in Def. 6.31 p. 156. As the book unfolds, it will become clear that 
the ability to find gyromidpoints and their iterates lead to the construction 
of gyrolines, as noticed in [Ungar (1996); Lawson and Lim (2004)l. 

Considering the gyromidpoint concept as a primitive one, Lawson and 
Lim studied symmetric sets with midpoints, obtaining an important struc- 
ture, called a dyadic symmetric set or a “dyadic symset”, for short. Interest- 
ingly, the latter is remarkably general, as Lawson and Lim emphasize, and 
it turns out to be identical to a two-divisible, torsion-free, gyrocommutative 
gyrogroup [Lawson and Lim (2004), Theorem 8.81. A classic illustration of 
the generality that Lawson and Lim present in [Lawson and Lim (2004)] 
is the well known Cartan decomposition of semisimple Lie groups; see also 
[Kasparian and Ungar (2004)l. 

3.4 The Mobius Complex Disc Gyrogroup 

Gyrogroups, both gyrocommutative and non-gyrocommutative, finite and 
infinite, abound in the theory of groups [Foguel and Ungar (2000); 
Foguel and Ungar (2001); Feder (2003)], loops [Issa (1999)], quasigroup [Issa 
(2001); Kuznetsov (2003)], and Lie groups [Kasparian and Ungar (2004)l. 
Historically, the first gyrogroup structure was discovered in the study of 
Einstein velocity addition [Ungar (1988a); Ungar (1991); Ungar (1997); 
Ungar (1998)l. However, the best way to introduce the gyrogroup notion 
by example is provided by the Mobius transformation group of the complex 
open unit disc [Ungar (1994); Kinyon and Ungar (2000)]. 

The most general Mobius transformation of the complex open unit disc 

D = { z  E c : IzI < 1) (3.113) 

in the complex plane C is given by the polar decomposition [Ahlfors (1973); 
Krantz (1990)], 

(3.114) 
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It induces the Mobius addition @, in the disc, allowing the Mobius trans- 
formation of the disc to be viewed as a Mobius left gyrotranslation 

a + z  
z I-+ a@,z = - 

1 +zz (3.115) 

followed by a rotation. Here 8ER is a real number, a, z E D, and is the 
complex conjugate of a. 

Mobius addition a@,z and subtraction ae,z = a@,(-z) are found 
useful in the geometric viewpoint of complex analysis; see, for instance, 
[Ungar (1999); Ungar (2004c)],[Krantz (1990), pp. 52-53, 56-57, 601, and 
the Schwarz-Pick Lemma in [Goebel and Reich (1984), Thm 1.4, p. 641. 
However, prior to the appearance of [Ungar (2001)l in 2001 these were 
not considered “addition” and “subtraction” since it has gone unnoticed 
that, being gyrocommutative and gyroassociative they share analogies with 
common addition and subtraction, as we will see below. 

Mobius addition @, is neither commutative nor associative. The break- 
down of commutativity in Mobius addition is “repaired” by the introduction 
of a gyrator 

gyr : D x D  -+ Aut(D, eM) (3.1 16) 

that generates gyroautomorphisms according to the equation 

a@,b - 1 + a6 
b%a 1 + E b  

gyr[a,b] = - - - E Aut(D, @,) (3.117) 

where Aut(D,@,) is the automorphism group of the Mobius groupoid 
(Q @ M I *  

The inverse of the automorphism gyr[a, b] is clearly gyr[b, a], 

gyr-l [a, bl = 0r[b,.I (3.118) 

The gyrocommutative law of Mobius addition @, that follows from the 
definition of gyr in (3.117), 

(3.119) 

is not terribly surprising since it is generated by definition, but we are not 
finished. 

Coincidentally, the gyroautomorphism gyr[a, b] that repairs the break- 
down of commutativity of @, in (3.119), repairs the breakdown of associa- 
tivity of eM as well, giving rise to the respective left and right gyroassociative 
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(3.120) 

for all a, b,  z E D. Moreover, Mobius gyroautomorphisms possess the two 
elegant identities 

(3.121) 

One can now readily check that the Mobius complex disc groupoid 
(D, @,) is a gyrocommutative gyrogroup. 

As any coincidence in mathematics, the coincidences that Mobius addi- 
tion exhibits in the gyrocommutative and the gyroassociative laws that it 
obeys are not accidental. Rather, they stem from the polar decomposition 
structure in (3.114), as demonstrated in most general settings by Foguel 
and Ungar in [Foguel and Ungar (2000); Foguel (2002)l. 

3.5 Mobius Gyrogroups 

Identifying vectors in the Euclidean plane R2 with complex numbers in the 
complex plane C in the usual way we have 

R 2 3 u = ( u ~ , u 2 ) H u ~ + i u 2 = u E @  (3.122) 

The inner product and the norm in R2 then become the real numbers 

2Lv + uv 
u.v H Re(.iiv) = ___ 

2 

Under the translation (3.123) of elements of the open disc 

(3.123) 

(3.124) 

of the Euclidean plane R2 to elements of the complex open unit disc D, 
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Mobius addition (3.114) in V,=1 = R:=, takes the form 

(3.125) 

- u + v  -- 
1 + 2Lv 

= U@,V 

for all u, v E EX?=, , and all u, v E ID. In (3.125) we recover the Mobius 
addition @, in the open unit disc ID of C ,  (3.115), from a corresponding 
Mobius vector addition in the open unit disc R'$, of the Euclidean plane 
R2. 

Suggestively, we extend (3.125) in the following definition of Mobius 
vector addition in the ball. 

Definition 3.38 (Mobius Addition in the Ball). Let V = (V, +, .) be 
a real inner product space with a binary operation + and a positive definite 
inner product . ([Marsden (1974), p. ,211; following [Kowalsky (1977)], also 
known as Euclidean space) and let V, be the s-ball of V, 

v, = {v E v : llvll < s }  (3.126) 

for any fixed s > 0.  Mobius addition eM is a binary operation in V, given 
by the equation 

(1 + 3 U . V  + +llV1I2)U + (1 - $llu112)v 
1 + $u.v + ~llu11211v112 

U@,V = 

where . and 1 1 . 1 1  are the inner product and norm that the 
from its space V. 

(3.127) 

ball V, inherits 

In the limit of large s, s + 00, the ball V, expands to the whole of its 
space V, and Mobius addition reduces to vector addition in V. Accordingly, 
the right hand side of (3.127) is known as a Mobius translation [Ratcliffe 
(1994), p. 1291. An earlier study of Mobius translation in several dimen- 
sions, using the notation -u@,v = Tuv, is found in [Ahlfors (1981)l and in 
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[Ahlfors (1984)], where it is attributed to Poincar6. Both Ahlfors [Ahlfors 
(1981)] and Ratcliffe [Ratcliffe (1994)], who studied the Mobius translation 
in several dimensions, did not call it a Mobius addition since it has gone 
unnoticed at the time that Mobius translation is regulated by algebraic 
laws analogous to those that regulate vector addition. 

Mobius addition 63, in the open unit ball V, of any real inner product 
space V is thus a most natural extension of the Mobius addition in the 
open complex unit disc. Like the Mobius disc (ID,%), the Mobius ball 
(Vs, cBM) turns out to be a gyrocommutative gyrogroup, as one can read- 
ily check by computer algebra. Interestingly, the gyrocommutative law of 
Mobius addition was already known to Ahlfors [Ahlfors (1981), Eq. 391. 
The accompanied gyroassociative law of Mobius addition, however, had 
gone unnoticed. 

Mobius addition satisfies the gamma identity 

for all u, v E V,, where yu is the gamma factor 

(3.128) 

(3.129) 

in the s-ball V,. 

special relativity theory as the Lorentz factor. 
The gamma factor appears also in Einstein addition, and it is known in 

The Mobius gyrogroup cooperation (2.2) is given by Mobius coaddition 

(3.130) 

satisfying the gamma identity 

Mobius coaddition is commutative, as expected from Theorem 3.4. 

that is, u = Xv for some X E Iw, Mobius addition reduces to 
When the vectors u and v in the ball V, of V are parallel in V, u I I v ,  

(3.132) 
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and, accordingly, 

(3.133) 

The restricted Mobius addition in (3.132) and (3.133) is both commutative 
and associative. 

Mobius gyrations 

are automorphisms of the Mobius gyrogroup (V,, @&), 

gyr[u, v] Aut(Vs, @M) (3.135) 

given by the equation, Theorem 2.8(10), 

and they preserve the inner product that the ball V, inherits from its real 
inner product space V, 

gyr[u,v]a.gyr[u,v]b = a b  (3.137) 

for all a, b, u, v, w E V,. 

3.6 Einstein Gyrogroups 

Attempts to measure the absolute velocity of the earth through the hy- 
pothetical ether had failed. The most famous of these experiments is one 
performed by Michelson and Morley in 1887 [Feynman and Sands (1964)l. 
It was 18 years later before the null results of these experiments were finally 
explained by Einstein in terms of a new velocity addition law that bears 
his name, which he introduced in his 1905 paper that founded the special 
theory of relativity [Einstein (1905); Einstein (1998)l. 

Contrasting Newtonian velocities, which are vectors in the Euclidean 
three-space EX3, Einsteinian velocities must be relativistically admissible, 
that is, their magnitude must not exceed the vacuum speed of light, which 
is about 3 x lo5 km-sec-'. 

Let c be the vacuum speed of light, and let 

(3.138) 
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be the c-ball of all relativistically admissible velocities of material particles. 
It is the open ball of radius c, centered at the origin of the Euclidean three- 
space R3, consisting of all vectors v in R3 with magnitude llvll smaller than 
c. Einstein addition eE in the c-ball is given by the equation 

for all u, v E R:, where u.v is the inner product that the ball R: inherits 
from its space R3, and where yu is the gamma factor (3.129) in the c-ball. 

Owing to the vector identity, 

(xx y) x z = -(y.z)x + (x.z)y (3.140) 

x,y, z€R3, that holds in R3, Einstein addition (3.139) can also be written 
in the form [Sexl and Urbantke (2001); Ungar (2001)] 

that remains valid in higher dimensions. 
Einstein addition (3.141) of relativistically admissible velocities was in- 

troduced by Einstein in his 1905 paper [Einstein (1998), p. 1411 where the 
magnitudes of the two sides of Einstein addition (3.141) are presented. One 
has to remember here that the Euclidean 3-vector algebra was not so widely 
known in 1905 and, consequently, was not used by Einstein. Einstein calcu- 
lated in [Einstein (1905)] the behavior of the velocity components parallel 
and orthogonal to the relative velocity between inertial systems, which is 
as close as one can get without vectors to the vectorial version (3.141). 

In the Newtonian limit, c --+ 00, the ball R: of all relativistically admis- 
sible velocities expands to the whole of its space R3, as we see from (3.138), 
and Einstein addition BE in R: reduces to the ordinary vector addition + 
in R3, as we see from (3.141) and (3.129). 

Suggestively, we extend Einstein addition of relativistically admissible 
velocities by abstraction in the following definition of Einstein addition in 
the ball. 

Definition 3.39 
i n n e r  product  space and  let V, be t h e  s-ball of V, 

(Einstein Addition in the Ball). L e t  V be a real 

v, = {v E v : llvll < s} (3.142) 
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Einstein addition eE is a binary operation in V, given by the equation 

where 3;, is the gamma factor in V,, and where . and 1 1 . 1 1  are the inner 
product and norm that the ball V, inherits from its space V. 

Like Mobius addition in the ball, one can show by computer algebra that 
Einstein addition in the ball is a gyrocommutative gyrogroup operation, 
giving rise to the Einstein ball gyrogroup (Vs, %). 

Einstein addition satisfies the mutually equivalent gamma identities 

and 

for all u,v E V,. The ratio 

(3.144) 

(3.145) 

(3.146) 

is a kind of an inner product that will be extended by abstraction in (4.1). 
The gamma identity (3.145) signaled the emergence of hyperbolic ge- 

ometry in special relativity when it was first studied by Sommerfeld [Som- 
merfeld (1909)] and VariEak [VariEak (1908); VariEak (1910a)l in terms of 
rapidities, a term coined by Robb [Robb (1914)]. The rapidity & of a rel- 
ativistically admissible velocity v is defined by the equation [Levy-Leblond 
(1979)l 

1 llvll & = tanh- - S 

so that, 

cosh& = ̂ /v 

sinh = 3; - llvll 
S 

(3.147) 

(3.148) 

In the years 1910-1914, the period which experienced a dramatic flow- 
ering of creativity in the special theory of relativity, the Croatian physicist 
and mathematician Vladimir VariEak (1865-1942), professor and rector of 
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Zagreb University, showed in [VariEak (191Oa)], that this theory has a nat- 
ural interpretation in the hyperbolic geometry of Bolyai and Lobachevsky 
[Barrett (1998)] [Rosenfeld (1988)I. Indeed, written in terms of rapidities, 
identity (3.145) takes the form 

cosh = cosh 4” cosh 4v - sinh 4u sinh cos A (3.149) 

where, according to J.F. Barrett [Barrett (2001)], the angle A has been 
interpreted by Sommerfeld [Sommerfeld (1909)], and VariEak [VariEak 
(1910a)], as a hyperbolic angle in the relativistic “triangle of velocities” 
in the Beltrami ball model of hyperbolic geometry. The role of Constantin 
Carathkodory [Georgiadou (2004)] in this approach to special relativity and 
hyperbolic geometry has been described by J.F. Barrett [Barrett (2001)], 
emphasizing that (3.149) is the “cosine rule” in hyperbolic geometry. 

When the vectors u and v in the ball V, of V are parallel in V, u I I v ,  
that is, u = Xv for some X E R, Einstein addition reduces to 

and, accordingly, 

(3.150) 

(3.151) 

The restricted Einstein addition in (3.150) and (3.151) is both commutative 
and associative. Accordingly, the restricted Einstein addition is a group op- 
eration, as Einstein noted in [Einstein (1905)]; see [Einstein (1998), p. 1421. 
In contrast, Einstein made no remark about group properties of his addition 
of velocities that need not be parallel. Indeed, the general Einstein addi- 
tion is not a group operation but, rather, a gyrocommutative gyrogroup 
operation, a structure that was discovered only in 1988 [Ungar (1988a)l. 

Interestingly, Einstein addition (3.150) of parallel vectors coincides with 
Mobius addition (3.132) of parallel vectors. 

Einstein gyrations 

are automorphisms of the Einstein gyrogroup (Vs, eE), 

(3.153) 



Gyrocommutative Gyrogroups 81 

given by the equation, Theorem 2.8(10), 

gyr[u, vlw = %(u@Ev)$,{u$,(v@Ew>) (3.154) 

and they preserve the inner product that the ball V, inherits from its real 
inner product space V, 

gyr[u, v]a.gyr[u, v]b = a .b  (3.155) 

for all a, b, u, v, w E V,. 

3.7 Einstein Coaddition 

Einstein gyrogroup cooperation (2.2) in an Einstein gyrogroup (V3, eE) is 
given by Einstein coaddition 

(3.156) 

YUU + YVV 

Yu + Yv 
= 2% 

where the scalar multiplication by the factor 2 is defined by the equation 
2 R v  = v@,v. A more general definition of the scalar multiplication by 
any real number will be studied in Chap. 6 .  

Einstein coaddition is commutative, as expected from Theorem 3.4, sat- 
isfying the gamma identity 

- 7: + 7: + YuYv(l  + y) - 1 
Y U Y V ( 1  - 7)  + 1 

- - ( ~ u  + 7,)' - (Tuev + 1) 
Yuev + 1 

We will see in Chap. 10 that, unlike Einstein addition, Einstein coaddi- 
tion admits a gyroparallelogram addition law, Fig. 10.10, p. 381. The latter, 
in turn, will be found to be covariant with respect to left gyrotranslations. 
Accordingly, it will become evident that in order to capture analogies with 
classical results, both Einstein addition and coaddition must be considered. 

YUE3,V - 

(3.157) 
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Einstein coaddition of two elements, u and v, of an Einstein gyrogroup 
is symmetric in u and v, as we see from (3.156). To capture deeper analo- 
gies one may wish to find an Einstein coaddition of three elements, u, v 
and w, of an Einstein gyrogroup, which is symmetric in u, v and w, and 
which admits a 3-dimensional gyroparallelepiped addition law. Indeed, the 
extension to  Einstein coaddition of any finite number, k, of elements, vi, 
i = 1, . . . Ic, which is symmetric in vi and which admits a k-dimensional 
gyroparallelepiped addition law, will be uncovered in (10.66), p. 383. The 
3-dimensional case will be illustrated graphically in Fig. 10.13, p. 391. 

3.8 PV Gyrogroups 

Definition 3.40 (PV Addition). Let (V, +, .) be a real inner product 
space with addition, +, and inner product, .. The P V  (Proper Velocity) 
gyrogroup (V, Bu) is the real inner product space V equipped with addition 
eU, given by 

u B , v = u + v +  (3.158) 

where PV, called the beta factor, is given by  the equation 

1 

= 4- (3.159) 

PV addition is the relativistic addition of proper velocities rather than 
coordinate velocities as in Einstein addition [Ungar (2001)) p. 1431. It can be 
shown by computer algebra that, as anticipated in Def. 3.40, PV addition is 
a gyrocommutative gyrogroup operation, giving rise to the PV gyrogroup 
(V) % ). 

PV addition satisfies the beta identity 

1 1 u.v +-  - - -- 1 
P u q p  P u  P v  s2 

or, equivalently, 

(3.160) 

P U P V  
P u q v  = u.v 

1 + P U P V S ,  
(3.161) 
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The PV gyrogroup cooperation (2.2) is given by PV coaddition, 

(3.162) 

satisfying the beta identity 

- + - + - - - ( ( 1 - - )  1 1 1 1  u.v 

(3.163) 
P: P? PUPV C2 

fl-- Pu Pv C2 

-- 
u.v 1 1  

- 
1 

PUBu v -- 

or , equivalently, 

PuPv(1+ PuPv(1 - 7)) (3.164) 

PV coaddition is commutative, as expected from Theorem 3.4. 

some X E R, PV addition reduces to 
When the vectors u and v in V are parallel] u I I v ,  that is, u = Xv for 

(3.165) 
1 1 

u q v  = -u + -v, u(Iv Pv Pu 
and, accordingly, 

1 1 
11u11% llvll = pv llull + - llvll PU 

(3.166) 

The restricted PV addition in (3.165) and (3.166) is both commutative and 
associative. 

PV gyrations 

gyr[ul v] : V + V (3.167) 

are automorphisms of the PV gyrogroup (V, q), 

gyr[u, VI A21t(V1 @,) (3.168) 

given by the equation, Theorem 2.8( lo), 

gyrb1 VIW = ~ ( u ~ v ) % ~ u % ( v @ , w ) ~  (3.169) 

and they preserve the inner product in V, 

gyr[ul v]a.gyr[u, v]b = a .b  (3.170) 

for all a, b, u, v, w E V. 
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3.9 Points and Vectors in a Real Inner Product Space 

Elements of a real inner product space V = (V, +, .), called points and 
denoted by capital italic letters, A,  B,  P, Q, . . ., give rise to vectors, denoted 
by bold roman lowercase letters u, v, . . . . ‘Vector’ means ‘carrier’ in Latin. 
The most basic meaning is a relationship between two points, namely, the 
displacement that would carry one into the other. Any two points P, QEV 
give rise to a unique rooted vector v = PQEV, rooted at the point P .  It 
has a tail at the point P and a head at the point Q, 

v = P Q  = -P + Q (3.171) 

The length of the rooted vector v = P Q  is the distance between the points 
P and Q, given by the equation 

llvll = IPQl = II - P + Q I I  (3.172) 

The degenerate rooted vector PP is called the zero rooted vector. Any 
two zero rooted vectors are equivalent. Two nonzero rooted vectors P Q  
and R S  are equivalent if PQSR is a parallelogram. A vector is defined to 
be a collection of equivalent rooted vectors. Accordingly, two vectors are 
equal if they have the same length and direction. 

A point P E V  is identified with the rooted vector OP,  0 being the origin 
of the space V. Hence, the algebra of vectors can be applied to points as 
well. 

The vector v = -P+Q translates the point P into the point Q according 
to the equation 

Q = v + P  (3.173) 

Vector addition in V is given by the composition of two successive transla- 
tions of a point. Hence, if u = QR = -Q + R then u + v translates P to 
R according to the equation 

R = u + Q  
= u + (v + P )  
= ( u + v )  + P 

(3.174) 

so that 

U + V =  ( - P + Q )  + (-Q+ R) = -P+ R = P R  (3.175) 
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The elements of Mobius and Einstein gyrovector spaces in Secs. 3.5 and 
3.6 are either points or vectors in the ball Vs of a real inner product space V. 
They are, however, subjected to a binary operation different from the one 
in their space V in order to keep the ball closed under its binary operation. 
Hence, the vector algebra of the space V does not suit the algebra of its 
ball V,. Indeed, the adjustment of vector algebra to gyrocommutative 
gyrogroups will be presented in Chap. 5 and applied to gyrovector spaces 
in Chap. 6. 

3.10 Exercises 

(1) Identify the algebraic laws that allow the chains of equations (3.57) 
and (3.58). 

(2) Employing a computer system for technical computing, like MATH- 
EMATICA or MAPLE, verify Identities (3.144) - (3.157). 

(3) Verify directly that the expression J in Theorem 3.17 and the ex- 
pression J in Theorem 3.18 are identical. 

(4) Verify the Identity in Theorem 3.17 by comparing two different 
expansions of the expression a + { ( b  + c)  + z} in a gyrocommu- 
tative gyrogroup (G,+). Find a similar identity that is valid in 
gyrogroups that need not be gyrocommutative. 

(5) Let (G,@) be a gyrocommutative gyrogroup. Show that each of 
the composite gyrations J1, J2, and J3 of G, 

J1  = gyr[a, b@z]gyr[b, z]gyr[z, be34 (3.176) 

53 = gyr[a@b, egyr[a, b H z]z]gyr[a, b H z]gyr[z, eb] (3.178) 

a ,  b,  z E G, is independent of z. Use (3.176) to establish the identity 

gyrb,  e b l  = b@a]g~r[b, a ] g ~ r [ a ,  b e 4  (3.179) 

Use (3.177) with z = 0 and z = a to establish the identity 

(gyr[a, b1l2 = gyr[gyr[a, bla, a]gyr[a@gyr[a, b]a, b@a] (3.180) 

Use (3.178) to establish the identity 

(gyrb, b 1 Y  = gyrb,  egyrb ,  b]b] (3.181) 
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(6) Let (G,  @) be a gyrocommutative gyrogroup. Prove that the gy- 
rogroup expression 

54 = g y r [ c , x ] ( e ( x ~ c ) ~ ~ ~ [ ( x ~ a )  EB ( x e b ) ] }  (3.182) 

a,  b, c,  x E G,  is independent of x .  
(7) Show that the solution of the equation 

(x@a) El3 (x@b) = p (3.183) 

in a gyrocommutative gyrogroup (G,  @) for the unknown X E G  and 
any given a,  b,pEG is 

x = ~ @ p E J ~ @ ( u ! E i b )  (3.184) 

Hint: Use (3.182) with c = 0. 

tive gyrogroup (G,  @). For all a ,  b, c E G ,  
(8) Verify the following two associative-like laws in any gyrocommuta- 

(a  H b)@c = a@gyr[a, 8b](b@c) (3.185) 

and 

a@(b H c) = (a@) El3 gyr[a, b H C]C (3.186) 

Note that (3.185) gives rise to the right cancellation law (2.39), 
while (3.186) gives rise to the cancellation-like law, 

m ( e a  H b)  = gyr[u, b]b (3.187) 

The latter also follows from the left cancellation law (2.38) and the 
definition of the gyrogroup coaddition H. 



Chapter 4 

Gyrogroup Extension 

We show in this chapter that gyrogroups that are equipped with the so 
called gyrofactor admit special extensions, giving rise to new gyrogroups 
that admit the notion of inner product and norm, and possess transfor- 
mation groups that keep their inner product and norm invariant. In gy- 
rolanguage, these inner product and norm are called gyroinner product and 
gyronorm. 

To appreciate the usefulness of the gyrogroup extension that we study in 
this chapter we may note that the gyrogroup extension of the Einstein rel- 
ativistic gyrogroup (R:, @) of all relativistically admissible velocities gives 
rise to the gyrocommutative gyrogroup of L‘Lorentz boosts”. A Lorentz 
boost, in turn, is a LLLorentz transformation without rotation” in the jar- 
gon. The Lorentz transformation group of spacetime in special relativity 
theory will turn out in Chap. 10 to be a gyrosemidirect product group of 
the gyrogroup of Lorentz boosts and a group of space rotations. 

4.1 Gyrogroup Extension 

Definition 4.1 (Gyrofactors). Let p be a positive function, p : G 4 

R>O, of a gyrogroup (G, @). The function p(w), v E G, is called a gyrofactor 
of the gyrogroup (G, @) i f  it satisfies the following conditions: 

(1) p is normalized, p(0) = 1, where 0 is the identity element of G. 
( 2 )  p is even, p ( w )  = p(w) for all w E G. 
(3) p is gyroinvariant, that is, p(Vv) = p(v) for all w E G and all 

VCAuto(G, @). Here Auto(G, @) is a gyroautomorphism group of 
the gyrogroup (G, @), Def. 2.22. 
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A gyrogroup (G,@) equipped with a gyrofactor p : G -+ R>O is denoted 
by (G, @, p). Accordingly, an automorphism group Auto(G, @) of (G, @) = 
(G, $, p )  may also be denoted by Auto(G, @, p )  i f  one wishes to emphasize 
the presence of the gyrofactor p. 

Definition 4.2 (Gyrogroup Extension by a Gyrofactor). Let 
(G, @, p) be a gyrogroup with a gyrofactor p : G + R>O. The gyrogroup 
R>O x G of pairs (s ,  u ) ~  (exponent t denotes transposition), s E R'O, u E G, 
with gyrogroup operation given by  

(s, u ) ~ ,  ( t ,  v ) ~  ER>O x G, is said to  be the gyrogroup extended f rom the gy- 
rogroup (G, $, p) ,  or the extended gyrogroup of (G, $, p ) ,  and is denoted 
(R>'x G,. ;@,p) .  

The seemingly non-intuitive term p(u@v)/(p(u)p(v)) in (4.1) is the ab- 
straction of (3.146), to which it reduces in the special case when p(v) = yv 
is the Lorentz factor. 

Interestingly, the composition law (4.1), written additively, arises in the 
study of commutative groups, where @ is a commutative group operation 
rather than a gyrogroup operation; see, for instance, [Jessen, Karpf and 
Thorup (1968)l. 

It is anticipated in Def. 4.2 that the groupoid (R>O x G, . ; $, p) forms a 
gyrogroup. The following theorem states that this is, indeed, the case. 

Theorem 4.3 (Gyrogroup Extension). Let (G,@,p) be a (gyrocom- 
mutative) gyrogroup with a gyrofactor, and let E = (R'O x G, . ; $, p) be 
the groupoid extended from the gyrogroup (G, @, p) according to Def. 4.2. 
Then, the groupoid E forms a (gyrocommutative) gyrogroup. 

Proof. Identity Element: The identity element of E is (1, O ) t ,  where 0 is 
the identity element of (G, @). 

Inverse: The inverse of (s, u ) ~  in E is 

where we use the notation p2(u) = (~(u))~. 
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Gyroautomorphisms: If E is a gyrogroup then, by (4.1), (4.2), and 
Theorem 2.8(10), its gyroautomorphisms are recovered by the following 
chain of equations. 

(4.3) 

Hence, if E is a gyrogroup, then its gyrations are induced by the gyra- 
tions gyr[u,v], u, WEG, of its underlying gyrogroup (G, @) according to the 
following equation, (4.3), 

(4.4) 

We, therefore, adopt (4.4) as the definition of the gyrator gyr of E. 
It follows from (4.4) that, indeed, the gyrations gyr[(s, u ) ~ ,  ( t ,  u ) ~ ]  of 
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E in (4.4) obey the gyrogroup axioms that the gyrations gyr[u,v] of the 
underlying gyrogroup (G, @) obey, so that if (G, @) is a (gyrocommutative) 
gyrogroup then also E is a (gyrocommutative) gyrogroup. As an illustrative 
example that demonstrates that E inherits gyrogroup properties of G, let 
us verify the loop property for E.  By (4.1) and (4.4), and by the loop 
property of (G, @), we have 

= gyr [ (3 ’ (:)I (;) 

4.2 The Gyroinner Product, the Gyronorm, and the Gyro- 
boost 

The extended gyrogroup admits a gyroinner product and a gyronorm, the 
definition of which follows. 

Definition 4.4 (The Gyroinner Product and the Gyronorm). Let 
E = (IR’Ox G, . ; $, p)  be the gyrogroup extended f rom a gyrogroup (G, @, p )  
with a gyrofactor. The  inner  product, < ( s ,  u ) ~ ,  ( t ,  w ) ~  >, of  any  two ele- 
men t s  ( s ,  u ) ~  and ( t ,  w ) ~  of E is a nonnegative number given by the equation 

The squared n o r m  of any  element ( t ,  v ) ~  of  E is, accordingly, defined by 
the equation 

(4.7) 
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so that 

for any element ( t ,  w ) ~  of E .  

It follows from (4.8) that the elements (p (w) ,  v ) ~  of E ,  v E G, are uni- 
modular, 

(4.9) 

Definition 4.5 (Gyroboosts). A gyroboost is a unimodular element of 
an extended gyrogroup E .  Specifically, let E = (EX>' x G , . ; @ , p )  be the 
gyrogroup extended from the gyrogroup (G, @, p ) .  Then the gyroboost B(v) ,  
parametrized by VEG, is the element 

B(v)  = (':I) (4.10) 

of E .  

The identity gyroboost is B(O), where 0 is the identity element of G, 
and the inverse of a gyroboost B(w) is the gyroboost 

( B ( w ) ) - ~  = B ( w )  (4.11) 

for all ve(G, @). 

gyroboost in E given by gyroboost parameter gyroaddition, 
The product of two gyroboosts in an extended gyrogroup E is, again, a 

for all u, v E (G, @). Hence, the set of all gyroboosts B(v)  in an extended 
gyrogroup E = (R>O x G, . ; @, p )  forms a gyrogroup which is isomorphic 
(in the gyrogroup sense: two isomorphic gyrogroups are, algebraically, the 
same gyrogroup) to the underlying parameter gyrogroup (G, @). 

Gyroboosts act on their extended gyrogroup according to the following 
definition. 
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Definition 4.6 
rogroup with a gyrofactor. The application 

(Gyroboost Application). Let (G, 69, p )  be a gy- 

B(u)  : E --+ E (4.13) 

u E G, of the gyroboost B(u)  to  elements ( t , ~ ) ~  of its extended gyrogroup 
E = (R>O x G, . ; @, p )  is given by the extended gyrogroup operation, 

(4.14) 

I t  follows from Defs. 4.6 and 4.2 that the gyroboost application to ele- 
ments of its extended gyrogroup E is given by the equation 

(4.15) 

Gyroboosts are important transformations of E since they keep the 
gyroinner product in E invariant. In the context of Einstein's special theory 
of relativity these are nothing else but the Lorentz transformations without 
rotation, known in the jargon as boosts, as we will see in Chap. 10. 

Theorem 4.7 Gyroboosts preserve the gyroinner product, that is, 

f o r  all a ,  u, v E G  and s, tEIW>O. 

Hence, in particular, gyroboosts preserve the gyronorm, 

(4.17) 

Proof. By the gyroboost and the gyroinner product definition, by The- 
orem 3.13, and by the gyroinvariance of the gyrofactor p, we have the 
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following chain of equations, 
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(4.18) 

as desired. 0 

In general, gyroboosts of an extended gyrogroup do not form a group 
since the application of two successive gyroboosts is not equivalent to a 
single gyroboost but, rather, to a single gyroboost preceded, or followed, 
by a gyration. 

Accordingly, the following theorem presents the gyroboost composition 
law, from which we find that it is owing to the presence of gyrations that 
the composition of two gyroboosts is not a gyroboost. 

Theorem 4.8 (Gyroboost Composition Law). The application of 
two successive gyroboosts is equivalent to  the application of a single gyro- 
boost preceded by a gyration. 
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Proof. 
we have 

Applying successively B(v)  and B(u) to an element ( t ,w) t  of E 

(4.19) 

Hence, the application of the two successive gyroboosts B(v)  and B(u) is 
equivalent to the application of the single gyroboost B(u@v) preceded by 
a gyration. 

In the chain of equations (4.19) we employ the gyroassociative law of the 
gyrogroup operation @, the invariance of the gyrofactor under gyrations, 
and (4.12). 0 

Suggestively, we use the notation 

(4.20) 
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so that the result of the chain of equations (4.19) can be written as the 
identity 

B(u)B(v) (i) = B(u@v)Gyr[u, 7 4  (4.21) 

Similarly, one can also establish the identity 

B(u)B(v)  (3 = Gyr[u,v]B(v@u) (4.22) 

see, for details, Lemma 4.14. Hence, two successive boosts are equivalent 
to a single boost preceded, (4.21), or followed, (4.22), by a gyration. 

The extended gyrogroup identities (4.21) and (4.22) are valid for any 
element ( t ,  w ) ~  of their extended gyrogroup. Hence, they can be written as 
the gyroboost identities in the following 

Theorem 4.9 Let E = (It>’ x G, ; @, p)  be the extended gyrogroup of 
the gyrogroup (G, @, p )  with the gyrofactor p, and let B(v)  and Gyr[u, v], 
u ,v  E G, be its gyroboosts and gyrations. Then 

B(u)B(v)  = B(u@v)Gyr[u, w] 
B(u)B(w) = Gyr[u, v]B(v@u) 

(4.23) 

Contrasting the general application of successive boosts, which involves 
gyrations, a “symmetric” successive boost application is gyration free, that 
is, it is equivalent to the application of a single boost. Three examples 
that illustrate the general case are presented in the following three boost 
identities. 

= B(2@(u@v)) (;) 
where 2@u = u@u. The last identity in (4.24) will be derived in Theorem 
6.7, p. 140. 
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4.3 The Extended Automorphisms 

Extended automorphisms of a gyrogroup automorphisms are automor- 
phisms of the extended gyrogroup. In particular, the extended gyroau- 
tomorphisms of a gyrogroup are the gyroautomorphism of the extended 
gyrogroup. The definition of extended automorphisms thus follows. 

Definition 4.10 (Extended Automorphisms). Let E = (R'O x 
G,. ;@,p)  be the extended gyrogroup of a gyrogroup (G,$,p), and let 
Auto(G, @, p)  be any gyroautomorphism group of (G, @, p ) ,  Def. 4.1. For 
any VEAuto(G, @, p ) ,  E(V) is the transformation of the eztended gyrogroup 
E given by  the equation 

(:) = (A) (4.25) 

tER,  VEG. 

phism extension of V. 
The transformation E(V), V E Auto(G, @), is called the gyroautomor- 

Thus, for instance, 

(4.26) 

or, equivalently, 

for all ( t ,  u ~ ) ~  in the extended gyrogroup E ,  as we see from (4.25) and (4.20). 
The following lemma shows that the extended automorphism is an au- 

tomorphism. 

Lemma 4.11 Let E = (R'O x G, . ; @, p )  be the gyrogroup eztended from 
a gyrogroup (G, @, p) ,  and let E(V) be the extension of an automorphism 
V E Auto(G, @, p ) .  Then E(V)  is an automorphism of E .  

Proof. The map E(V)  is invertible, (E(V))-' = E(V-'), V-' being 
the inverse of V in Auto(G,$,p). Moreover, E(V)  respects the binary 
operation . in E, 
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Hence E(V) is an automorphism of E. 

(4.28) 

In particular, extended gyrations E(gyr[u, w]) of gyrations gyr[u, w] are 

The importance of the automorphisms E ( V )  of E rests on the result 
automorphisms of E. For these we use the special notation (4.26). 

that they preserve the gyroinner product in E .  

Proof. 
gyroinvariant, we have 

Since V is an automorphism of (G,@) and the gyrofactor p is 
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(4.29) 

Lemma 4.13 Let E = (R” x G, . ; @, p )  be the gyrogroup extended from 
a gyrogroup (G, @), and let E ( V )  be the automorphism of E extended from 
an automorphism V of (G, @). Then, any gyroboost B(v) ,  v E G, of E 
“commutes” with the automorphism E ( V )  according to the equation 

E(V)B(v)  = B(Vv)E(V) (4.30) 

Proof. For any v€(G,  @), ( t ,  w ) t ~ E ,  VEAuto(G, @), we have 

= B(Vv)  ( ) v w  

(4.31) 
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thus implying (4.30). 0 

As an application of Lemma 4.13 we verify the following 

Lemma 4.14 Let E = (R’O x G,  . ; $, p) be the gyrocommutative gy-  
rogroup extended from a gyrocommutative gyrogroup (G, @, p ) ,  and let B(v)  
be a boost of E .  Then 

Gyr[u, v]B(v@u) = B(u$v)Gyr[u, v] (4.32) 

for all u,v E G. 

Proof. By Lemma 4.13 and by (4.26), 

4.4 Gyrotransformation Groups 

Motivated by the Lorentz transformation group of the special theory of 
relativity, that we will study in Chap. 10, in the following definition we 
define the gyrotransformation group of any given extended gyrogroup. 

Definition 4.15 (Gyrotransformations). The gyrotransformation 
L(v, V )  is a self-transformation of an extended gyrogroup, E = (R’O x 
G, . ; $, p ) ,  parametrized by the gyrogroup parameter v E G and the auto- 
morphism parumeter VEAuto(G, @), given by  the equation 

for all ( t ,w) tEE .  

(4.34) 

Accordingly, a gyrotransformation of an extended gyrogroup is a gyro- 
boost B(v)  preceded by an automorphism E ( V )  of the extended gyrogroup. 
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It  follows from (4.34), (4.25), (4.15), and the gyroinvariance of the gy- 
rofactor, Def. 4.1, that 

(4.35) 

Theorem 4.16 
gyronorm invariant. 

Gyrotransformations keep the gyroinner product and the 

Proof, The proof follows from Def. 4.15 and Theorems 4.7 and 4.12. 0 

Theorem 4.17 The set of all gyrotransformations of a given eztended 
gyrogroup E = (R'O x G, . ; @, p)  form a group under gyrotransformation 
composition, given by  the gyrosemidirect product 

L(u,  U ) L ( v ,  V )  = L(u@Uv, gyr[u, UvIUV) (4.36) 

for all u,  v E G and U,  VEAuto(G, @). 

Proof. The identity gyrotransformation is L(O,I), where 0 and I are 
the identity element and the identity automorphism of the underlying gy- 
rogroup (G, @). 

The inverse gyrotransformation is 

(4.37) 

so that gyrotransformations are bijective. 



Gyrogroup Extension 101 

Calculating the gyrotransformation composition, we have by (4.35) 

(4.38) 

for all ( t ,  w ) ~  E E ,  thus verifying (4.36). 
The composition law (4.36) of gyrotransformations is given in terms 

of parameter composition where the latter, in turn, is recognized as a gy- 
rosemidirect product, (2.59). Hence, by Theorem 2.23, the set of all gyro- 
transformations of a given extended gyrogroup E forms a gyrosemidirect 
product group. 0 

As explained in Sec. 4.5, we will find in Chap. 10 that the gyrotransfor- 
mation group is, in fact, the abstract Lorentz transformation group in the 
sense that if one realizes the abstract gyrogroup (G, @) by the Einstein gy- 
rogroup (It,”, Q),  then (i) the resulting realization of the abstract Lorentz 
transformation group gives the familiar Lorentz transformation group of 
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special relativity theory, and (ii) the resulting realization of the gyrofactor 
of the abstract Lorentz group gives the familiar Lorentz factor. 

4.5 Einstein Gyrotransformation Groups 

Let us realize (i) the abstract gyrogroup (G, @) by the Einstein gyrogroup 
(Vs1eE) ,  and (ii) the gyrofactor p(v) by the gamma factor yv, (3.129). 
Then, Def. 4.15 and its resulting identity (4.35) give rise, by means of 
Identity (3.144), to the Einstein gyrotransformation 

(4.39) 

for all ( t ,  w)~EIW>’ x (V,, eE), where VEV, and VEAuto(Vs, eE). 
The gyrotransformations Le(v, V) of the gyrogroup 

extended from the Einstein gyrogroup ( V s , s )  form a group with group 
operation given by the gyrosemidirect product (4.36) , 

for all u, VEV, and U ,  VEAuto(V,, eE). 
In Chap. 10 we will see that in the special case when the ball Vs is 

realized by the ball IW: of the Euclidean 3-space W3, the Einstein gyrotrans- 
formation group Le(v, V) reduces to the familiar Lorentz group of special 
relativity theory, parametrized by “coordinate velocities” v E IW: and “ori- 
entations” VcSO(3) .  

4.6 PV (Proper Velocity) Gyrotransformation Groups 

Let us realize (i) the abstract gyrogroup (G,@) by the PV gyrogroup 
(V,@”), and (ii) the gyrofactor p(v) by the identity map p(v) = 1, VEV. 
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Then, Def. 4.15 and its resulting identity (4.35) give rise to the PV gyro- 
transformation 

(4.42) 

for all (7, W)~EIR>’  x (V, @”), where VEV and VEAuto(V, @,). 
The gyrotransformations L,(v, V )  of the gyrogroup 

Po x (V,@”) (4.43) 

extended from the PV gyrogroup (V, eU) form a group with group operation 
given by the gyrosemidirect product (4.36), 

L,(u, U)L,(v, V) = L U ( u ~ , U v ,  gyr[u, U v ] U V )  (4.44) 

for all u, VEV and U, VEAuto(V, @,,). 
In Chap. 10 we will see that in the special case when the space V is 

realized by the Euclidean 3-space R3, the PV gyrotransformation group 
reduces to the novel “proper Lorentz group” of special relativity theory, 
parametrized by “proper velocities” v€R3  and “orientations” V ~ 5 0 ( 3 ) .  

4.7 Galilei Transformation Groups 

Let us realize (i) the abstract gyrogroup (G, @) by the group (V, +), and (ii) 
the gyrofactor p(v) by the identity map p(v) = 1, VEV. Then, definition 
4.15 and its resulting identity (4.35) give rise to the gyrotransformation 

(4.45) 

for all ( t ,  W)~ER>’  x (V, +), where VEV and V€Auto(V, +). 
A group is a gyrogroup with trivial gyrations. Hence, the gyrotransfor- 

mation (4.45) involves no gyrations. Accordingly, we call it a transforma- 
tion rather than a gyrotransformation. 

The transformations L,(v, V) of the group 

Po x (V,+) (4.46) 

extended from the group (V, +) form a group with group operation given 
by the semidirect product (4.36), 

L,(u, U)L,(v, V) = L,(u + uv, U V )  (4.47) 
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for all u, VEV and U, VEAutO(V, 6). The semidirect product in (4.47) is, 
in fact, a gyrosemidirect product with trivial gyrations. 

In the special case when the space V is realized by the Euclidean 3- 
space R3, the Galilei transformation group reduces to the familiar Galilei 
transformation group of classical mechanics, parametrized by velocities v E 
R3 and orientations VESO(3). 

4.8 From Gyroboosts to Boosts 

Let V, = (V,, @, p)  be a gyrogroup with a gyrofactor. There is a bijective 
(one-to-one) correspondence 

(:) - (:t) = (:) (4.48) 

between elements ( t ,  v ) ~  of the extended gyrogroup E of the gyrogroup V,, 

E=(IW’OxV,,.;@,p) (4.49) 

and elements ( t ,  x ) ~  of the cone S, of El 

S, = { ( t , ~ ) ~  : t E R’ol x E V, and v = x / t  E V,} (4.50) 

where v = x / t  = x ( l / t )  is a scalar multiplication in the real inner product 
space V of the ball V,. 

Identifying ( t ,  v ) ~  and ( t ,  x = v t ) t ,  and borrowing terms from Einstein’s 
special theory of relativity, we call the former a velocity representation 
and the latter a space representation of the same spacetime point. The 
conversion of a spacetime point from one representation to the other is just 
a matter of notation. Hence, for instance, the conversion of (4.6) - (4.9) 
from velocity representation to space representation results in the following 
equations, 

(4.51) 

(4.52) 

(4.53) 
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and 

(4.54) 

where u = y / t  and v = x/ t ,  t > 0. 
In the special case when the abstract gyrogroup (V,, @, p ( v ) )  is real- 

ized by the Einstein gyrogroup (RT, %, T ~ ) ,  the norm (4.53) becomes the 
familiar relativistic norm 

Owing to the bijective correspondence, (4.48), between velocity and 
space representation of spacetime points, the gyroboost B(v) ,  (4.15), of 
the extended gyrogroup E gives rise to a boost, also denoted B(v) ,  of the 
cone S , ,  according to the following definition. 

Definition 4.18 Let S,, (4.50), be the cone o f E ,  (4.49). The application 

B(u) : 8, --f 8, (4.56) 

of the boost B(u) ,  u E V,, to  elements of the cone 9, is given by the 
equation 

B(u) ( x 4 v t )  = ( %Yt ) 
(U@.) wt 

(4.57) 

Clearly, the boost application in (4.57) corresponds bijectively, (4.48), 
to its gyroboost application, 

B ( u ) :  E -t E (4.58) 

given by the following equation, (4.15), 

(4.59) 

usefulness of boosts, as opposed to gyroboosts, rests on the re- 
sult that Einstein boosts are linear, and that this linearity can be used to 
introduce a linear structure into Einstein gyrogroups, as well as into its 
isomorphic gyrogroups like Mobius and PV gyrogroups. Gyrogroup iso- 
morphisms are presented in Table 6.1, p. 202, following the introduction of 
scalar multiplication into gyrogroups of gyrovectors. 

The
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4.9 The Lorentz Boost 

Definition 4.18 of the abstract boost reduces to the Lorentz boost, which 
Einstein employed in his 1905 special theory of relativity, when 

(2)  the abstract gyrogroup operation @ in the ball V, is realized by 

(ii) the abstract gyrofactor p(v) is realized by the gamma factor y,,, 
Einstein addition BE, (3.143), and 

(3.129). 

Accordingly, the Lorentz boost takes the form that we develop in the 
following chain of equations, which are numbered for subsequent explana- 
tion. 

(4.60) 

The derivation of the equalities in the chain of equations (4.60) follows: 

(1) By Def. 4.18. 
(2) Realizing the abstract gyrogroup operation @ by Einstein addition BE, 

(3.143), and the abstract gyrofactor p(v) by the gamma factor yv, 
(3.129), that is, @ = eE and p(v) = yv. 

Follows by substituting u@,v from (3.143), and noting x = vt. 
(3) Follows from (3.146). 
(4) 

Formalizing the result in (4.60) we have the following 



Gyrogroup Extension 107 

Definition 4.19 The Lorentz boost of spacetime points, 

B(u) : R x S , + R x S ,  (4.61) 

is given by the following equation, (4.60), 

for all UEV,, tER and ~€9,. 

It follows from (4.62) that a Lorentz boost is linear, 

p l ,  pa ER. Identity (4.63) holds whenever its involved spacetime points are 
included in the cone 9,. Ambiguously, the symbol + in (4.62) and (4.63) 
represents addition in the real line R, in the real inner product space V, 
and in the Cartesian product space R x V. 

Furthermore, it follows from the second equality in (4.60), with t = 3;, 
that the Lorentz boost satisfies the most elegant identity 

(4.64) 

for all u, VEV,, where Lorentz boosts are applied to unimodular spacetime 
points. 

Unimodular spacetime points (yV, yvv)t in RxR:, realized from (4.54), 
are known in special relativity theory as (‘four-velocities”. 

Remark 4.20 
of relativity from 

Identity (4.64) illustrates the passage in the special theory 

(1) Einstein’s “three-velocities” v ER:, which are gyrovectors according 

(2) Minkowski’s (‘four-velocities” (rv, T ~ v ) ~  ERxR:, which are known 
to D e t  5.4, p. 119, as we will see in Chap. 10, to 

in Minkowskian special relativity as (‘four-vectors”. 
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4.10 The (p:q)-Gyromidpoint 

The linearity of the Lorentz boost, (4.63), and its elegant property (4.64) 
allow the notion of the gyromidpoint to be extended. For simplicity we re- 
strict our attention to the special case when the abstract real inner product 
space is realized by the Euclidean n-space, V = B", so that V, = BT. 

To exploit the linearity of the Lorentz boost let us consider the linear 
combination of two unimodular spacetime points 

p ( " ) + n ( 7 1 ) = (  m a +q'Yb ) = 1 (  " m )  (4.65) 
7aa 7bb maa + q'Ybb 7mm 

p ,  q L 0, a, b E R:, where t 2 0 and m E BF are to be determined in (4.66) 
and (4.68) below. 

Comparing ratios between lower and upper entries in (4.65) we have 

(4.66) 

so that, by convexity, m E B:. The point m = m(a,b;p,q), 0 5 p , q  5 1, 
is called the (p:q)-gyromidpoint of a and b in the Einstein gyrogroup BY = 
(Rt ,  R). This term will be justified by Identity (4.81) below. 

We will find that the special (p:q)-gyromidpoint with p = q coincides 
with the gyromidpoint of Defs. 3.37, p. 72, and 6.31, p. 156, in an Einstein 
gyrogroup. The (1:l)-gyromidpoint, 

7aa + 'Yb 

'Ya + 7b 
m(a, b; 1,l) = (4.67) 

called the Einstein gyromidpoint, will be studied in Theorem 6.87, p. 205, 
and will prove useful in Sec. 6.20.1, p. 204, in determining the gyrocentroid 
of gyrotriangles and gyrotetrahedrons in Einstein gyrovector spaces. 

Comparing upper entries in (4.65) we have 

(4.68) 

Applying the Lorentz boost B(w), w E R:, to (4.65) in two different 
ways, it follows from (4.64) and the linearity of the Lorentz boost that on 
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the one hand 
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(4.69) 

and on the other hand 

B(w) { t ( Ym ) } = tB(w) ( Ym ) 
3;nm 7Inm 

where @ = eE is Einstein addition in the ball IR:. 

we have 
Comparing ratios between lower and upper entries of (4.69) and (4.70) 

so that by (4.66) and (4.71), 

(4.71) 

(4.72) 

Identity (4.72) demonstrates that the structure of the ( p :  q)- 
gyromidpoint m of a and b, as a function of points a and b, is not distorted 
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by left gyrotranslations. Similarly, it is not distorted by rotations as ex- 
plained below. 

A rotation T of the Euclidean n-space R" about its origin is a linear 
map of R" that preserves the inner product in R", and is represented by 
an n x n orthogonal matrix with determinant 1. The group of all rotations 
of W" about its origin, denoted SO(n) ,  possesses the properties 

T(a + b) = T a  + Tb 

7a7b = a.b 
(4.73) 

for all a, b€Ry and TESO(~) .  
Owing to properties (4.73) we have 

T(a@,b) = TaRTb (4.74) 

for all a, b E (Ry, @) and T E S O ( ~ ) .  Hence, SO(n) is a gyroautomorphism 
group, Def. 2.22, of the Einstein gyrogroup (Rr,  Q), 

(4.75) 

It follows from properties (4.73) of T E Auto(Ry, @) = SO(n) that 

for all a, bERr and 0 5 p , q  5 1. Hence, by Def. 3.21 and Theorem 3.22, 
the gyrosemidirect product group 

R r  x Auto(R:, 8) = IRr x SO(n) (4.77) 

is a group of motions of the Einstein gyrogroup (Rr, s). 
Having the group (4.77) of motions of the Einstein gyrogroup (Ry, R),  

Def. 3.21 and Theorem 3.22, and the variations (4.72) and (4.76) of the 
( p :  q)-gyromidpoint m(a, b; p ,  q )  E (WF, &) under these motions, it follows 
from Def. 3.23 that the ( p :  q)-gyromidpoint m(a, b;p, q )  is gyrocovariant. 
Accordingly, by Def. 3.23 the triple {a, b, m(a, b; p ,  4)) of two points and 
their ( p :  q)-gyromidpoint forms a gyrogroup object, for any a, bE(R:, Q) 
a n d O I p , q 5 1 .  

Comparing the top entries of (4.69) and (4.70) we have 

(4.78) 
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which generalizes the equation, (4.68), 

(4.79) 

The pair of two equations for t ,  (4.78) and (4.79), demonstrates that the 
positive scalar t = t(a, b;p,q)EIR>' in (4.78) and (4.79) is invariant under 
left gyrotranslations of a and b. Clearly, it is also invariant under rotations 
T E S O ( ~ )  of a and b so that, being invariant under the group of motions 
of its Einstein gyrogroup (R!,&), it is a gyrogroup scalar field for any 
o _ < p , 4 - < 1 .  

Substituting w = @m in (4.71) we obtain the identity 

mern@a(@m@a) + qY@n@b(@m@b) = (4.80) 

or, equivalently, 

mern@a(ernea) = @!?7f31n@b(0~@~) (4.81) 

Identity (4.81) illustrates the sense in which the point m = m(a, b; p ,  q)  
is the ( p :  q)-gyromidpoint of the points a, b E (R;, q). It is further illus- 
trated graphically in Fig. 10.14, p. 408, on the relativistic law of the lever 
in the context of the Einstein gyrovector space. 

The ( p :  q)-gyromidpoint is homogeneous in the sense that it depends on 
the ratio p : q  of the numbers p and q, as we see from (4.66). Since it is the 
ratio p :  q that is of interest, we call ( p :  q)  the homogeneous gyroburycentric 
coordinates of m relative to the set A = {a, b}. Under the normalization 
condition p + q = 1, the homogeneous gyrobarycentric coordinates ( p  : q) 
of m relative to the set A are called gyroburycentric coordinates, denoted 
( p ,  q).  Their classical counterpart, the notion of barycentric coordinates 
[Yiu (2000)l (also known as trilinear coordinates [Weisstein (2003)]), was 
first conceived by Mobius in 1827 [Mumford, Series and Wright (2002)l. 

When p = q the ( p :  q)-gyromidpoint of a and b will turn out in Theorem 
6.87, p. 205, to be the so called Einstein gyromidpoint mab, 

(4.82) 

illustrated graphically in Fig. 10.1, p. 368. The Einstein gyromidpoint 
(4.82) will prove useful in the study of the gyrogeometric significance of 
Einstein's relativistic mass correction in Chap. 10. The relativistic mass 
will, accordingly, emerge as gyromass, that is, mass that bears a gyrogeo- 
metric fingerprint. 
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4.11 The ( p i  : p z  : . . . : p,)-Gyromidpoint 

Let (-yvk, YVkVk) t ,  where V k  E Ry, k = 1,. . . , h, be h unimodular spacetime 
points, and let 

(4.83) 

m k  2 0 ,  be a generic linear combination of these spacetime points, where 
p 2 0 and m E iR7 are to be determined in (4.84) and (4.94) below. 

Comparing ratios between lower and upper entries in (4.83) we have 

so that m lies in the convex hull of the set of the points v k  of Rr, k = 
1,. . . , h. The convex hull of a set of points in an Einstein gyrogroup (EX;, @) 
is the smallest convex set in Rn that includes the points. Hence, m E R: 
as desired, suggesting the following 

Definition 4.21 
gyrogroup (Ry , @) . The point m E Ry , 

Let V k  E I%:, k = 1,. . . , h, be h points of the Einstein 

pk _> 0, is called the (PI  : p2 : . , . : ph)-gyromidpoint of the h points 
v1, . . . , v h  . Furthermore, the homogeneous gyrobarycentric coordinates of 
the point m relative to the set 

A = {VI,. . . , V h }  (4.86) 

o f h p o i n t s i n R F  a r e ( p 1 : p z :  . . .  : p h ) .  
Under the normalization condition, 

h 

c P k = I  
k=l 

(4.87) 

the homogeneous gyrobarycentric coordinates ( P I  : pz : . . . : p h )  of m relative 
to the set A are called gyrobarycentric coordinates, denoted ( P I ,  p z ,  . . . , P h ) .  
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Applying the Lorentz boost B(w), w E Ry, to (4.83) in two different 
ways, it follows from (4.64) and from the linearity of the Lorentz boost 
that, on the one hand 

(4.88) 

and on the other hand, 

W { P (  ' m ) }  =pB(w) ( 'm ) 

= (mw@m(w@mJ 

?'mm 7mm 
(4.89) 

mw@m 

Comparing ratios between lower and tipper entries of (4.88) and (4.89) 
we have 

h 

(4.90) Ck=l PkYw@vk (w@vk) w@m = 

so that, by (4.84) and (4.90), 

Pk'Yw@vI, 

wem(v1,. . . ,vh;Pl,. . . ,Ph) 
(4.91) 

Identity (4.91) demonstrates that the structure of the (p1 :p2 : . . . :ph)- 
gyromidpoint m, as a function of the points Vk E It;, k = 1 , .  . . , h, is not 
distorted by a left gyrotranslation of the points by any w E It:. 

Similarly, the structure is not distorted by rotations T E SO(n) of R; 
in the sense that 

= m(wev1, . . . , w@vh; pl, . . . , ph) 

7m(v1, . . . , vh; PI ,  . . . , ph) = m(m1, . . . , ~ v h ;  pl, . . . , p h )  (4.92) 
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for all T E SO(n).  
Hence, by (4.91) and (4.92), the (p1 : p2 : . . . : ph)-gyromidpoint m = 

m(v1, . . . , v h ;  p l ,  . . . , ph) E R? is gyrocovariant, being covariant under the 
group of the gyrogroup motions, R: x SO(n), of the Einstein gyrogroup 
(R:, @). Accordingly, by Def. 3.23 the set ( ~ 1 , .  . . , v h ,  m} of any h points, 
V I ,  . . . , v h ,  in the Einstein gyrogroup (Ry, 8)  along with their (PI :p2 : . . . : 
ph)-gyromidpoint m form a gyrogroup object. 

Comparing the top entries of (4.88) and (4.89) we have 

But, we also have from (4.83) 

(4.93) 

(4.94) 

implying that the positive scalar 

(4.95) 
P = P ( V 1 , .  . . , V h ; P l , .  . . , P h )  

= P ( W @ V l , .  . , W @ v h ; P l r  * ’ * ,Ph)  

in (4.93) and (4.94) is invariant under any left gyrotranslation of the points 
v k  E RF, k = 1 , .  . . , h. Clearly, it is also invariant under any rotation 
r E SO(n)  of its generating points V k .  Hence, being invariant under the 
group of the gyrogroup motions, Iw: x S’O(n), of the Einstein gyrogroup 
(R: , @) 1 

P=P(vl,...,vh;Pl,...,Ph) (4.96) 

is a gyrogroup scalar field for any arbitrarily fixed gyrobarycentric coordi- 
nates ( P I , P ~ , . . . , P ~ ) .  

Theorem 4.22 Let Vk E R:, k = 1 , .  . . , h, be h points of the Einstein 
gyrogroup (Rr , @) . and let m be their (PI : p2 : . . . : ph)  -gyromidpoint, that 
is by Def 4.21, 

(4.97) 

(4.98) 
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and, moreover, 

(4.99) 

Proof. Noting that yo = 1, (4.93) with w = e m  reduces to  the identity 

h 

P = Pk7emevrn 
k = l  

so that (4.98) follows from (4.94) and (4.100). 
It follows from (4.90), (4.97) and (4.98) that 

- PkYwevk 
Ywem - 12=1 pk7e(wem)e(wevk)  

(4.100) 

(4.101) 

Owing to the Gyrotranslation Theorem 3.13 and the invariance of the 
gamma factor under gyrations, we have 

- 
(4.102) 

0 

Ye(wem)e(wevk)  - 7gyr[w,m] ( emevk)  
- 
- Yemevk 

Hence, (4.99) follows from (4.101) and (4.102). 
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Chapter 5 

Gyrovectors and Cogyrovectors 

Vectors in a vector space form equivalence classes, where two vectors are 
equivalent if they are parallel and possess equal lengths. Gyrovectors, in 
contrast, do not admit parallelism. Yet, they do form analogous equivalence 
classes even at the primitive level of gyrocommutative gyrogroups where, 
in general, the concepts of length and parallelism do not exist. In the more 
advanced level of gyrovector spaces, gyrovectors will be found fully analo- 
gous to vectors, where they regulate algebraically the hyperbolic geometry 
of Bolyai and Lobachevsky just as vectors regulate algebraically Euclidean 
geometry. 

5.1 Equivalence Classes 

The definition of gyrovectors and cogyrovectors in gyrocommutative gy- 
rogroups will be presented in Secs. 5.2 and 5.6 in terms of equivalence 
classes of pairs of points. 

Definition 5.1 (Equivalence Relations and Classes). A (binarg) 
relation o n  a nonempty set S is a subset R of S x S ,  written as a - b if 
(a, b) E R. A relation - on a set S is 

(1) Reflexive i f  a N a for  all a E S.  
(2) Symmetric if a - b implies b - a f o r  all a ,  b E S .  
(3) Transitive if a N b and b rv c implies a - c for all a ,  b, c E S. 

A relation is an equivalence relation if it is reflexive, symmetric and tran- 
sitive. 

An equivalence relation - on a set S gives rise to equivalence classes. 
The  equivalence class o f a  E S is the subset {x E S : x - a }  of S of all the 
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elements x E S which are related to a .  

Two equivalence classes in a set S with an equivalence relation N are 
either equal or disjoint, and the union of all the equivalence classes in S 
equals S. Accordingly, we say that the equivalence classes of a set with an 
equivalence relation form a partition of S. 

5.2 Gyrovectors 

Elements of a gyrocommutative gyrogroup are called points and are denoted 
by A,  B,  C, etc. In particular, the identity element is called the origin, 
denoted 0. 

Definition 5.2 (Rooted Gyrovectors). A rooted gyrovector PQ in a 
gyrocommutative gyrogroup (G,@) is an ordered pair of points P,Q E G. 
The rooted gyrovector P Q  is rooted at the point P .  The points P and Q 
of the rooted gyrovector PQ are called, respectively, the tail and the head 
of the rooted gyrovector. The value in G of the rooted gyrovector PQ is 
eP@Q. Accordingly, we write 

v = P Q  = eP@Q 

and call v = eP@Q the rooted gyrovector, rooted at P,  with tail P and 
head Q in G. The rooted gyrovector PQ is nonzero if P # Q. 

Furthermore, any point A E G is identified with the rooted gyrovector 
O A  with head A,  rooted at the origin 0. 

(5.1) 

Definition 5.3 (Rooted Gyrovector Equivalence). Let 

PQ = eP@Q 

P’Q’ = eP’@Q’ 

be two rooted gyrovectors in a gyrocommutative gyrogroup (G, @), with re- 
spective tails P and P’ and respective heads Q and &’. The two rooted 
gyrovectors are equivalent, 

eP’@Q’ - eP@Q 

if they have the same value in G, that is, if 

eP’@Q’ = eP@Q 
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The relation N in Def. 5.3 is given in terms of an equality so that, 
being reflexive, symmetric, and transitive, it is an equivalence relation. 
The resulting equivalence classes are called gyrovectors. Formalizing, we 
thus have the following 

Definition 5.4 (Gyrovectors). Let (G, @) be a gyrocommutative gy- 
rogroup with its rooted gyrovector equivalence relation. The resulting equiv- 
alence classes are called gyrovectors. The equivalence class of all rooted 
gyrovectors that are equivalent to a given rooted gyrovector PQ = eP@Q 
is the gyrovector denoted by  any element of its class, for instance, PQ = 
eP@Q. A n y  point A E G is identified with the gyrovector OA. I n  order 
to contrast with rooted gyrovectors, gyrovectors are also called free gyrovec- 
tors. 

5.3 Gyrovector Translation 

The following theorem and definition allow rooted gyrovector equivalence 
to be expressed in terms of rooted gyrovector translation. 

Theorem 5.5 Let 

PQ = eP@Q 

P’Q’=eP’@Q’ 

be two rooted gyrovectors in a gyrocommutative gyrogroup (G, @). They are 
equivalent, that is, 

eP@Q = @P’@Q’ (5.3) 

if and only if there exists a gyrovector t E G such that 

P’ = gyr[P, t](t@P) 

Q’ = gyr[P, tl(t@Q) 

Furthermore, the gyrovector t is unique, given by  the equation 

(5.4) 

Proof. By the Gyrotranslation Theorem 3.13 we have 
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or equivalently, by gyroautomorphism inversion, 

for any P, Q, t E G. 
Assuming (5.4), we have by (5.7) and (5.4) 

thus verifying (5.3). 
Conversely, assuming (5.3) we let 

so that by a left cancellation and by the gyrocommutative law we have 

(5.10) 

thus recovering the first equation in (5.4). Using the notation gp,t = 
gyr[P, t] when convenient we have, by (5.3) with a left cancellation, (5.10), 
the right gyroassociative law, (2.50), and a left cancellation, 

thus verifying the second equation in (5.4), as desired. 
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Finally, the gyrovector t E G is uniquely determined by P and P’ as we 
see from the first equation in (5.4), 

eP@P’ = eP$gyr[P, t](t@P) 

= eP@(P@t) (5.12) 

= t  
0 

Theorem 5.5 suggests the following definition of gyrovector translation 
in gyrocommutative gyrogroups. 

Definition 5.6 (Gyrovector Translation). A gyrovector translation 
Tt by  a gyrovector t E G of a rooted gyrovector P Q  = e P @ Q ,  with tail P 
and head Q, in a gyrocommutative gyrogroup (G, @) is the rooted gyrovector 
P’Q’ = eP’@Q’, with tail P’ and head P‘Q‘ = Q’, TtPQ = P’Q’, given by 

(5.13) 

The rooted gyrovector eP’@Q’ is said to be the t gyrovector translation, or 
the gyrovector translation by  t, of the rooted gyrovector e P @ Q .  

We may note that the two equations in (5.13) are not symmetric in 
P and Q since they share a Thomas gyration. Moreover, owing to the 
gyrocommutativity of $, the first equation in (5.13) can be written as 

P’ = Pet (5.14) 

Clearly, a gyrovector translation by the zero gyrovector OEG is trivial 
since (5.13) reduces to 

(5.15) 

Definition 5.6 allows Theorem 5.5 to be reformulated, obtaining the 
following theorem: 

Theorem 5.7 Two rooted gyrovectors 

PQ = eP@Q 

P’Q’ = eP’@Q’ 
(5.16) 
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in a gyrocommutative gyrogroup (G, @) are equivalent, that is, 

eP@Q = eP’@Q’ (5.17) 

i f  and only i f  gyrovector P‘Q‘ is a gyrovector translation of gyrovector PQ. 
Furthermore, if P‘Q’ is a gyrovector translation of P Q  then it is a gyrovec- 
tor translation of PQ by 

t = eP@P’ (5.18) 

Theorem 5.8 (Gyrovector Translation Head). Let P, Q, P’ be any 
three points of a gyrocommutative gyrogroup (G, @). The gyrovector trans- 
lation of the rooted gyrovector PQ = eP@Q to  the rooted gyrovector 
PIX = eP’@X with tail P’ determines its head X, 

X = P’@(eP@Q) (5.19) 

P’Q’ is a gyrovector translation of PQ. Hence, by Theorem 5.7, Proof. 
PQ and P’X are equivalent gyrovectors. Hence, by Def. 5.3, we have 

eP@Q = eP’@X (5.20) 

0 from which (5.19) follows by a left cancellation. 

5.4 Gyrovector Translation Composition 

Let P”Q” be the gyrovector translation of a rooted gyrovector P‘Q‘ by t 2  

where P’Q’, in turn, is the Gyrovector translation of a rooted gyrovector 
PQ by tl in a gyrocommutative gyrogroup (G, @). Then, by Def. 5.6, 

PI’ = gyr[P’, t 2 ] ( t ~ P ’ )  = P’et2 

P’ = gyr[P, tl](tlc~P) = Pet1 
(5.21) 

so that 

= (P@tl)cBt2 (5.22) 

= P@(tl@gYr[tl, P I t 2 )  

Moreover, by Theorem 5.7 the rooted gyrovector PI’&’’ is equivalent 
to the rooted gyrovector P’Q’ and the latter, in turn, is equivalent to the 
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rooted gyrovector PQ.  Hence, P”Q“ is equivalent to PQ,  so that, by 
Theorem 5.5, P”Q” is a gyrovector translation of P Q  by some unique 
t i 2  E G, 

P” = Pet12 (5.23) 

Comparing (5.23) and (5.22), we see that t 1 2  is given by the equation 

t l 2  = tl@gYr[tl, Plt2 (5.24) 

Expressing the rooted gyrovector P’Q‘ in terms of the rooted gyrovector 
P Q  we have, by Theorem 5.5 and the gyrocommutative law, 

(5.25) 

Similarly, expressing the rooted gyrovector P”Q” in terms of the rooted 
gyrovector P‘Q‘ we have, by Theorem 5.5 and the gyrocommutative law, 

(5.26) 

Finally, expressing the rooted gyrovector P”Q” in terms of the rooted 
gyrovector P Q  we have, by Theorem 5.5 and the gyrocommutative law, 

Substituting (5.24) in (5.27) we have 

P” = P e ( t l e g y r [ t l ,  P]t2) 

(5.27) 

(5.28) 

Substituting (5.25) in the second equation in (5.26) we have 

Q” = gyr[P@ti, tzl{tz@g~r[P, til(ti@Q)) (5.29) 

From (5.29) and the second equation in (5.28) for Q” we have the iden- 
tity 

(5.30) 
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for all P , Q , t l , t z  E G. 
Thus, in our way to uncover the composition law (5.27) of gyrovector 

translation we obtained the new gyrocommutative gyrogroup identity (5.30) 
as an unintended and unforeseen by-product. Interestingly, the new identity 
(5.30) reduces to (3.26) when P = 0. 

The composite gyrovector translation (5.27) is trivial when t l z  = 0 ,  
that is, when t 2  = Bgyr [P , t~ ] t l ,  as we see from (5.24). Hence, the in- 
verse gyrovector translation of gyrovector translation by t is a gyrovector 
translation by Bgyr[P, t]t. 

The equivalence relation between rooted gyrovectors in Def. 5.10 is ex- 
pressed in Theorem 5.5 in terms of the gyrovector translation. Gyrovector 
translation, accordingly, gives rise to an equivalence relation. Indeed, the 
gyrovector translation relation is reflexive, symmetric, and transitive: 

(1) Reflexivity: Any rooted gyrovector P Q  is the 0 gyrovector trans- 
lation of itself, 

ToPQ = P Q  (5.31) 

(2) Symmetry: If 

(2 )  a rooted gyrovector P Q  is the t gyrovector translation of a 
rooted gyrovector P'Q', 

TtPQ = P'Q' (5.32) 

then 

tion, TLl, of the rooted gyrovector PQ,  where 
(ii) the rooted gyrovector P'Q' is the inverse gyrovector transla- 

that is, 

(5.33) 

(5.34) 

(3) Transitivity: If 

(2 )  a rooted gyrovector P'Q' is the gyrovector translation of a 
rooted gyrovector P Q  by tl, 

Tt, P Q  = P'Q' (5.35) 

and 
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(ii) a rooted gyrovector P"Q" is the gyrovector translation of the 
rooted gyrovector P'Q' by t 2 ,  

Tt, P'Q' = P"Q" (5.36) 

then 
(iii) the rooted gyrovector PI'&'' is the gyrovector translation of 

the rooted gyrovector PQ by the composite gyrovector trans- 
lation t 1 2  where, (5.24), 

that  is, 

(5.38) 

5.5 Points and Gyrovectors 

Let (G, @) be a gyrocommutative gyrogroup. The elements of G, points, 
give rise to gyrovectors by Def. 5.4. Points and gyrovectors in G axe related 
to each other by the following properties. 

1. To any two points A and B in G there corresponds a unique gy- 
rovector v in G, given by the equation, (5.1), 

v = eA@B (5.39) 

Hence, any point B of G can be viewed as a gyrovector in G with 
head at the point and tail at the origin 0, 

B = e0eB (5.40) 

2. To any point A and any gyrovector v in G there corresponds a 
unique point B satisfying (5.39), that is (by left cancellation, Table 
2.1), 

(5.41) B = Aev 

Hence, the gyrovector v can be viewed as a translation (called a 
right gyrotranslation) of point A into point B. Let u be a right 
gyrotranslation of point B into point C. Then, the two successive 
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right gyrotranslations of point A into point C is equivalent to a 
single right gyrotranslation, 

C = (A@v)@u 
(5.42) 

The resulting single right gyrotranslation, however, is corrected 
by a gyration that depends on the right gyrotranslated point A. 
Indeed, while gyrovectors share remarkable analogies with vectors, 
they are not vectors. 

3. To any point B and any gyrovector v in G there corresponds a 
unique point A satisfying (5.39), that is, by a right cancellation, 
Table 2.1, and the cogyroautomorphic inverse property (2.103), 

= A@(v@gyr[v, A]u) 

A = e v H B  (5.43) 

4. For any three points A, B, C in G, (2.21), 

5.6 Cogyrovectors 

As in Sec. 5.2, elements of a gyrocommutative gyrogroup are called points 
and, in particular, the identity element is called the identity point, denoted 
0. 

Definition 5.9 (Rooted Cogyrovectors). A rooted cogyrovector P Q  
in a gyrocommutative gyrogroup (G,@) is an ordered pair of points P ,Q E 
G. The rooted cogyrovector P Q  is rooted at the point P.  The points P and 
Q of the rooted cogyrovector P Q  are called, respectively, the tail and the 
head of the rooted cogyrovector. The value in G of the rooted cogyrovector 
P Q  is HP H Q .  Accordingly, we write (see Theorem 3.4) 

P Q  = 6 P  W Q  = Q S  P (5.45) 

and call P Q  = HP Q the rooted cogyrovector, rooted at P ,  with tail P 
and head Q in  G. 

Furthermore, any point A E G is identified with the rooted cogyrovector 
OA with head A, rooted at the origin 0 of G. 
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Definition 5.10 (Rooted Cogyrovector Equivalence). Let 

P Q = H P H Q  

P’Q’ = HP’ H Q‘ 
(5.46) 

be two rooted cogyrovectors an a gyrocommutative gyrogroup (G, @), with 
respective tails P and P’ and respective heads Q and Q‘. The two rooted 
cogyrovectors are equivalent, 

Q’SP’ N Q E P  (5.47) 

i f  they have the same value in G, that is, if 

Q’EP’ = Q E P  (5.48) 

Since the relation - in Def. 5.10 is given in terms of an equality, it 
is clearly reflexive, symmetric, and transitive. Hence, it is an equivalence 
relation. As such, it gives rise to equivalence classes called cogyrovectors. 
Formalizing, we thus have the following 

Definition 5.11 (Cogyrovectors). Let (G, @) be a gyrocommutative 
gyrogroup with its rooted cogyrovector equivalence relation. The resulting 
equivalence classes are called cogyrovectors. The equivalence class of all 
rooted cogyrovectors that are equivalent to  a given rooted cogyrovector PQ = 
EPHQ = Q S  P is the cogyrovector denoted by any element of its class, for 
instance, PQ = BPHQ. Any point A E G is  identified with the cogyrovector 
OA. I n  order to contrast with rooted cogyrovectors, cogyrovectors are also 
called free cogyrovectors. 

5.7 Cogyrovector Translation 

The following theorem and definition allow rooted cogyrovector equivalence 
to be expressed in terms of cogyrovector translation. 

Theorem 5.12 Let 

P Q = Q E P  

P’Q’ = Q‘ E P‘ 
(5.49) 
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be two rooted cogyrovectors in a gyrocommutative gyrogroup (G, @). They 
are equivalent, that is, 

Q E P = Q’ P’ (5.50) 

if and only if there exists a gyrovector t E G such that 

(5.51) 

Furthermore, the gyrovector t is unique, given by the equation 

t = eP@P (5.52) 

Proof. Equation (5.50) can be written as 

EP H Q = HP’H Q‘ (5.53) 

since the gyrogroup cooperation H is commutative by Theorem 3.4. This 
equation, in turn, can be written in terms of the gyrogroup operation @, 
Def. 2.7, 

eP@gyr[P, Q]Q = eP’@gyr[P’, Q’IQ’ (5.54) 

Hence, by Theorem 5.5 there exists a unique gyrovector t E G such that 

P’ = gyr[P, t](t@) 
(5.55) . ,  

gyr[P‘, Q’IQ’ = gyr[P, tI(t@gyr[P, QIQ) 
The first equation in (5.55) implies, by the gyrocommutative law, 

P’ = P@t (5.56) 

so that, by a left cancellation, the unique gyrovector t is given by (5.52) 
and, hence, the first equation in (5.51) is satisfied. 

By (5.53) with a right cancellation, and by employing the commutativity 
of the gyrogroup cooperation, Theorem 2.35, and a left Cancellation, we 
have 

Q’ = (EIP a Q)W 

= (Q E P)@(P@t) 
(5.57) 
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so that also the second equation in (5.51) is satisfied. Thus, (5.50) implies 
(5.51). 

Conversely, assuming that there exists a gyrovector t E G satisfying 
(5.51) we have, by a left cancellation and Theorem 2.35, 

(5.58) 

so that, by a right cancellation, 

Q‘ R P’ = Q I3 P (5.59) 

thus verifying (5.50) as desired. 

Theorem 5.12 suggests the following definition of cogyrovector transla- 
tion in gyrocommutative gyrogroups. 

Definition 5.13 (Cogyrovector Translation). A cogyrovector trans- 
lation St by  a gyrovector tEG of a rooted cogyrovector P Q  = E P H Q ,  with 
tail P and head Q, in a gyrocommutative gyrogroup (G,@) is  the rooted 
cogyrovector P‘Q‘ = EP’ Q’, with tail P’ and head Q’, StPQ = P‘Q‘, 
given by 

(5.60) 

The rooted cogyrovector RP’BQ’ is said to be the t cogyrovector translation, 
or the cogyrovector translation by the gyrovector t, of the rooted cogyrovector 
R P  H Q. 

Clearly, a cogyrovector translation by the zero gyrovector 0 E G is trivial 
since (5.60) reduces to 

(5.61) 

Definition 5.13 allows Theorem 5.12 to be reformulated, obtaining the 
following theorem: 
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Theorem 5.14 Two rooted cogyrovectors 

P Q = Q E P  

P’Q’ = Q’ E P’ 
(5.62) 

in a gyrocommutative gyrogroup (G, @) are equivalent if and only i f  rooted 
cogyrovector P‘Q’ is a cogyrovector translation of rooted cogyrovector PQ. 
Furthermore, if PQ is a cogyrovector translation of P‘Q‘, then it is a co- 
gyrovector translation of P‘Q‘ by the gyrovector 

t = epw’ (5.63) 

Theorem 5.15 (Cogyrovector Translation Head). Let P,Q, P’ be 
any three points of a gyrocommutative gyrogroup (G, @). The cogyrovector 
translation of the rooted cogyrovector PQ = Q R P  to the rooted cogyrovector 
PIX = X P’ with tail P’ determines its head X, 

X = (Q El P)@P’ (5.64) 

Proof. P’Q’ is a cogyrovector translation of PQ. Hence, by Theorem 
5.14, PQ and PIX are equivalent cogyrovectors. Hence, by Def. 5.10, we 
have 

Q E P = X E P’ (5.65) 

from which (5.64) follows by a right cancellation, 0 

5.8 Cogyrovector Translation Composition 

Let P”Q” be the cogyrovector translation of rooted cogyrovector P‘Q‘ by 
a gyrovector t2 where P’Q’, in turn, is the cogyrovector translation of 
rooted cogyrovector PQ by a gyrovector tl in a gyrocommutative gyrogroup 
(G,$). Then, by Def. 5.13, 

P’ = Pet1 

P” = P‘@t2 
(5.66) 
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so that 

P" = P1@t2 

= (P@tl)@t2 (5.67) 

Moreover, by Theorem 5.14 the rooted cogyrovector P"Q" is equivalent 
to the rooted cogyrovector P'Q' and the latter, in turn, is equivalent to the 
rooted cogyrovector PQ. Hence, P"Q" is equivalent to PQ,  so that, by 
Theorem 5.14, P"Q" is a cogyrovector translation of P Q  by some unique 
gyrovector t 1 2  E G, 

(5.68) P" = Pet12 

Comparing (5.68) and (5.67), we see that t 1 2  is given by the equation 

Expressing the rooted cogyrovector P'Q' in terms of the rooted cogy- 
rovector P Q  we have, by Theorem 5.12, 

PI = P@tl 

Q' = Q@gyr[Q, P]tl 
(5.70) 

Similarly, expressing the rooted cogyrovector P"Q" in terms of the 
rooted cogyrovector P'Q' we have, by Theorem 5.12, 

P" = P'@t2 

Q" = Q'@gyr[Q', pl]t:! 
(5.71) 

Finally, expressing the rooted cogyrovector P"Q" in terms of the rooted 
cogyrovector P Q  we have, by Theorem 5.12, 

(5.72) 
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Substituting (5.69) in (5.72) we have 

P” = P@(tl@gyr[tl ,  P]t2) 

Q” = Q@gyr[Q, P l{ t i@g~r [ t i ,  P I t 2 )  
(5.73) 

= Q@{gyr[Q, P I t i@g~r [Q,  P I g ~ r [ t i ,  PIt2) 

= {Q@gyr[Q, PIti}@gyr[Q, gyr[Q, P l t i lg~r [Q,  Plgyr[ti, PIt2 

noting that gyr[P, Q] respects the gyrogroup operation, and employing the 
left gyroassociative law. 

Substituting (5.70) in the second equation in (5.71) we have 

Q” = {Q@gyr[Q, P]tl}@gyr[Q@gyr[Q, PIt1, P@tlIt2 (5.74) 

Comparing (5.74) with the second equation in (5.73) we have, by a left 
cancellation, 

gYr[Q, g d Q ,  P l t i l g~r [Q ,  P l g ~ r [ t i  , Plt2 = gdQ@gyr[Q, Plti, P@tiIt2 

for all P, Q, tl, t 2  E G. Renaming tl = R, and omitting t 2  on both sides of 
(5.75) we uncover the gyroautomorphism identity 

(5.75) 

for all P, Q, R E G in a gyrocommutative gyrogroup (G, @). 
Thus, in our way to uncover the composition law (5.72) of cogyrovector 

translation we obtained the new gyroautomorphism identity (5.76) as an 
unintended and unforeseen by-product. Interestingly, when P = 0 (Q = 0) 
the new identity (5.76) reduces to the left (right) loop property, and when 
P = -Q it reduces to (3.40). 

The composite cogyrovector translation (5.72) is trivial when t 1 2  = 0, 
that is, when t 2  = egyr[P, tl]tl, as we see from (5.69). Hence, the inverse 
cogyrovector translation of cogyrovector translation by t is a cogyrovector 
translation by egyr[P, t]t. 

The equivalence relation between rooted cogyrovectors in Def. 5.10 is 
expressed in Theorem 5.12 in terms of the cogyrovector translation. The 
cogyrovector translation relation is, accordingly, an equivalence relation. 
Indeed, it is reflexive, symmetric, and transitive: 

(1) Reflexivity: Any rooted cogyrovector P Q  is the 0 cogyrovector 
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translation of itself, 

So PQ = PQ (5.77) 

(2) Symmetry: If 
(i) a rooted cogyrovector PQ is the t cogyrovector translation of 

a rooted cogyrovector P'Q', 

St PQ = P'Q' (5.78) 

then 
(ii) the rooted cogyrovector P'Q' is the inverse cogyrovector 

translation, SF', of the rooted cogyrovector PQ, where 

SF' = s e g y r [ P , t ] t  (5.79) 

that is, 

Segyrl~,tltP'Q' = PQ (5.80) 

(3) Transitivity: If 

(i) a rooted cogyrovector P'Q' is the cogyrovector translation of 
a rooted cogyrovector PQ by tl, 

St, PQ = P'Q' (5.81) 

and 

the rooted cogyrovector P'Q' by t 2 ,  

(ii) a rooted cogyrovector PI'&'' is the cogyrovector translation of 

St, P'Q' = P"Q" (5.82) 

then 
(iii) the rooted cogyrovector P"Q" is the cogyrovector translation 

of the rooted cogyrovector PQ by the composite cogyrovector 
translation t 1 2  where, (5.69), 

t l 2  = tl@gYr[tl,Plt2 (5.83) 

that is, 

St, $ g y r [ t l  , p ] t 2  PQ = P"Q" (5.84) 
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5.9 Points and Cogyrovectors 

Let (G, @) be a gyrocommutative gyrogroup. Elements of G, points, give 
rise to cogyrovectors. Points and cogyrovectors in G are related to each 
other by the following properties. 

1. To any two points A and B in G there corresponds a unique gy- 
rovector v in G, given by the equation, (5.45), 

v = E A H B  (5.85) 

Hence, any point B of G can be viewed as a cogyrovector in G with 
head at the point and tail at the origin 0, 

B = E O H B  (5.86) 

2. To any point A and any gyrovector v in G there corresponds a 
unique point B satisfying (5.85), that  is (by right cancellation, 
Table 2.1, noting that EA H B = B E A) ,  

B = v@A (5.87) 

3. To any point B and any gyrovector v in G there corresponds a 
unique point A satisfying (5.85), that  is (by right cancellation, 
Table 2.1, and the gyroautomorphic inverse property (3.1)), 

A = ev$B (5.88) 

4. For any three points A, B,  C in G, (3.42), 

(EA H B)$(EB H C )  = E A  H gyr[EA H B ,  BB H C]C (5.89) 

5.10 Exercises 

(1) Show that the composite gyroautomorphism J of a gyrocommuta- 
tive gyrogroup (G, $), 

J = gyr[P, QIgyr[gyr[Q, PIR, Q]gyr[Q@gyr[&, PIR, P@RI (5.90) 

is a gyroautomorphism, and is independent of Q,  for all P, Q, REG 
(Hint: Note (5.76)). Use the result to uncover several gyroauto- 
morphism identities (for instance, set Q = 0 in J to recover (5.76); 
or set Q = e P  to recover the special case (3.40) of (3.34)). 
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(2) Show that Identity (5.89) can be written as 

( E A R  B )  Hg(E!B H C) = EA g C  (5.91) 

where 

g = gyr[EA H B,  EB R C] (5.92) 

and conclude that the identity 

(RA R B )  H (EB R C) = EA El3 C 

gyr[EA H B ,  EB H C] = I 

(5.93) 

(5.94) 

holds in the special case when 

What does the condition (5.94) mean for the points A, B, C? 
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Chapter 6 

Gyrovector Spaces 

Some gyrocommutative gyrogroups admit scalar multiplication, turning 
them into gyrovector spaces. The latter, in turn, are analogous to vec- 
tor spaces just as gyrogroups are analogous to groups. Indeed, gyrovector 
spaces provide the setting for hyperbolic geometry just as vector spaces 
provide the setting for Euclidean geometry. 

The elements of a gyrovector space are called points. Any two points of 
a gyrovector space give rise to a gyrovector. Points give rise to geodesics 
and cogeodesics that share analogies with Euclidean geodesics, the straight 
lines. 

6.1 Definition and First Gyrovector Space Theorems 

Definition 6.1 (Real Inner Product Vector Spaces). A real inner 
product vector space (V, +, .) (vector space, in short) is a real vector space 
together with a map 

called a real inner product, satisfying the following properties f o r  all 
u,v ,w E V and r E R: 

(1) v.v 2 0 ,  with equality i f ,  and only i f ,  v = 0.  
(2) u-v = v.u 
(3) (u + v).w = u.w + v.w 
(4) (ru).v = r(u.v) 

The norm ((vII of v E V is given by the equation ((v\I2 = V.V.  

137 
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Note that the properties of vector spaces imply (i) the Cauchy-Schwarz 
inequality Iu.vI I llullllvll for all u ,vEV;  and (ii) the positive definiteness 
of the inner product, according to which u.v = 0 for all UEV implies v = 0. 

Definition 6.2 (Real Inner Product Gyrovector  Spaces). A real 
inner product gyrovector space (G, @, 8)  (gyrovector space, in short) is a 
gyrocommutative gyrogroup (G, @) that obeys the following axioms: 

(1) G is a subset of a real inner product vector space V called the carrier 
of G, G c V, f rom which it inherits its inner product, ., and norm, 
( 1  .]I, which are invariant under gyroautomorphisms, that is, 

gyr[u, v]agyr[u,  v]b = a b  

f o r  all points a, b, u, v E G. 
(2) G admits a scalar multiplication, 8, possessing the following prop- 

erties. For all real numbers r, r l ,  7-2 E R and all points a E G: 

l@a = a 

( T ,  + r,)@a = r,@a@r,@a 

( r , r , )@a = rl@(r,@a) 

Scalar Distributive Law 
Scalar Associative Law 

Scaling Property 

gyr[u, v](r@a) = r@gyr[u, v]a 

gyr[r,@v, r,@v] = I 
Gyroautomorphism Property 
Identity Automorphism. 

(3) Real vector space stmcture ( ~ ~ G ~ ~ , @ , @ )  f o r  the set IlGll of one- 
dimensional “vectors” 

IlGll = {*llall : a E G} c R 

with vector addition @ and scalar multiplication 8, such that f o r  all r E R 
and a, b E G, 

Homogeneity Property 
Gyrotriangle Inequality. 

R e m a r k  6.3 One can readily verify that (-l)@a = @a, and Ileal1 = llall. 
W e  use the notation a@r = r@a. Our ambiguous use of @ and 8, Def. 6.2, 
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as interrelated operations in the gyrovector space (G,$,@) and in its as- 
sociated vector space (IlGll , $, @) should raise no  confusion, since the sets 
in which these operations operate are always clear f rom the text. These 
operations in the former  (gyrovector space (G, @, 8)) are nonassociative- 
nondistributive gyrovector space operations, and in the latter (vector space 
(IlGll, @, 8))  are associative-distributive vector space operations. Addition- 
ally, the gyro-addition @ is gyrocommutative in the former and commutative 
in the latter. Note that in the vector space ([[Gll, $, @) gyrations are trivial 
so that H = @ in IlGll. 

While the operations $ and @ have distinct interpretations in the gy-  
rovector space G and in the vector space ((G(1, they are related to one an- 
other by  the gyrovector space m i o m s  (V7) and (V8). The analogies that 
conventions about the ambiguous use of $ and @ in G and [lGll share with 
similar vector space conventions are obvious. I n  vector spaces we use the 
same notation, +, for  the addition operation between vectors and between 
their magnitudes, and same notation f o r  the scalar multiplication between 
two scalars and between a scalar and a vector. 

Owing to the scalar distributive law, the condition for l@a in (Vl)  is 
equivalent to the condition 

n@a=a$ . . .  $a (gyroadding a n t i m e s )  (6.2) 

and 

a@(-t) = ea@t (6.3) 

Clearly, in the special case when all the gyrations of a gyrovector space 
are trivial, the gyrovector space reduces to a vector space. 

In general, gyroaddition does not distribute with scalar multiplication. 
However, gyrovector spaces possess a weak distributive law, called the 
monodistributive law, presented in the following theorem. 

Theorem 6.4 (The Monodistributive Law). A gyrovector space 
(G, @, @) possesses the monodistributive law 
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Proof. The proof follows from (V2) and (V3),  

Definition 6.5 (Gyrovector Space Automorphisms). An automor- 
phism T of a gyrovector space (G, $, @), T E Aut(G, $, @), is a bijective 
self-map of G 

T : G  -+ G (6.6) 

which preserves its structure, that is, (i) binary operation, (ii) scalar mul- 
tiplication, and (iii) inner product, 

T(a$b) = Ta@Tb 
T(r@a) = r@Ta 
T(a .  b) = 7 8 .  T b  

The automorphisms of the gyrovector space (G, $, 8 )  form a group de- 
noted Aut(G, $, @), with group operation given by  automorphism composi- 
tion. 

Clearly, gyroautomorphisms are special automorphisms. 

Definition 6.6 (Motions of Gyrovector Spaces). The motions of 
a gyrovector space (G,@,@) are all its left gyrotranslations L,, x E G, 
Def. 2.18, and its automorphisms T E Aut(G, $, @), Def. 6.5. 

Scalar multiplication in a gyrovector space does not distribute with the 
gyrovector space operation. Hence, the Two-Sum Identity in the following 
theorem proves useful. 

Theorem 6.7 
tor space. Then 

(The  Two-Sum Identity). Let (G, $, 8)  be a gyrowec- 

2@(a$b) = a$(2@b@a) 
= a H (a$2@b) 

for any a,  b E G. 
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Proof. Employing the right gyroassociative law, the identity gyr[b, b] = 
I ,  the left gyroassociative law, and the gyrocommutative law we have the 
following chain of equation that results in the desired identity, 

The second equality in the theorem follows from the first one and The- 
orem 3.12. n 

A gyrovector space is a gyrometric space with a gyrodistance function 
that obeys the gyrotriangle inequality. 

Definition 6.8 (The Gyrodis tance Function). Let G = (G,@,@) 
be a gyrovector space. Its gyrometric is given by the gyrodistance function 
&(a,b)  :GxG-+RLo,  

where d@(a, b) is the gyrodistance of a to b .  

By Def. 6.2, gyroautomorphisms preserve the inner product. Hence, 
they are isometries, that is, they preserve the norm as well. The identity 
IIea@bll = llbeall in Def. 6.8 thus follows from the gyrocommutative law, 

Theorem 6.9 (The Gyrotriangle Inequality). The gyrometric of a 
gyrovector space (G, @, @) satisfies the gyrotriangle inequality 

Proof. By Theorem 2.11 we have, 

ea@c = (ea@b)@gyr[ea, b](eb@c) (6.13) 
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Hence, by the gyrotriangle inequality (V8) we have 

The basic properties of the gyrodistance function de are 

( i )  &(a,b)  2 0 
(ii) &(a, b) = 0 

(iii) &(a, b) = de(b, a) 
( i v )  &(a, c) 5 &(a, b)$de(b, c) 

if and only if a = b. 

(gyrotriangle inequality), 

a, b, c E G. 

called gyrolines, will be identified in Theorem 6.47. 

a cogyrodistance function that obeys the cogyrotriangle inequality. 

Definit ion 6.10 (Cogyrodistance).  Let G = (G,  $, @) be a gyrovector 
space. Its cogyrometric is given by the cogyrodistance function dm(a, b) : 
G x G  -+ R?', 

Curves on which the gyrotriangle inequality reduces to an equality, 

In addition of being gyrometric, a gyrovector space is cogyrometric with 

dH (a, b) = (1 b a(( (6.15) 

Theorem 6.11 
of a gyrovector space (G,  $, 8)  satisfies the cogyrotriangle inequality 

( T h e  Cogyrotriangle Inequality).  The cogyrometric 

Ila H gyr[a H b,  b c]cll I [la bll E3 Ilb c I I  (6.16) 

or, equivalently, 

1 1  El a gyr[a R b, b R c]cII 5 1 1  El a W bll W 1 1  b W c I I  (6.17) 

Proof. By (3.42) and by the gyrotriangle inequality (V8) we have 

Ila E gyr[a E b, b E c]cll = Il(a E b)$(b E c)ll 

5 Ila E bll@llb Ei CII (6.18) 

= Ila E bll H Ilb E3 CII 

thus verifying (6.16). The equivalence between (6.16) and (6.17) follows 
from the Cogyroautomorphic Inverse Theorem 2.31, implying Ila E bll = 
1 1  El a W bll etc. 



Note that the cogyrotriangle inequality (6.16) has the form of the gyro- 

The basic properties of the cogyrodistance function dm are 
triangle inequality (6.12) except that one of its terms is gyro-corrected. 

(2) dm(a,b) 2 0 
(ii) &(a, b) = 0 

(iii) &(a, b) = &(b, a) 
( i w )  dH(a,gyr[a El b, b El c]c) 5 dEg(a, b) Ef3 dm(b, c )  

if and only if a = b. 

(cogyrotriangle 
inequality), 

a ,  b ,  c E G. 

called cogyrolines, will be identified in Theorems 6.74 and 6.75. 

Theorem 6.12 
left gyrotranslations. 

Proof. 
product. As such they preserve the norm and, hence, the gyrodistance, 

Curves on which the cogyrotriangle inequality reduces to an equality, 

The gyrodistance is invariant under automorphisms and 

By Def. 6.5, automorphisms T E Aut(G, @, 8) preserve the inner 

(6.19) 

for all u, v, a, b in a gyrovector space (G, @, 8). Hence, the gyrodistance is 
invariant under automorphisms. 

Let a, b, x E G be any three points in a gyrovector space (G, $, @), and 
let the points a and b be left gyrotranslated by x into a’ and b’ respectively, 

a’ = x@a 
b’ = x@b 

Then, by the Gyrotranslation Theorem 3.13 we have 

so that 

(6.20) 

(6.21) 

(6.22) 

Hence, the gyrodistance is invariant under left gyrotranslations. 0 
Like gyrodistance, cogyrodistance is invariant under automorphisms. 

The cogyrodistance is invariant under automorphisms. Theorem 6.13 
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Proof. By (2.52) with a = a, b = e b ,  and 7 E Aut(G,@,@), we have 

T(aEb)=TaETb (6.23) 

Hence, 

for all u,v,a, bE(G, @, @), and all 7EAut(G, $,@I). 

(6.24) 

Unlike gyrodistance, cogyrodistance is not invariant under left gyro- 
translations. It is also not invariant under right gyrotranslation. However, 
it is invariant under appropriately gyrated right gyrotranslations, as we will 
see in the following Theorem 6.14 and in Theorem 6.73. 

Theorem 6.14 
variant under appropriately gyrated right gyrotranslations, 

The cogyrodistance in a gyrovector space (G, $, 8)  is in- 

a 8 b = (a$gyr[a, b]x) El (b$x) (6.25) 

for all a, b,x E G. 

Proof. This theorem is just a reformulation of Identity (2.42) in Theorem 
0 2.16 in terms of a right gyrotranslation. 

Theorem 6.14 seemingly attributes asymmetry to a and b in (6.25). 
Following the discovery of the Cogyroline Gyration Transitive Law in The- 
orem 6.62, Theorem 6.14 will be generalized in Theorem 6.73, where the 
seemingly lost symmetry in a and b will appear. 

6.2 Solving a System of Two Equations in a Gyrovector 
Space 

Theorem 6.15 Let (G,$,@) be a gyrovector space, and let a,b E G be 
any two elements of G. The unique solution of the system of two equations 

(6.26) 
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for the unknowns x and y is 

z = ;@(a E b) 

Y = ;@(a H b)@b 
(6.27) 

Proof. 
2.15 

Solving the first equation in (6.26) for y, we have by Theorem 

y = x @ b  (6.28) 

Eliminating y between (6.28) and the first equation in (6.26), we have 

a = z@(x@b) = (2@z)@b 

so that, by Theorem 2.15, 28s = a b, implying 

5 = $8(u H b)  (6.29) 

It then follows from (6.28) and (6.29) that 

y = ;@(a E b)@b (6.30) 

Hence if (6.26) possesses a solution it must be the unique one given by 
(6.27). The latter is, indeed, a solution of the former since (i) by the left 
gyroassociative law 

(6.31) 

= a  

and since (ii) by a left cancellation 

e m y  = @;@(a E b)@{ ;@(a H b)@b} = b (6.32) 

0 

Interchanging a and b in the system (6.26) keeps z invariant and reverses 
the sign of y. Hence, it follows from Theorem 6.15 that z in (6.27) is 
antisymmetric in a and b, 

;@(a El b)  = -;@@ E a )  (6.33) 
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and that y in (6.27) is symmetric in a and b, 

Z @ ( U  1 E b)$b = i @ ( b  E! U)$U (6.34) 

Indeed, (6.33) also follows from Theorems 3.4 and 2.31. 
As an application of Theorem 6.15 we substitute x$y and e m y  from 

(6.26) and y from the second equation of (6.27) in (3.53), with a and b 
replaced by x and y, obtaining the identity 

where 

m& = ;@(a 6 b)@b (6.36) 

is the so called cogyromidpoint of a and b, Def. 6.70, satisfying the sym- 
metry condition mib  = mia. It shares duality symmetries with the gyro- 
midpoint that will be defined in Def. 6.31. Interestingly, Identity (6.35) is 
a special case of the cogyroline gyration transitive law in Theorem 6.62. 

We may note that y in (6.27) can be written as 

y = i @ ( a E b ) @ b  
(6.37) 

= i@gyr[ i@(a E b ) ,  ~ @ ( b $ a ) ] ( b $ a )  

We may also note the nice related identity 

This identity, in turn, may be compared with the semidual identity 

As an application of the Identity Automorphism (V8) in Def. 6.2 of 
gyrovector spaces, we prove the following 

Theorem 6.16 Let (G, $, €9) be a gyrovector space. Then  

gyr[(r + s)@u, b] = gyr[r@a, s ~ a c ~ b ] g y r [ s ~ ~ a ,  b] (6.40) 

for  all r ,  s E R and a,  b E G. 



Gyrovector Spaces 147 

Proof. Expanding ( r  + s)@u@(b@z) in G in two different ways we have 

(T + s)@u@(b@z) = (?-@u@s@a)@(b@z) 
= r@a@{s@u@(b@z)} (6.41) 

= r@,a@{ (s@u@b)@gyr[s@u, b]z} 

and 

( r  + s)@a@(b@z) = { ( r  + s)@u@b}@gyr[(r + s ) ~ ,  b]z 

= {(r@a@s@a)@b}@gyr[(r + s)@a, b]z 
= {r@u@(s@a@gyr[s@u, ~@a]b)}@gyr[(r + s)@a, b]z 
= {r@u@(s@a@b)}@gyr[(r + s)@u, b]z 

= T@@{ (s@a@b)@gyr[s@u@b, r@a]gyr[(r + s)@a, b]z} 
(6.42) 

for all r, s E R and a ,  b,  z E G. 

by two successive left cancellations, 
Comparing the extreme right hand sides of (6.41) and (6.42) we have 

gyr[s@u@b, r@u]gyr[(r + s ) ~ ,  b] = gyr[s@a, b] (6.43) 

0 which is equivalent to the gyration identity in the theorem. 

6.3 Gyrolines and Cogyrolines 

In full analogy with (i) the two identical line expressions 

a +  bt The Euclidean Line 
bt + a The Euclidean Line 

(6.44) 

a, b E G, t E IK, in analytic Euclidean geometry, which is regulated by 
the (associative) algebra of vector spaces (G, +, .), (ii) the two distinct 
hyperbolic line expressions 

a@b@t Gyroline, The Hyperbolic Line 

b@t@a 
(6.45) 

Cogyroline, The Hyperbolic Dual Line 

t E IK, of hyperbolic analytic geometry are regulated by the (nonassociative) 
algebra of gyrovector spaces (G, @, 8). 
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In order to emphasize that the Euclidean line is uniquely determined 
by any two distinct points that it contains, one replaces the expressions in 
(6.44) by 

a + (-a + b)t 
(b - a)t  + a 

The Euclidean Line 
The Euclidean Line 

(6.46) 

calling it the line representation by the two points, a and b, that it contains. 
The first line in (6.46) is the unique Euclidean line that passes through 

the points a and b. Considering the line parameter t as “time”, the line 
passes through the point a at time t = 0 ,  and owing to a left cancellation, 
it passes through the point b at time t = 1. 

Similarly, the second line in (6.46) is the unique Euclidean line that 
passes through the points a and b. It passes through the point a at time 
t = 0 ,  and owing to a right cancellation, it passes through the point b 
at time t = 1. In vector spaces, of course, left cancellations and right 
cancellations coincide. 

In full analogy with (6.46) , in order to emphasize that the hyperbolic 
lines, gyrolines, are uniquely determined by any two distinct points that 
they contain, one replaces the expressions in (6.45) by 

a@ (@a@ b)@t 
(b E a)@t@a 

Gyroline, The Hyperbolic Line 

Cogyroline, The Hyperbolic Dual Line 
(6.47) 

calling them, respectively, the gyroline and the cogyroline representation 
by the two points, a and b, that each of them contains. 

The gyroline in (6.47) is the unique gyroline that passes through the 
points a and b. It passes through the point a at time t = 0 ,  and owing to 
a left cancellation, it passes through the point b at time t = 1. 

Similarly, the cogyroline in (6.47) is the unique cogyroline that passes 
through the points a and b. It passes through the point a at time t = 0 ,  and 
owing to a right cancellation, it passes through the point b at time t = 1. 
Unlike left cancellations and right cancellations in vector spaces, where they 
coincide, left cancellations and right cancellations in gyrovector spaces are 
distinct, forcing us to employ the cooperation EEI, rather than the operation 
$, in the second expression of (6.47). It is the presence of the cooperation 
in the second expression in (6.47) that allows a right cancellation, (2.39), 
when t = 1. Hence, the replacement of ea$b in the first equation in (6.47) 
by bE a = EaEB b in the second equation in (6.47) is a matter of necessity 
rather than choice. 



Definition 6.17 (Origin-Intercept Gyrolines and Cogyrolines). A 
gyroline (cogyroline) that  passes through the origin of i ts  gyrovector space 
is called a n  origin-intercept gyroline (cogyroline). 

Theorem 6.18 
(gyroline). 

Proof. Let 

An origin-intercept gyroline (cogyroline) is  a cogyroline 

L = a@b@t (6.48) 

a,b E G,  t E R, be an origin-intercept gyroline in a gyrovector space 
(G, @,@). Then, there exists t o ~ R  such that 

a@b@to = 0 (6.49) 

so that 

a = eb@to 

and hence, 

(6.50) 

(6.51) 

SER. The gyroline L is recognized in (6.51) as a cogyroline. 
Similarly, let 

L" = b@t@a (6.52) 

a, b E G, t E R, be an origin-intercept cogyroline in the gyrovector space 
(G, @, 8). Then, there exists t o  ER such that 

b@to@a = 0 (6.53) 

so that 

a = B b @ t o  (6.54) 
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and hence, 
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L" = b@t@a 
= b@teb@to 
= b@(t - t o )  
= b @ s  
= O @ b W  

(6.55) 

SER. The cogyroline L" is recognized in (6.55) as a gyroline. 0 

The definition of the gyroline and its associated cogyroline in (6.46) will 
be presented formally in Secs. 6.4 and 6.9. 

6.4 Gyrolines 

Definition 6.19 (Gyrolines, Gyrosegments). Let a, b be any two 
distinct points in a gyrovector space (G,@,@). The gyroline in G that 
passes through the points a and b is the set of all points 

Lg = a@(ea@b)@,t (6.56) 

in G,  t E R. The gyrovector space expression in (6.56) is called the rep- 
resentation of the gyroline L" in terms of the two points a and b that it 
contains. 

A gyroline segment (or, a gyrosegment) ab with endpoints a and b is 
the set of all points in (6.56) with 0 5 t 5 1. The gyrolength lab1 of the 
gyrosegment ab is the gyrodistance between a and b, 

lab1 = &(a, b) = IIea@bll (6.57) 

Two gyrosegments are congruent if they have the same gyrolength. 

Considering the real parameter t as "time", the gyroline (6.56) passes 
through the point a at time t = 0 and, owing to the left cancellation law, 
it passes thought the point b at time t = 1. 

It is anticipated in Def. 6.19 that the gyroline is uniquely represented 
by any two given points that it contains. The following theorem shows that 
this is indeed the case. 

Theorem 6.20 
dent. 

Two gyrolines that share two distinct points are coinci- 
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Proof. Let 

a@ (ea@b) @t (6.58) 

be a gyroline that contains two given distinct points p1 and p2 in a gy- 
rovector space (G, @, 8). Then, there exist real numbers tl, t2 E W, t l  # t2, 
such that 

Pi = a@(Oa@b)@tl 

P2 = a@(0a@b)@t2 
(6.59) 

A gyroline containing the points p1 and p2 has the form 

p1@(ep1 @~2)@t  (6.60) 

which, by means of (6.59) is reducible to (6.58) with a reparametrization. 
Indeed, by (6.59), the Gyrotranslation Theorem 3.13, scalar distributivity 
and associativity, and left gyroassociativity, we have 

p1 @(epl @~2)@t  
= [a@( ea@b) @t 11 @{ e[a@( ea@b)@t 11 @[a@( ea@b)@tz]}@t 

= [a@ (ea@b)@tl] @gyr [a, (ea@b)@tl] { e (ea@b)@t 1 @( ea@b) @t2} @t 
= [a@ (ea@b)@t l]@gyr[a, (ea@b)@t 11 { (ea@ b)@ (- t 1 + t2)}@t 

= [a@( Ba@b)@t l]@gyr [a, (Ba@b)@t 11 (ea@b)@( (-t 1 + t2) t) 
= a@{(ea@b)@tl@(ea@b)@((-tl + t2)t)) 
= a@(ea@b)@(tl + (-tl + t2)t) 

(6.61) 

thus obtaining the gyroline (6.58) with a reparametrization. It is a 
reparametrization in which the original gyroline parameter t is replaced 
by the new gyroline parameter tl + ( 4 1  + t2)t, t2 - tl # 0. 

Hence, any gyroline (6.58) that contains the two distinct points p1 and 
0 p2 coincides with the gyroline (6.60). 

Theorem 6.21 

Proof. Let 

A left gyrotranslation of a gyroline is, again, a gyroline. 

L = a@(@a@b)@t (6.62) 

be a gyroline L represented by its two points a and b in a gyrovector space 
(G, @, @). The left gyrotranslation, x@L of the gyroline L is given by the 
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equation 

x@L = x@{a@(@a@b)@t} (6.63) 

which can be recast in the form of a gyroline by employing the left gyroas- 
sociative law, Axiom (V5) of gyrovector spaces, and Theorem 3.13, 

x@L = x@{a@(ea@b)@t} 

(6.64) 
= (x@a)@gyr[x, a]{(ea@b)@t} 
= (x@a) @ { gyr [x, a] ( e a @ b ) }  @t 
= (x@a)@{ (ex@a)@(x@b)}@t 

thus obtaining a gyroline representation, (6.45), (6.47), for the left gyro- 
translated gyroline, x@L. 

Definition 6.22 (Gyrocollinearity). Three points, a1 , a2, a3, in a gy-  
rovector space (G, @, @) are gyrocollinear if they lie on the same gyroline, 
that is, there exist a, b E G such that 

ak = a@(ea@b)@tk (6.65) 

for some t k  E R, k = 1 , 2 , 3 .  Similarly, n points in G, n > 3, are gyro- 
collinear if any three of these points are gyrocollinear. 

We should note here that we will use the similar term “cogyroline” for a 
“dual gyroline”, Hence, to avoid a conflict with the term “~ogyrol ine~~ we use 
here the term “gyrocollinear” rather than the seemingly more appropriate 
term “cogyrolinear” . 
Definition 6.23 (Betweenness). A point a2 lies between the points 
a1 and a3 in a gyrovector space (GI@,@)  (i) if the points al,a2,a3 are 
gyrocollinear, that is, they are related by the equations 

ak = a@(eaQb)@tk (6.66) 

k = 1 ,2 ,3 ,  for some a, b E G, a # b, and some t k  E R, and (ii) if, in 
addition, either tl < t 2  < t3 or t 3  < t 2  < t l .  
Lemma 6.24 Three distinct points, a l ,  a2 and a3 in a gyrovector space 
(GI@,@)  are gyrocollinear i f  and only i f  any one of these points, say a2, 
can be expressed in terms of the two other points by the equation 

a2 = al@(@al@a3)@t (6.67) 

for some t E R. 
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Proof. 
a, b E G and distinct real number tk such that 

If the points al, a2, a3 are gyrocollinear, then there exist points 

ak = a@(ea@b)@tk (6.68) 

k = 1,2,3.  
Let 

(6.69) 

Then, by the Gyrotranslation Theorem 3.13, the scalar distributive and 
associative law, and gyroassociativity, we have the chain of equations 

a1 @(eal@aa)@t 

= [a@( ea@b) @t 11 @{ e [a@ (ea@b) @tl] @ [a@( ea@b)@t3]} @t 
= [a@( ea@b)@t 11 @gyr [a, (@a@ b) @t I] { e( ea@ b) @t 1 @( ea@b)@k}@t 

= [a@( @a@b)@t~]@gyr[a, (Ba@b)@t 11 (ea@b)@( (-t 1 + t3)t) 

= a@{(ea@b)@tl@(ea@b)@((-tl + t3)t)) 
= a@(@a@b)@(tl + (-tl + t3)t) 

= a@(@a@b)@t2 
= a2 

(6.70) 

thus verifying (6.67). 
Conversely, if (6.67) holds then the three points al, a2 and a3 are gyro- 

collinear, the point a2 lying on the gyroline passing through the other two 
points, a1 and a3. 0 

Lemma 6.25 
space (G,@,@) zf and only zf 

A point a2 lies between the points a1 and a3 in a gyrovector 

a2 = al@(eal@a3)@t (6.71) 

for some 0 < t < 1. 

Proof. If a2 lies between a1 and a3, the points al , a2, a3 are gyrocollinear 
by Def. 6.23, and there exist distinct points a, b E G and real numbers t k  

such that 

k = 1,2 ,3  and either tl < t2 < t3 or t3 < t2 < tl. 
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Let 

(6.73) 

Then 0 < t < 1 and following the chain of equations (6.70), we derive the 
desired identity 

al@(eal@a3)@t = a 2  (6.74) 

thus verifying (6.71) for 0 < t < 1. 
Conversely, if (6.71) holds then, by Def. 6.23 with tl = 0, tz = t and 

0 t3 = 1, a2 lies between a1 and a3. 

Lemma 6.26 The two equations 

b = a@(ea@c)@t (6.75) 

and 

b = c@(ec@a)@(l- t) (6.76) 

are equivalent for the parameter t E R and all points a, b, c in a gyrovector 
space (G, @, 8). 

Proof. Let us assume the validity of (6.75). Then, by the scalar dis- 
tributive law, gyroassociativity, left cancellation and (2.101), gyrocommu- 
tativity, and the gyroautomorphic inverse property we have the chain of 
equations 

thus implying (6.76). Similarly, (6.76) implies (6.75). 

Lemma 6.26 suggests the following 

Definition 6.27 (Directed Gyrolines). Let 

(6.77) 

0 

L = a@b@t (6.78) 
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be a gyroline with a parameter t E R in a gyrovector space (G, @, @), and 
let p l  and pa be two distinct points o n  L ,  

(6.79) 

a, b€G,  t l , t 2 E R .  The  gyroline L is directed f r o m  p l  to  p2 if tl < t 2 .  

As an example, the gyroline in (6.75) has the gyroline parameter t and it 
is directed from a (where t = 0) to c (where t = 1). Similarly, the gyroline 
in (6.76) has the gyroline parameter s = 1 - t ,  and it is directed from c 
(where s = 0) to a (where s = 1). 

The next lemma relates gyrocollinearity to gyrations. A similar result 
for cogyrocollinearity will be presented in Lemma 6.61. 

L e m m a  6.28 
are gyrocollinear then 

If the three points a, b, c in a gyrovector space (G,  @, 8)  

Proof. By Lemma 6.24 and a left cancellation 

0aeb = (ea@c)@t (6.81) 

for some t E R. By Identity (3.34), the gyroautomorphic inverse property, 
Eq. (6.81), and Axiom (V6) of gyrovector spaces, we have the chain of 
equations 

from which we obtain (6.80) by gyroautomorphism inversion. 0 

The converse of Lemma 6.28 is not valid, a counterexample being vector 
spaces. Any vector space is a gyrovector space in which all the gyrations are 
trivial. Hence, Identity (6.80) holds in vector spaces for any three points 
a ,  b and c while not every three points of a vector space are collinear. 

The obvious extension of Lemma 6.28 to any number of gyrocollinear 
points results in the following 
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Theorem 6.29 
Let {al , . . , a,} be a set of n gymcollinear points in a gymvector space 

( T h e  Gyrol ine Gyration Transi t ive Law). 

(G, @, 8). Then 

gyr[al, e a 2 ] g ~ r [ a 2 ,  ea3] . . . gyr[an-l, eanl = gyr[al, @an] (6.83) 

Proof. By Lemma 6.28, Identity (6.83) of the theorem holds for n = 3. 
Let us assume, by induction, that  Identity (6.83) is valid for some n = Ic 2 
3. Then, Identity (6.83) is valid for n = k + 1 as well, 

gyr[al, ea21. .  . gdak-1 ,  eak lg~r [ak ,  eak+11 

= gYr[all8ak+ll 

= gyr[al, ~akIgyr[ak ,  e a k + ~ l  (6.84) 

Hence, Identity (6.83) is valid for all n 2 3. 0 

Gyrocollinearity is suficient but not necessary for the va- Remark 6.30 
lidity of (6.83), a counterexample being Theorem 3.6. 

6.5 Gyromidpoints 

The value t = 1/2 in Lemma 6.26 gives rise to  a special point where the 
two parameters of the gyroline b, t and (1 - t )  coincide. I t  suggests the 
following 

Definit ion 6.31 (Gyromidpoints ,  11). The gyromidpoint prc of any 
two distinct points a and c in a gyrovector space (G, @, 18) is given by  the 
equation 

pz = a@(ea@c)@T 1 (6.85) 

Let a and c be any two points of a gyrovector space Theorem 6.32 
(G, @, @). Then, 

m P z  = Pca 

and 

Proof. By Lemma 6.26, with t = 1/2, the two equations 

b = a@(ea@c)@ = pc 
b = c@(ec@a)@; = pE 

(6.86) 

(6.87) 

(6.88) 
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are equivalent, thus verifying (6.86). 

that 
It follows from (6.88) by left cancellations and the gyrocommutative law 

eaep; = ( e a e c ) @ i  

emp; = (ec@a)& = egyr[ec ,  a](eaec)@i (6.89) 

implying 

(6.90) 
l b ~ P ; l l  = Itea@CII@i 
\leceP;ll = 11eaecll@i 

thus verifying (6.87). 0 
Clearly, Identities (6.86) and (6.87) justify calling pz the gyromidpoint 

of the points a and c in Def. 6.31. 

Theorem 6.33 The gyromidpoint of points a and b can be written as 

pn& = L 2 @(a Ef3 b) (6.91) 

so that 

llP%Il = i@llaEf3bll (6.92) 

Proof. By Def. 6.31, the Two-Sum Identity in Theorem 6.7, the scalar 
associative law, left gyroassociativity, a left cancellation and Theorem 2.30, 
we have 

2@pZb = 2@{a@i@(ea@b)} 

= a@{(ea@b)@a} 
= {a@( ea@b)} egyr  [a, eaeb] a 

= b@gyr[b, 8a]a 
= b H a  
= a m b  

(6.93) 

implying 

p s  = ;@(a b) (6.94) 

Since, by Theorem 3.4, the gyrogroup cooperation in a gyrocommu- 
tative gyrogroup is commutative, we have 

P23 = P L  (6.95) 
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as expected from Theorem 6.32. 
The gyromidpoint in (6.94) shares an obvious analogy with its clas- 

sical counterpart. We thus see again that in order to capture analogies 
with classical results, both gyrogroup operations and cooperations must be 
employed. 

Theorem 6.33 shows that, in the context of gyrogroups, Defs. 6.31 and 
3.37 are equivalent. 

An interesting related duality symmetry is uncovered in the following 

Theorem 6.34 Let a and b be any two points of a gyrovector space 
(G, @, 8). Then, 

a@$(@a@b) = +(a@ b) 

a@$(Ea E3 b) = $(a@b) 
(6.96) 

Proof. 
proof of the second identity in (6.96) follows. 

the commutativity of the cooperation and a right cancellation we have 

The first identity in (6.96) is the result of Theorem 6.33. The 

By the Two-Sum Identity in Theorem 6.7, the scalar associative law, 

2@(a@+@(Ea EE b)) = a@{(Ea EE b)@a} 
= a@{(b E a)@a} (6.97) 

0 = a@b 

6.6 Gyrocovariance 

Definition 6.35 
map 

(Gyrocovariance, Gyrovector Space Objects). A 

T : G "  4 G (6.98) 

f rom n copies, G", of a gyrovector space G = (G, @, @) into the gyrovector 
space G is a rule which assigns to  each n points al, . . . , a, E G a new point 
T(a1,. . . ,an) E G, called the image of the points a l l . .  . ,an. The map T 
is gyrocovariant (with respect to  the motions of the gyrovector space) if its 
image co-varies (that is, varies together) with its preimage points a1 , . . . , a, 
under the gyrovector space motions, that is, if 

TT(a1,. . . , a n )  = T(Ta1,. . . ,7an) 
x@T(al,. . . ,an)  = T(x@al,, . . ,x@a,) 

(6.99) 
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for all r E Aut(G,@,@) and all x E G. 

The set of n + m elements 
Furthermore, let Tk: G" -+ G, k = 1 , .  . . , m, be m gyrocovam'ant maps. 

S = {al,. . . ,an ,  TI(Q,. . . , a n ) ,  . . . > %(al,. . . ,an)}  (6.100) 

in G is called a gyrovector space object in G. 

Theorem 6.36 
of a gyrovector space (G, @, @) into their gyromidpoint, 

The gyromidpoint map T G2 --f G that takes two points 

T(a, b) = ;@(a b) (6.101) 

is gyrocovariant. 

Proof. 
We have to establish the identities 

Let a and b be any two points of a gyrovector space (G,@,@). 

r{ i@(a H b)} = i@(Ta rb) 
x@!j@(a b) = i@{(x@a) (x@b)} 

(6.102) 

for all r E Aut(G, $, @) and all x E G. 
The first identity in (6.102) follows immediately from Def. 6.5 of a gy- 

rovector space automorphism and from (2.52). To verify the second identity 
in (6.102) we note that 

2@{x@i@(a b)} = x@{(a 63 b)}@x} 
(6.103) 

by the Two-Sum Identity in Theorem 6.7 and Identity (3.66). Gyromulti- 
plying the extreme sides of (6.103) by ; gives the second identity in (6.102), 

= (x@a) EE (x@b) 

g@{(x$a) 1 EE (xeb)} = ;@[2@{x@i@(a EE b)}] 
= (;2)@{x@$@(a b)} (6.104) 

0 = x@$@(a b) 

It follows from Theorem 6.36 that the set {a, $(a 83 b), b} of any two 
points and their gyromidpoint in a gyrovector space (G, @, 8)  is a gyrovec- 
tor space object in G. As such, it can be moved in G by the motions of G 
without destroying its internal structure as a set of two points with their 
gyromidpoint. 

Theorem 6.37 The points of any gyroline 

a@ (Ba@b)@t (6.105) 
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a ,b  E G, t E R, in a gyrovector space (G,@,@) f o r m  a gyrovector space 
object. 

Proof. We have to show that 

T {  a@ (ea@b)  @t} = Ta@ (eTa@Tb)@t (6.106) 

and 

x${ a$( @a@ b) @t } = (x@a)@{ (8 (x@a)@(x@ b)}@t (6.107) 

for all automorphisms T E Aut(G, $, @), and all a, b, x E G, and t E R. 
Identity (6.106) follows straightforwardly from the definition of gyrovec- 

tor space automorphisms in Def. 6.5. Identity (6.107) follows from the chain 
of equations 

(x@a)@{ e( x@a) CB (x@ b) } @t = (x@a)@ { gyr[x, a] (ea@b)}@t 
= (x@a)@gyr[x, a][(ea@b)@t] 
= x@{a@gyr[a, x]gyr[x, a] [(ea@b)@t]} 
= x@{a@(@a@b)@t} 

(6.108) 

in which we employ Theorem 3.13, Axiom (V5) of gyrovector spaces, the 
right gyroassociative law, and gyration inversion (see Theorem 6.21). 0 

6.7 Gyroparallelograms 

Theorem 6.38 
be a map given by  the equation 

Let (G,@,@) be a gyrovector space and let T :  G3 -+ G 

T(a, b, c) = (b H c ) e a  (6.109) 

Then the map T is gyrocovariant. 

Proof. We have to verify the identities 

T{(b H c)ea} = (Tb 7c)eTa 
(6.110) 

x@{ (b c)ea}  = { (x@b) R (x@c)}e(x@a) 

for all T E Aut(G, @, @) and all x E G. 
Any gyrovector space automorphism T of a gyrovector space (G, $, @), 

T E Aut(G, $, 8) is, in particular, an automorphism of the corresponding 
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gyrogroup, T E Aut(G, @). Hence, by Theorem 2 . 2 1 , ~  is an automorphism 
of the groupoid (G, EE) as well, T E Aut(G, B). Hence, T satisfies the first 
identity in (6.110). The validity of the second identity in (6.110) follows 
from Theorem 3.19. 0 

It follows from Theorem 6.38 that the ordered set of four points 

S = {a, b, d = (b EE c)ea, c} (6.11 1) 

in a gyrovector space (G, $, 8) is a gyrovector space object, so that it can 
be moved by the motions of its gyrovector space while keeping its internal 
structure intact. 

The next theorem will enable us to recognize the gyrovector space ob- 
ject S in (6.111) as the gyroparallelogram, the analogue of the Euclidean 
parallelogram in vector spaces. 

Theorem 6.39 Let a, b and c be any three points of a gyrovector space 
(G, @, @) and let d = (bHc)0a. Then, the gyromidpoint PTd of the points 
a and d coincides with the gyromidpoint pCc of the points b and c. 

Proof. By Theorem 6.33 and a right cancellation we have 

2@pcc = b H c 

2@pTd = a H d = d EE a = { (b EEI c)ea} ffl a = b H c 
(6.112) 

0 SO that pCc = PTd. 

By Theorems 6.38 and 6.39, the ordered set of four points 

S = {a, b, d = (b c)ea, c} (6.113) 

in a gyrovector space (G,@,@) forms an object of four points that, in 
turn, form two pairs, (a, d) and (b, c), that share their gyromidpoints. By 
analogy with vector spaces, we recognize the ordered set S in (6.113) as the 
four vertices of a gyroparallelogram, ordered clockwise or counterclockwise, 
the two diagonals ad and bc of which intersect at their gyromidpoints. 
Hence, Theorems 6.38 and 6.39 suggest the following 

Definition 6.40 (Gyroparallelograms). Let a, b and c be any three 
points in a gyrovector space (G,  @, 8). Then, the four points a, b, c, d in 
G are the vertices of the gyroparallelogram abdc, ordered either clockwise 
of counterclockwise, Fig. 8.19, p. 290, i f  they sat isb the gyroparallelogram 
condition 

d = (b W c)ea (6.114) 
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The gyroparallelogram is degenerate if the three points a, b and c are 
gyrocollinear. 

If the gyroparallelogram abdc is non-degenerate, then the two vertices 
in each of the pairs (a,d) and (b,c) are said to be opposite to one an- 
other. The gyrosegments of adjacent vertices, ab, bd, dc and ca are the 
sides of the gyroparallelogram. The gyrosegments ad and bc of opposite 
vertices in the non-degenerate gyroparallelogram abdc are the diagonals of 
the gyroparallelogram. 

A gyroparallelogram in the Mobius (Einstein) gyrovector plane, that is, 
in the Poincari! (Beltrami) disc model of hyperbolic geometry, is presented 
in Fig. 8.19 (in Fig. 10.7). 

Theorem 6.41 (Gyroparallelogram Symmetries). Every vertex 
of the gyroparallelogram abdc satisfies the gyroparallelogram condition, 
(6.114), that is, 

a = (b c)8d 
b = (a El d)ec 
c = (aMd)eb 

(6.1 15) 

d = (b c)8a 

Furthermore, the two diagonals of the gyroparallelogram are concurrent, the 
concurrency point being the gyromidpoint of each of the two diagonals. 

Proof. The last equation in (6.115) is valid by Def. 6.40 of the gyropar- 
allelogram. By the right cancellation law this equation is equivalent to the 
equation 

a R d = b W c  (6.1 16) 

Since the coaddition 83 is commutative in gyrovector spaces, Eq. (6.116) is 
equivalent to each of the equations in (6.115) by the right cancellation law, 
thus verifying the first part of the theorem. 

Equation (6.116) implies 

;@(a W d) = i@(b R c) (6.11 7) 

By Theorem 6.33, the left (right) hand side of (6.117) is the gyromidpoint 
of the diagonal ad (bc). Hence, the gyromidpoints of the two diagonals 
of the gyroparallelogram coincide, thus verifying the second part of the 
theorem. 0 
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Theorem 6.42 (The Gyroparallelogram (Addition) Law). Let 
abdc be a gyroparallelogram in a gyrovector space (G, @, @I). Then 

(eaeb)  R (eaec)  = ea@d (6.118) 

Proof. By (3.66) and (6.114) we have 

(eaeb)  (eaec)  = ea@{(b €€I c)ea} 
(6.119) 

0 
= ea@d 

The gyroparallelogram law in the Mobius (Einstein) gyrovector plane, 
that  is, in the Poincare (Beltrami) disc model of hyperbolic geometry, is 
presented graphically in Figs. 8.21 and 8.22 (in Figs. 10.7 and 10.10). 

The gyroparallelogram law (6.118) of gyrovector addition is analogous 
to the parallelogram law of vector addition in Euclidean geometry, and is 
given by the coaddition law of gyrovectors. Remarkably, in order to capture 
this analogy we must employ both the gyrocommutative operation @ and 
the commutative cooperation W of gyrovector spaces. 

Theorem 6.43 
(G, @, 8)  is degenerate, then its four vertices are gyrocollinear. 

If the gyroparallelogram .abdc in a gyrovector space 

Proof. 
are gyrocollinear. Hence, the vertices a, b, c lie on the gyroline 

By Def. 6.40 the vertices a, b, c of the gyroparallelogram abdc 

a@ (ea@b)@t (6.120) 

In order to show that also the vertex d, 

d =  (aHb)ec (6.121) 

lies on the gyroline (6.120), we represent the point c by the value t ,  E JR of 
its gyroline parameter, t ,  on the gyroline (6.120), 

c = a@(ea@b)@t, (6.122) 

Then, employing various gyrogroup identities, we have the following chain 
of equations, where we use the notation ga,-b = gyr[a ,eb]  and g-b,a = 
gyr[eb,  a]. Equalities in the chain of equations are numbered for subsequent 
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explanation. 

d =  (aE3b)ec 
(1)  

(2) 

(3) 
6 

(4) (6.123) 

(a@ga,-bb)@{ea@(ea~b)@tc} 

{ (a@g,,-b b) @a} Bgyr [aeg,, ea] (eae b)W, 

- gyr[a, ga,-bb]ga,-bb@gyr[a, ga,-bb]ga,-b(bea)@tc 

A 

(5) 

= gyr [a, ga ,  -bb]ga,-b { be(bea)@tc 1 

S-b,aSa,-b{be(bea)@tc} 
(6) 

(7) 

2 be( 8bBa)B.t 

d5 a@(ea@b)@(l- tc)  

so that, as expected, the point d lies on the gyroline that contains the 
points a ,  b and c, that is, the gyroline (6.120). The proof of the theorem 
is thus complete. 

The derivation of the equalities in the chain of equations (6.123) follows. 

Follows from the Gyrogroup Cooperation Def. 2.7, and from (6.122). 
Follows from the left gyroassociative law. 
Follows by employing (3.28), (2.101) and the gyrocommutative law. 
Follows from the automorphism property of gyroautomorphisms. 
Follows from the nested gyroautomorphism identity (2.94). 
Follows by gyroautomorphism inversion, (2.93). 

(1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) Follows from Lemma 6.26. 

It follows from (6.123) that d lies on the gyroline (6.120), as desired.0 

Theorem 6.44 If the gyroparallelogram abdc in a gyrovector space 
(G ,  $, 8)  is degenerate, then its gyroparallelogram addition, (6.118), re- 
duces to  gyroaddition, that is, the coaddition H in the gyroparallelogram 
addition law reduces to the gyrovector space addition @. 

Proof. By the coaddition definition in Def. 2.7, we have 

(8a@b) H (eaec) = (ea@b)@gyr[ea@b, e(ea@c)](ea@c) (6.124) 
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But, it follows from (6.122) that 

ea@c = (ea@b)@.tc (6.125) 

Hence, by (6.125) and by Property (V6) of gyrovector spaces we have 

gyr[ea@b, e(ea@c)] = gyr[ea@b, e(ea@b)@t,] 
(6.126) 

= I  

so that the gyration in (6.124) is trivial, obtaining 

(ea@b) H (eaec) = (ea@b)@(@a@c) (6.127) 

as desired. 0 

In the next theorem we will uncover the relationship between opposite 
sides of the gyroparallelogram. 

Theorem 6.45 Opposite sides of a gyroparallelogram abdc in a gyrovec- 
tor space (G, @, @) form gyrovectors which are equal modulo gyrations (see 
Figs. 8.23, p. 294, and 10.6, p. 376, for illustration), that is, 

@bed = gyr[b, Bc]gyr[c, Ga](ea@c) = gyr[b, ec](cea) 

and, equivalently, 

eced  = egyr[c, eb](eb@a) 

ec@a = egyr[c, e b ] ( e b @ d )  
(6.129) 

Accordingly, two opposite sides of a gyroparallelogram are congruent, 
having equal gyrolengths, 

(6.130) 

eaed = (ea@c)$gyr[ea, ~ ] (ec@d)  (6.131) 

and by Theorem 6.42, noting the definition of the gyrogroup cooperation, 
we have 

ea@d = (ea@c) W (8a@b) 
(6.132) 

= ( @ a m )  @gyr [ ea@c , a6 b] (8a@ b) 
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Comparing (6.131) and (6.132), and employing a right cancellation we have 

gyr[ea@c, aeb ] (ea@b)  = gyr[ea, c](Gc@d) (6.133) 

Identity (6.133) can be written, in terms of Identity (3.34), as 

gyr[a, ec]gyr[c, eb]gyr[b, ea](ea@b) = gyr[ea, c](ec@d) (6.134) 

which is reducible to the first identity in (6.128) by eliminating gyr[a, ec] 
on both sides of (6.134). Similarly, interchanging b and c, one can verify 
the second identity in (6.128). 

The equivalence between (6.128) and (6.129) follows from the gyroau- 
tomorphic inverse property and a gyration inversion. 

Finally, (6.130) follows from (6.128) since gyrations preserve the gy- 
rolengt h. 0 

Theorem 6.46 (The  Gyroparallelogram Gyra t ion  Transitive 
Law). Let abdc be a gyroparallelogram in a gyrowector space (G,@,@). 
Then  

w[a ,  e b l g ~ r [ b ,  e c l g ~ r [ c ,  edl = g d a ,  edl (6.135) 

The proof follows immediately from the gyroparallelogram con- 
0 

Following the introduction of the gyroangle in Chap. 8 we will uncover 
other analogies that the gyroparallelogram shares with its vector space 
counterpart, the parallelogram. 

Proof. 
dition (6.114) and Theorem 3.6. 

6.8 Gyrogeodesics 

The following theorem gives a condition that reduces the gyrotriangle in- 
equality (6.12) to an equality, enabling us to  interpret gyrolines as gyro- 
geodesics. 

Theorem 6.47 
tween two points a and c in a gyrowector space (G, @, @) then 

(The Gyrotr iangle  Equality). If a point b lies be- 

II ea@c I I = 1 1  ea@b 1 1  @ 1 1  eb@cll (6.136) 

Proof. If b lies between a and c then, by Lemma 6.25, 

b = a@(ea@c)@t (6.137) 
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for some 0 < t < 1, and hence, by Lemma 6.26 

b = c@(ec$a)@(l- t )  (6.138) 

Hence, by left cancellations, we have 

ea@b = (ea@c)@t 
8c@b = ( e c @ a ) @ ( l -  t )  

(6.139) 

Taking magnitudes, noting the homogeneity property (V7), (6.139) gives 

so that, by the scalar distributive law (V2), 

(6.140) 

Remark 6.48 Comparing Theorem 6.47 with Theorem 6.9 we see that 
point b between two given points a and c in a gyrovector space (G, @, 8)  (i) 
turn the gyrotriangle inequality into an  equality, and hence (ii) minimize 
the gyrodistance gyrosum Ilea@bll@lleb@cll. 

Definition 6.49 (Gyrodistance Along Gyropolygonal Paths). Let 
P(%, . . . ,an)  be a gyropolygonal path f rom a point to  a point an in a 
gyrovector space (G, $, @), DeJ 2.13. The gyrodistance dp(ao,,,,,a,) between 
the points a0 and an along the gyropolygonal path P ( Q , .  . . , an) is  given by 
the equation 

n 

dp(ao, ..., a,) = C IIBak-lBakII (6.142) 
6 ,  k=l 

In Def. 6.49 we use the notation 
n 

C I Ieak- - i@akII  = Ileao@alII@ . . . @Ilean-i@anll (6.143) 

noting that unlike the gyrooperation @ between elements of G, which is 
gyrocommutative and gyroassociative, the gyrooperation @ between norms 
of elements of G is commutative and associative, Remark 6.3. 

@ ,  k = l  
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By the gyrotriangle inequality (6.12) we have the inequality 
n 

II@aO@anII 5 1 118ak- l@ak l I  (6.144) 

for the vertices of any gyropolygonal path P(%, . . . ,a,) that joins the 
points 

The gyropolygonal path inequality (6.144) reduces to an equality when 
(i) the vertices of the gyropolygonal path P(a0,. . . ,a,) lie on the gyro- 
line that passes through the points a 0  and a, and when (ii) the vertices 
a o ,  . . . , a, are ordered on the gyroline by the increasing, or decreasing, order 
of their gyroline parameter t E R. Formally, we thus have the following 

Theorem 6.50 Let (G, @, 8) be a gyrovector space, and let P(w,.  . . ,a,) 
be a gyropolygonal path joining the points a 0  and a, in G. If (a) the vertices 
ao, . . . , a, of the gyropolygonal path lie on  the gyroline passing through the 
points a0 and a, and if (ii) they are ordered on  the gyroline by the increas- 
ing, or decreasing, order of their gyroline parameter, then the gyropolygonal 
path inequality (6.144) reduces to  the equality 

€$, k = l  

and a, in a gyrovector space (G, @, 8). 

n 

lI@aO@anI) = I 1 e a k - l @ a k l (  (6.145) 
@ ,  k = l  

Proof. Let 

a@ (@a@ b) @t (6.146) 

be the gyroline passing through the points w, . . . , a, which, in turn, cor- 
respond to the gyroline parameter t in increasing order, that is, 

a k  = a@(ea@b)@tk (6.147) 

k = O ,  . . . ,  n , a n d  

t o  5 tl 5 . . .t,_l 5 t ,  (6.148) 

For n = 1 the equality in (6.145) clearly holds. Let us assume, by induction, 
that (6.145) is valid for n = i. Then, 

i+ 1 2 c 11 e a k - 1  @ a k  11 = c [ l e a k - 1  @ a k  Il@118ai@az+l I( 
(6.149) $ ,  k = l  @ ,  k = l  

- - I I eao @ai I1 @ II eai @ai+l II 
= Ilew@ai+l II 



Gyrovector Spaces 169 

so that (6.145) holds for n = i + 1 as well. 
The second equality in (6.149) follows from the induction assumption. 

To verify the third equality in (6.149) we note that the points m, q, and 
q + 1  are given by 

(6.150) 

with gyroline parameters satisfying 

t o  I ti I ti+1 (6.151) 

so that the point ai lies between the points %, and ai+l. Hence, the third 
equality in (6.149) follows from the gyrotriangle equality in Theorem 6.47. 

Hence, by induction, (6.145) is valid for all n 2 1. 
The proof of the theorem for the case when the gyroline parameters in 

0 

Remark 6.51 (Gyrogeodesics). It  follows from Theorem 6.50 that 
gyrolines minimize gyropolygonal path distances, turning an inequality, 
(6.144), into an equality, (6.145). Accordingly, we say that gyrolines are gy- 
rogeodesics. The concept of gyrogeodesics coincides with that of geodesics. 
Accordingly, in our concrete examples of gyrovector spaces, gyrogeodesics 
will turn out to be identical with standard geodesics. This, however, is not 
the case with cogyrogeodesics for  a reason that is of interest on  its own right, 
as we will see in the sequel. 

(6.148) are in decreasing order is similar. 

6.9 Cogyrolines 

Following the discussion leading to Def. 6.19 of the gyroline, we now present 
the definition of the cogyroline. 

Definition 6.52 (Cogyrolines, Cogyrosegments). Let a,  b be any 
two distinct points in a gyrovector space (G, $, @). The cogyroline in G 
that passes through the points a and b is the set of all points 

Lc = (bEa)@t$a (6.152) 

t E R. The gyrovector space expression in (6.152) is called the representa- 
tion of the cogyroline Lc in terms of the two points a and b that it contains. 
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A cogyroline segment (or, a cogyrosegment) ab with endpoints a and b 
is  the set of all points in (6.152) with 0 5 t 5 1. The cogyrolength lablC of 
the cogyrosegment ab is  the cogyrodistance dB(a, b) = Ilb E all between a 
and b, 

lablc = &(a, b) = Jlb E all (6.153) 

Two cogyrosegments are congruent if they have the same cogyrolength. 

Considering the real parameter t as “time”, the cogyroline (6.152) passes 
through the point a at  time t = 0 and, owing to the right cancellation law, 
it passes thought the point b at time t = 1. 

It is anticipated in Def. 6.52 that the cogyroline is uniquely represented 
by any two given points that it contains. The following theorem shows that 
this is indeed the case. 

Theorem 6.53 
cident. 

Two cogyrolines that share two distinct points are coin- 

Proof. Let 

(b E a)@t@a (6.154) 

be a cogyroline that contains the two distinct points p1 and p z .  Then, 
there exist real numbers t l ,  t z  E R, tl # t z ,  such that 

(6.155) 

A cogyroline containing the points p1 and p z  has the form 

(Pz Pl )@t@pl  (6.156) 

which, by means of (6.155) is reducible to (6.154) with a reparametrization. 
Indeed, by (6.155), Identity (2.44) of the Cogyrotranslation Theorem 2.16, 
scalar distributivity and associativity, and left gyroassociativity with Axiom 
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(V6) of gyrovector spaces, we have 

(P2 P1 )@t@Pl 

= { [ ( b E  a)@t2@a] El [(b El a)@tl@a]}@t@[(b El a)@tl@a] 
= { (b  Ei a)@tze(b El a)@tl}@t@[(b El a)@tl@a] 
= { (b  a)@(t2 - t l )}@t@[(b El a)@tl@a] (6.157) 

= (b El a)@((tz - ti)t)@[(b H a)@tl@a] 

= { (b  
= (b a)@((t2 - t ~ ) t  + tl)@a 

a)@((tz - t i ) t )@(b El a)@tl}@a 

We obtain in (6.157) a reparametrization of the cogyroline (6.154) in which 
the original cogyroline parameter t is replaced by the new cogyroline pa- 
rameter ( t 2  - t1)t + t l ,  where t2 - t l  # 0. 

Hence, any cogyroline (6.154) that contains the two points p1 and p2 is 
0 identical with the cogyroline (6.156). 

Definition 6.54 (Cogyrocollinearity). Three points in a gyrovector 
space (G,@,@) are cogyrocollinear if they lie on the same cogyroline, that 
is, there exist a, b E G such that 

ak = (b El a)@tk@a (6.158) 

for some t k  E R, k = 1,2,3. Similarly, n points in G, n > 3, are cogyro- 
collinear if any three of these points are cogyrocollinear. 

Definition 6.55 (Cobetweenness). A point a2 lies cobetween the 
points a1 and a3 in G if the points al1a2,a3 are cogyrocollinear, that is, 
they are related by  the equations 

ak = (b El a)@tk@a (6.159) 

k = 1,2,3, for some a, b E G, a # b, and some tk E R, such that either 
tl < t2 < t3 or t3 < t 2  < t l .  

Lemma 6.56 Three points, al ,  a2 and a3 in a gyrovector space (G, @, @) 
are cogyrocollinear if and only if one of these points, say a2, can be expressed 
in terms of the two other points by  the equation 

a2 = (a3 Ei al)@t@al (6.160) 

for some t E R. 
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Proof. 
tinct points a, b E G and real number t k  such that 

Since the points a1 , a2, a3 are cogyrocollinear there exist two dis- 

ak = (b E a)@tk@a (6.161) 

k = 1,2,3. 
Let 

(6.162) 

Then, by Identity (2.44) of the Cogyrotranslation Theorem 2.16, and the 
scalar distributive law we have 

(a3 al)@t@al 

= {[(b a)@ts@a] El [(b H a)@tl@a]}@t@[(b E a)@tl@a] 
= {(b a)@h E (b E a)@tl}@t@[(b E a)@tl@a] 
= {(b a)@t3e(b E a)@tl}@t@[(b E a)@tl@a] 
= (b a)@((t3 - t1)t + tl)@a 
= (b R a)@t~@a 
= a 2  

(6.163) 

thus verifying (6.160). 
Conversely, if (6.160) holds then the three points are cogyrocollinear, 

the point a2 lying on the cogyroline passing through the two other points, 
a1 and a3. 

Lemma 6.57 A point a2 lies cobetween the points a1 and a3 in a gy-  
rowector space (G, @, @) if and only zf 

a2 = (a3 E al)@t@al (6.164) 

for some 0 < t < 1. 

Proof. If a2 lies cobetween a1 and a3, the points all a2, a3 are cogyro- 
collinear. Hence, there exist distinct points a, b E G and real number t k  
such that 

ak = (b El a)@tk$a (6.165) 

k = 1,2,3,  and either tl < t 2  < t3 or t3 < t2 < tl. Let 

t2 - tl t = -  
t3 - tl (6.166) 
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Then 0 < t < 1 and, as in the chain of equations (6.163), we derive the 
desired identity 

(a3 El al)@t@al = a 2  (6.167) 

thus verifying (6.164) 
Conversely, if (6.164) holds then, by Def. 6.55 with tl = 0, t 2  = t and 

0 t3 = 1, a 2  lies cobetween a1 and a3. 

L e m m a  6.58 The two equations 

b = (c  E a)@t@a (6.168) 

and 

b = ( a  El c)@(l - t)@c (6.169) 

are equivalent for the parameter t E IR and all points a, b, c in a gyrovector 
space (G, @, @). 

Proof. Let us assume the validity of (6.168). Then, by the scalar dis- 
tributive law, (3.27), a right cancellation, and Axiom (V6) of gyrovector 
spaces we have the chain of equations 

( a  E c)@(l - t)@c = {(a E c ) e ( a  El c)@t}@c 

= gyr[e(a  El c)@t, a E c]{e(a  E c)@t@((a El c)@c)} 
= (@(a E c)@t@a 
= (c a)@t@a 
= b  

(6.170) 

thus implying (6.169). Note that the gyration in (6.170) is trivial by Axiom 
0 (V6) of gyrovector spaces. Similarly, (6.169) implies (6.168). 

Lemma 6.58 suggests the following 

Defini t ion 6.59 (Direc ted  Cogyrolines).  Let 

L = b@t@a (6.171) 

be a cogyroline with a parameter t E R in a gyrovector space (G, @, @), and 
let pl and p 2  be two distinct points on L,  

(6.172) 
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a, bEG, t l ,  t 2 ~ R .  The cogyroline L is directed from pl to p2 if tl < t2. 

As an example, the cogyroline (6.168) has the cogyroline parameter t ,  
and it is directed from a (where t = 0) to c (where t = 1). Similarly, the 
cogyroline (6.169) has the cogyroline parameter s = 1 - t, and it is directed 
from c (where s = 0) to a (where s = 1). 

L e m m a  6.60 
are cogyrocollinear, then 

If the three points a, b, c in a gyrovector space (G, @, @) 

gyr[b El c, a El b] = I (6.173) 

Proof. By Lemma 6.56 

a = (c R b)@t@b (6.174) 

for some t E R. Hence, by a right cancellation and the commutativity of 
the gyrogroup cooperation, Theorem 3.4, we have 

a E b = (c E b)@t = (b E c)@(-t) (6.175) 

for some t E R. The latter, in turn, implies 

gyr[b E c, a El b] = gyr[b E c, (b E c)@(-t)] (6.176) 

But, the right hand side of (6.176) is the identity automorphism by Axiom 
0 

The next Lemma relates cogyrocollinearity to gyrations. A similar result 

(V6) of gyrovector spaces, thus verifying (6.173). 

for gyrocollinearity is found in Lemma 6.28. 

L e m m a  6.61 
are cogyrocollinear, then 

If the three points a, b, c in a gyrovector space (G, @, @) 

gyr[a, bIgyr[b, .I = gyr[a, .I (6.177) 

Proof. By Lemma 6.60 we have 

gyr[b c, a b] = I (6.178) 

so that the condition of Theorem 3.29 is satisfied. Hence, by Theorem 3.29 
we have 

g y r h  blgyrlb, cIgyr[c, a1 = I (6.179) 

0 Identity (6.177) follows from (6.179) by gyroautomorphism inversion. 
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The obvious extension of Lemma 6.61 to any number of cogyrocollinear 
points results in the following 

Theorem 6.62 (The Cogyroline Gyra t ion  Transitive Law). Let 
{ a l l . . .  ,an} be a set of n cogyrocollinear points in a gyrovector space 
(G,  @, 8). Then 

gYr[al,a2]g~r[a2,a3] *.*gYr[an-l,an] = gYr[al, an]  (6.180) 

Proof. By Lemma 6.61, Identity (6.180) of the theorem holds for n = 3. 
Let us assume, by induction, that Identity (6.180) is valid for some k 2 3. 
Then, Identity (6.180) is valid for k + 1 as well, 

gyrIa1, a21.. . * gYdak-11 aklgYr[ak, ak+l] 

= gYr[al, %+lI 

= gYr[al, ak]gYr[ak, ak+l] (6.181) 

Hence, Identity (6.180) is valid for all n 2 3. 0 

The duality symmetry that the gyroline and Cogyroline Gyration Tran- 
sitive Law share in Theorems 6.29 and 6.62 is just a new manifestation of 
the gyration duality symmetry already observed in Theorem 2.10. 

Definition 6.63 
rolines 

(Parallelism between Cogyrolines). The two cogy- 

(b E a)@t@a 
(b’ E a’)@t@a’ 

in a gyrovector space (G, @, @) are parallel i f  the two points 

b E a  

b’ El a’ 

in G are related by the equation 

(6.182) 

(6.183) 

b’ El a’ = X@(b El a )  (6.184) 

for  some real number X E R. 

In the following theorem we will show that parallelism is a property of 
two cogyrolines rather than a property of pairs of points on the cogyrolines. 

Theorem 6.64 Parallelism between cogyrolines is cogyroline representa- 
tion independent. 
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Proof. Let 

(6.185) 

t E R, be two representations of the same cogyroline L in terms of two 
different pairs of points that L contains in a gyrovector space (VS, @, 8). 
In order to show that parallelism is cogyroline representation independent, 
we have to show that the cogyrolines Lib and Lld are parallel. 

Since the points c and d are two distinct points lying on the cogyroline 
L = L:b, there are real numbers tl,t:! E R, tl # t z ,  such that 

(6.186) 

The condition 

gyr[(b E a)@tl, (b  E a)@tz]  = I (6.187) 

of Theorem 2.16 is satisfied by Axiom (V6) of gyrovector spaces. Hence, 
by Theorem 2.16 we have from (6.186), 

(6.188) 

The third equality in (6.188) follows from condition (6.187) and (2.4), and 
the fourth equality in (6.188) follows from the scalar distributive law. 

The family of all cogyrolines that are parallel to a given 

Hence, by Def. 6.63, the cogyrolines Lib and L:d are parallel. 

Theorem 6.65 
cogyroline 

(b  a)@t@a (6.189) 

in a gyrovector space (G, @, 8)  is given by 

(b E a)@t@c (6.190) 

with the parameter c E G running over the points of G. 
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Proof. 
A =  1. 

The cogyrolines (6.189) and (6.190) are parallel by Def. 6.63 with 

Conversely, if the cogyroline (6.189) is parallel to the cogyroline 

(f El e)@t$e (6.191) 

then the latter can be recast in the form of (6.190). To see this we note 
that by the parallelism in Def. 6.63, 

f E e = X@(b E a) (6.192) 

implying the following equivalent equations 

8eHf =A@(bEa) 
8 e  = A@(b El a)8f (6.193) 

e = 8A@(b El a)$f 

so that (6.191) takes the form 

(fee)@t@e = A@(b E a)@t${eA@(b El a)@f} 
= (b 8 a)@(At)@{eA@(b E a)$f} 

(6.194) 

The extreme right hand side of (6.194) has the desired form of (6.190) (i) 
with 

c = 8A@(b E a)$f (6.195) 

and (ii) with a reparametrization from the cogyroline parameter t to the 
new cogyroline parameter At.  0 

The left and right gyrotranslations of a by x in a gyrovector space 
(G, @, @) are, respectively, x@a and a@x. Similarly, the left and right co- 
gyrotranslations of a by x in in G are, respectively, x a and a H x. Left 
and right gyrotranslations have, in general, different effects. In contrast, 
left and right cogyrotranslations coincide owing to the commutativity of 
the gyrovector space cooperation H. Hence, we call them collectively cogy- 
rotranslations. 

Theorem 6.66 Let d be any point on the cogyroline 

b@t@a (6.196) 
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in a gyrovector space (G, @, 8). 
(6.196) by ed ,  

The cogyrotranslation of the cogyroline 

@@tea) d (6.197) 

is, again, a cogyroline. The cogyroline (6.196) and the cogyrotranslated 
cogyroline (6.197) are parallel and, furthermore, the cogyrotranslated cogy- 
roline (6.197) passes through the origin of G. 

Proof. Let d be any point on the cogyroline (6.196). The cogyrotransla- 
tion (6.197) of the cogyroline (6.196) is manipulated in the following chain 
of numbered equalities. 

Hence, by (6.198) and Theorem 6.65, the cogyroline (6.196) and the 

The derivation of the equalities in (6.198) follows. 
cogyrotranslated cogyroline (6.197) are parallel. 

(1) Follows from (2.4). 
(2) 
(3) 
(4) 

(5) Follows from (2.4). 

Follows from the right gyroassociative law 
Follows from the right loop property. 
Follows from Theorem 6.62 since the points a, b@t@a, d are cogyroco- 
linear. 

Since the point d lies on the cogyroline (6.196), it is given by the equa- 
tion 

d = b@to@a (6.199) 
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for some to  E R. Hence, 

a El d = a E (b@to@a) 
= aegyr[a,  b@to@a](b@to@a) 
= aegyr[a,  b@to](b@to@a) (6.200) 

= ae(a@b@to) 
= &@to 

It follows from (6.198) and (6.200) that 

(b@t@a) E d = b@t@(a E d) 

= b@teb@to (6.201) 
= b@(t - t o )  

demonstrating that the cogyrotranslated cogyroline (6.197) is a special co- 
gyroline. It is both a gyroline and a cogyroline that passes through the 

Clearly, the cogyroline in (6.197) is origin-intercept, Def. 6.17, suggest- 

origin of its gyrovector space when t = to .  

ing the following 

Definition 6.67 
on  the cogyroline 

(Origin-Intercept Cogyroline). Let d be any point 

b@t@a (6.202) 

in a gyrovector space (G, @, @). The resulting origin-intercept cogyroline 

(b@t@a) H d (6.203) 

is said to  be the origin-intercept cogyroline (or equivalently, gyroline, by 
Theorem 6.68 below) that corresponds to the cogyroline (6.202). 

Theorem 6.68 
p 2  lying on  a cogyroline lies on  a corresponding origin-intercept gyroline. 

Proof. 

The cogyrodiflerence p1 E p2 of any two points p1 and 

The proof follows from (6.201) or, equivalently, from (6.186) and 
(6.188). 0 

Remark 6.69 (Supporting Gyrodiameters). W e  will find that in 
Mobius and in Einstein gyrovector spaces the origin-intercept gyroline that 
corresponds to  a given cogyroline turns out to  be the “supporting gyrodiam- 
eter” of the cogyroline. The supporting gyrodiameter, in turn, defines the 
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orientation of its cogyroline thus allowing the introduction of parallelism 
between cogyrolines. 

6.10 Cogyromidpoints 

The value t = 1/2 in Lemma 6.58 gives rise to a special point where the 
two parameters of b, t and (1 - t ) ,  coincide. It suggests the following 

Definition 6.70 (Cogyromidpoints). The cogyromidpoint p:c of 
points a and c in a gyrovector space (G, @, @) is given by  the equation 

pZc = (c a)@&@a (6.204) 

Theorem 6.71 
(G, @, 8).  Then 

Let a and c be any two points of a gyrovector space 

(6.205) 

and 

IbHPPCII = IIC~PZCll (6.206) 

Proof. By Lemma 6.58, with t = 1/2, the two equations 

b = (c R a)@i@a = pic 

b = (a E c)@;@c = pZa 
(6.207) 

are equivalent, thus verifying (6.205). 

inverse property, Theorem 2.31, of the gyrogroup cooperation that 
It follows from (6.207) by right cancellations and the gyroautomorphic 

p& E a = (c  a)@; 
pza El c = (a H c )@i  = 8 ( c  E a)@; 

(6.208) 

implying 

(6.209) 

0 thus verifying (6.206).
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Theorem 6.72 
identity 

The cogyromidpoint P&, of points a and b satisfies the 

P:b = i@gyr[p;b, al(a@b) (6.2 10) 

so that 

IIP:bll = i@Ilaeb// (6.211) 

Proof. By the left loop property and (6.204) we have 

gyrI(b a)@;, a1 = gYr[P:,, a1 (6.212) 

Hence, by the gyrocommutative law, (6.212), the Two-Sum Identity in 
Theorem 6.7, and a right cancellation we have, 

2@{(b El a)@&a} = 2@gyr[(b E a)@;, a]{a@i@(b 6 a)} 

(6.213) = gyr[ptb,a]{2@[a@i@(b 
= gyrbtb ,  El 

= gyr b i b  , (a@b) 

thus implying (6.210). Finally, (6.211) follows from (6.210) by Axiom V7 
0 

The gyromidpoint and the cogyromidpoint share in Identities (6.211) 

of gyrovector spaces, noting that gyrations preserve the norm. 

and (6.92) a remarkable duality symmetry. 

6.11 Cogyrogeodesics 

Theorem 6.73 
variant under appropriately gyrated right gyrotranslations, 

The cogyrodistance in a gyrovector space (G, @,@I) is in- 

a b = (aegYr[a, kab]x) El (begyr[b,  kab]x) (6.214) 

for  all a, b, x E G where k,b is  any point lying on  the cogyroline passing 
through the distinct points a and b .  

Proof. By Theorem 6.14 we have the identity 

a E b = (a@gyr[a, b]y) 6 ( b e y )  (6.2 15) 

for all a, b, y E G. 
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By the Cogyroline Gyration Transitive Law, Theorem 6.62, we have the 
identity 

gyr[a, b] = gyr[a, kab]gyr[kab, b1 (6.216) 

for any point kab lying on the cogyroline that passes through the points a 
and b. 

Selecting y = gyr[b, kab]x, and noting (6.216), Identity (6.215) reduces 
to (6.214). 0 

Theorem 6.73 reduces to Theorem 6.14 when the point k,b on the co- 
gyroline that passes through the points a and b is selected to be kab = b. 

The following theorem will enable us to  recognize that cogyrolines are 
cogeodesics. 

Theorem 6.74 
cobetween two points a and c in a gyrovector space (G, @, 8)  then 

(The Cogyrotriangle Equality, I). If a point b lies 

IIEaRcll = 11EaEElblJf33II6bEElcll (6.21 7) 

Proof. If b lies cobetween a and c then, by Lemma 6.57, 

b = (c El a)@t@a (6.2 18) 

for some 0 < t < 1, and hence, by Lemma 6.58 

b = (a 6 c)@(l - t)@c (6.2 19) 

Hence, by right cancellations and by the commutativity of the cooperation 
H we have from (6.218) and (6.219), 

Ha EH b = (Ea H c)@t 
Rc f33 b = (Rc 13 a)@(l- t )  

(6.220) 

Taking magnitudes, noting the homogeneity property (V7), (6.220) gives 

11 El a H bll = I] El a EEI cll@t 

IIEbHcll = IIEaBcll@(l-t) 
(6.221) 

so that, by the scalar distributive law (V2), 

1) aH bll@ll b €3 c1( = 11 E aH cll@{t + (1 - t ) }  
(6.222) 

But, the operation @ between magnitudes equals the cooperation EH be- 
tween magnitudes, Remark 6.3. Hence, (6.222) is equivalent to (6.217). 

= IIEaRcll 
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Theorem 6.75 
cobetween two points a and c in a gyrovector space (G, el 18) then 

(The Cogyrotriangle Equality, 11). If a point b lies 

( ( H a H g y r [ a H b , b H c ] c \ \  = ((BaEEb\\EEl((BbBc\~ (6.223) 

It follows from Lemma 6.60 and gyroautomorphism inversion that Proof. 

gyr[a E b, b H c] = I (6.224) 

Hence, the gyration in (6.223) for cogyrocollinear points a, b, c is trivial, 

The cogyrotriangle equality in Theorem 6.74 has a form analogous to 
that of the gyrotriangle equality in Theorem 6.47. In contrast, the equiva- 
lent cogyrotriangle equality in Theorem 6.75 has a form that emphasizes the 
result that the cogyrotriangle equality is a special case of the cogyrotriangle 
inequality (6.17) corresponding to cogyrocollinear points. 

Remark 6.76 Comparing Theorem 6.75 with Theorem 6.11 we see that 
point b cobetween two given points a and c in a gyrovector space (G, $, 8)  
turn  the cogyrotriangle inequality into an equality in analogy with the first 
part of Remark 6.48. 

making (6.223) equivalent to (6.217) in Theorem 6.74. 

Definition 6.77 (Cogyrodistance Along Cogyropolygonal Paths). 
A cogyropolygonal path P(Q, . . . , a,) from a point a0 to a point a, in a gy- 
rovector space (G, $, 8)  is the same as the gyropolygonal path P(a0,. . . , a,) 
in DeJ 2.19 except that the value of a pair (a, b) is now EaH b.  The cogy- 
rodistance dp(ao,,,,,a,) between the points a0 and a, along the cogyropolyg- 
onal path P(a0, . . . , a,) is given by the equation 

n 

(6.225) 

In Def. 6.77 we use the notation 
n 

1 1  El ak-1 akll = 1 1  El a,~ H a1 11 H . . . EE I( E! a,-l H anll (6.226) 

noting that unlike the cogyrooperation H between elements of G, which is 
commutative and nonassociative, the cogyrooperation H between norms of 
elements of G is equal to the gyrooperation $, and is both commutative 
and associative, Remark 6.48. 

€0, k = l  
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Theorem 6.78 Let (G, @, 8) be a gyrovector space, and let P(%, . . . ,a,) 
be a cogyropolygonal path joining the points a0 and an in G.  If (a) the 
vertices ao, . . . , a, of the cogyropolygonal path lie on the cogyroline passing 
through the points and a, and if (ai) they are ordered on the cogyroline 
by  the increasing, or decreasing order of their cogyroline parameter, then 
we have the equality 

n 

)I Ha0 an11 = 1 1  ak-1  H akll (6.227) 
E l ,  k=l 

Proof. Let 

(b a)@t@a (6.228) 

be the cogyroline passing through the points ao, . . . ,a, which, in turn, 
correspond to the cogyroline parameter t in increasing order, that  is, 

ak = (b El a)@tk@a (6.229) 

Ic = 0 , .  . . , n, and 

t o  5 tl 5 . . .t,-1 5 t ,  (6.230) 

For n = 1 the equality in (6.227) clearly holds. Let us assume, by induction, 
that  (6.227) is valid for n = i. Then, 

i+ 1 i c 1 1  Bak-1 ask(( = c (1 Bak-1 mak(( 81 ( (8ai  Hai+l(l 

(6.231) a,  k=l H, k=l 

= 1 1  ao ai 1 1  EE 1 1  ai ai+i 1 1  
= Ilea0 ai+l I1 

so that (6.227) holds for n = i + 1 as well. 
The second equality in (6.231) follows from the induction assumption. 

To verify the third equality in (6.231) we note that the points a, ai and 
ai+l are given by 

a0 = (b El a)@to@a 

ai = (b R a)@ti@a 
ai+l = (b El a)@ti+l@a 

(6.232) 

with cogyroline parameters satisfying 

t o  I ti I ti+] (6.233) 
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so that the point ai lies cobetween the points ao, and ai+l. Hence, the third 
equality in (6.231) follows from the cogyrotriangle equality in Theorem 6.74. 

Hence, by induction, (6.227) is valid for all n 2 1. 
The proof of the theorem for the case when the gyroline parameters in 

0 (6.230) are in decreasing order is similar. 

Remark 6.79 ( C o g y r o g e o d e s i c s ) .  Owing to the analogy that Theorem 
6.78 shares with Theorem 6.50, cogyrolines are also called cogyrogeodesics. 
One should, however, note that the analogies that gyrogeodesics and cogy- 
rogeodesics share are incomplete since, unlike the gyrotriangle inequality, 
Theorem 6.9, the cogyrotriangle inequality, Theorem 6.11, is ‘%orrected” 
by  a gyration. Like the gyration corrections that are present in the gy-  
roassociative and the gyrocommutative laws, the gyration correction that is 
present in the gyrotriangle inequality in Theorem 6.11 has useful geometric 
consequences. 

Three concrete examples of gyrovector spaces are presented in Secs. 6.12, 
6.16, and 6.18. 

6.12 M o b i u s  Gyrovector S p a c e s  

Mobius gyrogroups (Vs, BM) admit scalar multiplication gM , turning them 
into Mobius gyrovector spaces (Vs, eM, gM). 

Definition 6.80 ( M o b i u s  Scalar  M u l t i p l i c a t i o n ) .  Let (V3, eM) be a 
Mobius gyrogroup. The Mobius scalar multiplication rgMv = vBMr in V, 
is given by  the equation 

= s tanh(r tanh-’ -)- llvll 
v 

s llvll 
where rER, V E V ~ ,  v # 0; and rgM0 = 0. 

As an example we present the Mobius half, 

^iv v z%v= - 
1 + 7 v  

1 (6.235) 
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- w < t < w  
0 

Fig. 6.1 The unique gyroline in a Mobius Fig. 6.2 The unique cogyroline in 
gyrovector space (V,, Q , @,,) through two (V,, &, Q) through two given points a 
given points a and b. The case of the and b. The case of the Mobius gyrovector 
Mobius gyrovector plane, when V, = Eta=, plane, when V, = W'&, is the real open 
is the real open unit disc, is shown graphi- unit disc, is shown graphically. 
cally. 

satisfying 

d"" (6.236) Y(l /Z)@V = 2 

where 'yv is the gamma factor (3.129). 

spaces, 
Indeed, in accordance with the scalar associative law of gyrovector 

2&($&v)=2&- 7v v 
1 + 7 v  

= V  

The unique Mobius gyrolin Lib and cogyroline L:b that pas 
two given points a and b are represented by the equations 

Lib = a%(e,a@,b)&t 

Lib = (b R, a)8MteMa 

(6.237) 

through 

(6.238) 



Gyrovector Spaces 187 

Fig. 6.3 The gyrosegment that links the Fig. 6.4 The cogyrosegment that links the 
two points a and b in the Mobius gyrovec- two points a and b in the Mobius gyrovec- 
tor plane (R:, e,~). p is a generic point tor plane (R?,~,LXI) .  p is a generic point 
between a and b, and m,*b is the midpoint cobetween a and b and ma,b is the comid- 
of a and b. See also Fig, 6.10. point of a and b. See also Fig, 6.11. 

t E R, in a Mobius gyrovector space (V8, %, Q). Gyrolines in a Mobius 
gyrovector space coincide with the well-known geodesics of the Poincard 
ball model of hyperbolic geometry, as we will prove in Sec. 7.3. Mobius gy- 
rolines in the disc are Euclidean circular arcs that intersect the boundary 
of the disc orthogonally, Fig. 6.1. In contrast, Mobius cogyrolines in the 
disc are Euclidean circular arcs that intersect the boundary of the disc dia- 
metrically, that is, on the opposite sides of a diameter called the supporting 
gyrodiameter, Fig. 6.2. 

The supporting gyrodiameter is both a gyroline and a cogyroline passing 
through the origin; see Remark 6.69. Let d be any point on the cogyroline, 
Fig. 6.2, 

(b 8, a)@t%a (6.239) 

Then, by Theorem 6.66, the equation of its supporting gyrodiameter is 

{(b 'M a)@t%a) 'M (6.240) 

t E R. 
Figure 6.3 presents the gyrosegment ab that joins the points a and b in 

the Mobius gyrovector plane (R:, q, 8) along with its gyromidpoint mab, 

and a generic point p lying between a and b. Since the points a,p,b are 
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do not admit parallelism admit parallelism 

Fig. 6.5 Through the point c,  not on the 
gyroline ab, there are infinitely many gy- 
rolines, like cic2 and c3c4, that do not in- 
tersect gyroline ab. Hence, the Euclidean 
parallel postulate is not satisfied. 

Fig. 6.6 Through the point c,  not on the 
cogyroline ab, there is a unique cogyroline 
arbr that does not intersect the cogyroline 
ab. Hence, the Euclidean parallel postu- 
late is satisfied. 

gyrocollinear, they satisfy the gyrotriangle equality, Theorem 6.47, shown 
in the figure. 

Figure 6.4 presents a cogyrosegment ab in the Mobius gyrovector plane 
(EX:, eM, @) along with its cogyromidpoint mat,, and a generic point p lying 
cobetween a and b. Since the points a, p, b are cogyrocollinear, they satisfy 
the cogyrotriangle equality, Theorem 6.74, shown in the Figure. Moreover, 
since the points a, p, mat,, b lie on the cogyroline, the cogyrodifferences p8a 
and b H mab, for instance, lie on the cogyroline supporting gyrodiameter, 
as expected from Theorem 6.68 and Remark 6.69. 

6.13 Mobius Cogyroline Parallelism 

Mobius gyrolines do not admit parallelism. Given a gyroline L i  = ab and a 
point c not on the gyroline, there exist infinitely many gyrolines that pass 
through the point c and do not intersect the gyroline L i ,  two of which, 
L; = clc2 and Lq = c3c4, are shown in Fig. 6.5 for the Mobius gyrovector 

In contrast, cogyrolines do admit parallelism. Given a cogyroline Li  = 
ab and a point c not on the cogyroline, there exists a unique cogyroline 
that passes through the point c and does not intersect the cogyroline Li.  

plane cw;, R, gM). 
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It is the cogyroline Lf = a’b’ shown in Fig. 6.6 for the Mobius gyrovector 

We note that (i) the two parallel cogyrolines L; = ab and Li = a’b’ in 
Fig. 6.6 share their supporting gyrodiameters, and that (ii) their associated 
points bEa and b’Ela’ lie on the common supporting gyrodiameter. Hence, 
these points in V, c V represent two Euclidean vectors in V that are 
Euclidean parallel to the supporting gyrodiameter, so that there exists a 
real number r # 0 such that b’ E a’ = r(b El a). Equivalently, there exists 
a real number X # 0 such that 

plane ( % , % l % ) .  

b’ E! a’ = X@(b El a) (6.241) 

as we see from Def. 6.80 of scalar multiplication. Hence, by Def. 6.63, the 
cogyrolines Lf, and L; are parallel. 

6.14 Illustrating the Gyroline Gyration Transitive Law 

In a Mobius gyrovector plane the Gyroline Gyration Transitive Law in 
Theorem 6.29 can be illustrated graphically in terms of the slide of a tangent 
line along a circular arc, Fig. 6.7. 

Let 

L = a@b@t (6.242) 

be a gyroline in the Mobius gyrovector plane (R:, @, @), and let 

p(t) = a@b@t (6.243) 

be the generic point of the gyroline L parametrized by the gyroline param- 
eter t E R. 

Considering the gyroline parameter t as “time”, the point p(t), -m < 
t < m, travels along the gyroline, reaching the point a at time t = 0 and 
the point a@b at time t = 1. 

Finally, let 

(6.244) 

be a gyration of b parametrized by the gyroline parameter t .  
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tl < 0 < t2 < t 3  

. 

Slide of the tangent line 

along the Mobius gyroline p(t) 

Fig. 6.7 The slide of the Euclidean tangent line along the Mobius gyroline. p(tn) = 
a@&bQtn, tn E R, n = 1,2,3,  ti < 0 < t z  < t3 ,  and p(0) are four points on the 
gyroline p(t) = a@&bQt, parametrized by t E W. The Euclidean tangent line at any 
point p(t) of the gyroline is Euclidean parallel to the vector gyr[p(t), a a ] b .  Shown are 
the tangent lines at the four points of the gyroline, p ( t l ) ,  p ( O ) ,  p(tz), p ( t3 ) ,  and their 
corresponding Euclidean parallel vectors in the Mobius gyrovector plane (.a=, , &, Q), 
which is the Poincark disc model of hyperbolic geometry. 

For t = 0 we have 

(6.245) 

Hence, initially, at “time” t = 0 the gyrated b, bt, coincides with b. In- 
terpreting b as a Euclidean vector in R2 and the gyroline L as a Euclidean 
circular arc in R2, Fig. 6.7 shows that the Euclidean vector b is Euclidean 
parallel to the Euclidean tangent line of the Euclidean circular arc L at the 
point p(0) = a. In this sense we say that b is pointing in the direction of 
the gyroline (6.242), in full analogy with its Euclidean counterpart. 
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The gyration that gyrates the point 

to the point 

gyr[p(tz), ealb 

shown in Fig. 6.7, is clearly given by 

(6.247) 

gyr[p(tz), ea1gyr-l [ ~ ( t l ) ,  -I = gyr[p(tz), e a l g ~ r [ e a ,  P ( ~ I ) I  
= gyr[p(tz), e a l g ~ r [ a ,  ep(t1)l (6.248) 

= gYr[P(tz), @P(tl>I 

In the chain of equations (6.248) we employ the Gyroline Gyration Tran- 
sitive Law, Theorem 6.29, noting that the points a, p(t1) and p(tz) are 
cogyrolinear, lying on the cogyroline L. 

Similarly, the gyration that gyrates the point 

gYr[P(tz), ealb (6.249) 

to the point 

gyr[p(t3), ealb (6.250) 

shown in Fig. 6.7, is given by 

g ~ r [ ~ ( t 3 ) ,  @ P ( ~ z ) I  (6.251) 

By the gyroline gyration transitive law, the composition of the gyroau- 
tomorphism (6.248) followed by the gyroautomorphism (6.251) is, again, a 
gyroautomorphism, 

gyr[~(ta),  Q P ( ~ Z > ~ ~ Y ~ [ P ( ~ Z ) ,  ep ( td1  = ~ Y ~ [ P W ,  ep( td1  (6.252) 

gyrating the point 

to the point 

(6.253) 

(6.254) 

shown in Fig. 6.7. 
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Noting that a = p(O), gyroautomorphisms of the form gyr[p(tz), ep(tl)] 
along with Fig. 6.7 illustrate symbolically and visually the gyroline gyration 
transitive law. The parametric gyration of the point b, 

with the parameter t E R and any b e d  real number t o ,  describes the slide 
of the Euclidean tangent line along the Euclidean circular arc L with the 
variation o f t .  The slide (6.255) of the tangent line is shown in Fig. 6.7 for 
four values, t l ,  0, t 2 ,  t 3 ,  of the parameter t in the special case when t o  = 0, 
for which 

6.15 Turning the Mobius Gyrometric into the Poincar6 
Metric 

A Mobius gyrovector space (V,, a, R) is a gyrometric space with gyro- 
metric given by the Mobius gyrodistance function, Def. 6.8, 

satisfying the gyrotriangle inequality, Theorem 6.9, (3.133), and (3.147), 

= tanh($b@Ma + 4 c a b )  

In the special case when the real inner product space V, is realized 
by the complex open unit disc D, (3.113), Mobius gyrodistance function 
(6.257) reduces to 

(6.259) 
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a, b E ID, as we see from (3.115). Mobius gyrometric (6.259) of the complex 
open unit disc D leads to the well-known Poincark metric of the ball, as we 
will see below. 

Noting that, by (3.147), 

d(a,c) = IlceMa(l = stanh4ce a (6.260) 
M 

etc., we have from (6.258), 

tanh$c%a 5 tanh(4b%a + 4ceMb) (6.261) 

or, equivalently, 

where, by (3.147), 

(6.263) 

is the rapidity of b%a, etc. 

tion 
Inequality (6.262) suggests the introduction of the Mobius distance func- 

4% b) h(a, b) = tanh-' - 
S (6.264) 

Mobius distance function (6.264) turns the gyrotriangle inequality (6.258) 
into a corresponding triangle inequality (6.262) that, by (6.263) - (6.264), 
takes the form 

h(a, c> I h(a, b) + h(b, c> (6.265) 

Accordingly, (6.264) takes the Mobius gyrometric d(a, b) into the Mobius 
metric h(a, b), the latter being a generalization of the well-known 
Poincark distance function of the open complex unit disc [Krantz (1990), 
p. 53][Goebel and Reich (1984), pp. 65-66]. 

Mobius gyrometric (6.257) of a Mobius gyrovector space (Vs, %, BM) 
and its gyrotriangle inequality (6.258) are equivalent to Poincark metric 
(6.264) of the Mobius gyrovector space and its triangle inequality (6.265). 
F'rom the viewpoint of gyrovector spaces, the advantage of the gyrometric 
over the metric of Mobius gyrovector spaces rests on the analogies that the 
former shares with vector spaces. Owing to these analogies, the gyrometric 
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l l b ~ a l l ,  (6.257), and its associated gyrotriangle inequality on the first row 
of (6.258) appear natural from the perspective of inhabitants of the Mobius 
gyrovector space (R:, s, BM) just as the metric Ilb - all and its associated 
triangle inequality appear natural from the perspective of inhabitants of 
the Euclidean vector space (R3, +, .) where we live. 

Remark 6.81 Like Mobius gyrometric, also Mobius cogyrometric can be 
expressed in terms of rapidities. This, however, will not give rise to a 
corresponding triangle inequality. Unlike Mobius gyrometric, Mobius cogy- 
rometric does not obey the gyrotriangle inequality but, rather, the cogyro- 
triangle inequality, Theorem 6.11. The latter, in turn, involves a gyration 
correction just  as the gyroassociative and the gyrocommutative laws involve 
gyration corrections. The presence of a gyration correction in the cogyrotri- 
angle inequality does not allow its reduction to a triangle inequality. Thus, 
Mobius gyrometric is a gyroconcept that captures into gyroformalism the 
classical concept of the metric. As  a result, for instance, the concept of gy- 
rogeodesics in the Mobius gyrovector space (V,, BM, BM) coincides with that 
of geodesics in the PoincarC ball model of hyperbolic geometry, as we will see 
in Sec. 7.3. Contrastingly, Mobius cogyrometric captures new objects called 
cogyrogeodesics, which do not have a classical counteryurt. Interestingly, 
gyrogeodesics and cogyrogeodesics share remarkable duality symmetries that 
gyroformalism captures; see for instance, ( i)  Theorem 2.21, (ii) Theorems 
2.29 -2.30, and (iii) Theorems 6.29 and 6.62. 

6.16 Einstein Gyrovector Spaces 

Einstein gyrogroups (V,, Q) admit scalar multiplication Q , turning them 
into Einstein gyrovector spaces (V,, Q, Q). 

Definition 6.82 (Einstein Scalar Multiplication). Let (Vs, @#) be a 
Mobius gyrogroup. The Mobius scalar multiplication rBEv = vBEr in V, is 
given by  the equation 

where r d R ,  vEV,, v # 0; and r@#O = 0.  
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Interestingly, the scalar multiplication that Mobius and Einstein addi- 
tion admit coincide. This stems from the fact that for parallel vectors in 
the ball, Mobius addition and Einstein addition coincide as well. 

Einstein scalar multiplication can also be written in terms of the gamma 
factor (3.129) as 

v # 0. 
As an example, the Einstein half is given by the equation 

3; v 1 T@V = - 
1 + 7 v  

(6.268) 

so that, accordingly, 

2@($@v) = 2@- v 
1 +"I, 

(6.269) 
- -- ̂Iv v@- 7v v 

l + Y V  1 + Y V  

= v  

as expected from the scalar associative law of gyrovector spaces. 

of v by the identity 
The gamma factor of r@v is expressible in terms of the gamma factor 

7 r s v  = 2% T { (1 + ?)'+ (1 - ? ) T }  (6.270) 

and hence, by (6.266), 

rT,V(T@Ev> = -YV 2 r{(l+q)r-(l-!A)r}k (6.271) 

for v # 0. The special case of T = 2 is of particular interest, 

Noting the identity 

(6.273) 
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Fig. 6.8 The unique gyroline in an Fig. 6.9 The unique cogyroline 
Einstein gyrovector space (V,, Q, G)  in (V,, Q , Q) through two given points 
through two given points a and b. The a and b. The case of the Einstein gyrovec- 
case of the Einstein gyrovector plane, when tor plane, when V, = W$, is the real open 
V, = W$, is the real open unit disc, is unit disc, is shown graphically. 
shown graphically. 

we have from (6.266), 

so that 

(6.274) 

(6.275) 

The unique Einstein gyroline Lib and cogyroline Lib that pass through 
two given points a and b are represented by the equations 

L ib  = a ~ ( ~ a ~ b ) @ E t  
(6.276) 

Lib = (b 8, a)@,t%a 

t c R ,  in an Einstein gyrovector space (Vs, eE, @E). Gyrolines in an Einstein 
gyrovector space coincide with the well-known geodesics of the Beltrami 
(also known as Klein) ball model of hyperbolic geometry, as we will prove 
in Sec. 7.5. Einstein gyrolines in the disc are Euclidean straight lines, 
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Fig. 6.10 The gyrosegment that links the Fig. 6.11 The cogyrosegment that links 
two points a and b in the Einstein gyrovec- the two points a and b in the Einstein gy- 
tor plane ( R ~ , c B , B ) .  p is a generic point rovector plane (R~,cB,@).  p is a generic 
between a and b, and ma+ is the gyromid- point cobetween a and b, and ma,b is 
point of a and b. See also Fig. 6.3. the cogyromidpoint of a and b. See also 

Fig. 6.4. 

Fig. 6.8. In contrast, Einstein cogyrolines in the disc are Euclidean elliptical 
arcs that intersect the boundary of the disc diametrically, that is, on the 
opposite sides of a diameter, that is, the supporting gyrodiameter, Fig. 6.9. 

Figure 6.10 presents a gyrosegment ab in the Einstein gyrovector plane 
(Rz, eE, 8)  along with its gyromidpoint mab, and a generic point p lying 
between a and b. Since the points a, p, b are gyrocollinear, they satisfy the 
gyrotriangle equality, Theorem 6.47, shown in the figure. 

Figure 6.11 presents a cogyrosegment ab in the Einstein gyrovector 
plane (R:, @, @) along with its cogyromidpoint mab, and a generic point 
p lying cobetween a and b. Since the points a, p, b are cogyrocollinear, 
they satisfy the cogyrotriangle equality, Theorem 6.74, shown in the figure. 
Moreover, since the points a, p, mab, b lie on the cogyroline, the cogyrod- 
ifferences p E a and b El mab, for instance, lie on the cogyroline supporting 
gyrodiameter, as expected from Theorem 6.68 and Remark 6.69. 

6.17 Turning Einstein Gyrometric into a Metric 

Since Einstein and Mobius addition of parallel vectors in V, coincide, the 
present section is similar to Sec. 6.15. 
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An Einstein gyrovector space (Vs, , s) is a gyrometric space with 
gyrometric given by the Einstein gyrodistance function, Def. 6.8, 

satisfying the gyrotriangle inequality, Theorem 6.9, (3.133) and (3.147), 

Noting that, by (3.147), 

(6.278) 

d(a, c )  = IIcsall = s tanh4,%a (6.279) 

etc., we have from (6.278), 

or, equivalently, 

4 c S a  5 4b%a + 4 c s b  

where, by (3.147), 

1 Ilbsall +bGa = tanh- - 
S 

(6.281) 

(6.282) 

is the rapidity of b s a ,  etc. 

function 
Inequality (6.281) suggests the introduction of the Einstein distance 

Einstein distance function (6.283) turns the gyrotriangle inequality (6.278) 
into a corresponding triangle inequality (6.281) that, by (6.282) - (6.283), 
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The PV Gyroline 
through the points a and b 

Plane Origin 

r a ,  t = O  

Fig. 6.12 The unique gyroline in a PV 
gyrovector space (V, s , @+,) through two 
given points a and b. The case of the PV 
gyrovector plane, when V = W2 is the Eu- 
clidean plane, is shown. Interestingly, the 
gyroline asymptotes intersect at the origin. 

The PV Cogyroline 
through the points a and b 

Plane Origin 

Fig. 6.13 The unique cogyroline in 
(V, 6, a) through two given points a and 
b. The case of the PV gyrovector plane, 
when V = W2 is the Euclidean plane, is 
shown. Interestingly, the cogyroline is a 
Euclidean straight line. 

takes the form 

We thus see that the gyrometric (6.277) of an Einstein gyrovector space 
(Vs, R ,  Q) and its gyrotriangle inequality (6.278) are equivalent to the 
metric (6.283) of the Einstein gyrovector space and its triangle inequality 
(6.284). 

6.18 PV (Proper Velocity) Gyrovector Spaces 

PV gyrogroups (V, &) admit scalar multiplication & , turning them into 
PV gyrovector spaces (V, CB,, &). 

Definition 6.83 (PV Scalar Multiplication). Let (V,@,) be a PV 
gyrogroup. The PV scalar multiplication r@.,v = v@"r in V is given by the 
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equation 

"")'} S 

(6.285) 

where rER, VGV, v # 0; and rBuO = 0 .  

The unique PV gyroline LLb and cogyroline Lib that pass through two 
given points a and b are represented by the equations 

(6.286) 

t E R, in a PV gyrovector space (V, @,, 8,). PV gyrolines in the space V 
are Euclidean hyperbolas with asymptotes that intersect at the origin of the 
space V, Fig. 6.12. In contrast, PV cogyrolines in the space are Euclidean 
straight lines, Fig. 6.13. 

Let c be a point not on the cogyroline L:b that passes through the two 
given points a and b in a PV gyrovector space (V, eU, BU), Fig. 6.14. In 
order to find a point d E V such that the resulting cogyroline that passes 
through the points c and d, 

Lsd = (d 8, C)BUt@,C (6.287) 

is parallel to the given cogyroline L:b, we impose on d the condition 

d 8, c = b 8, a (6.288) 

that follows from Def. 6.63 as the parallelism condition. 
Solving (6.288) for d by a right cancellation we have 

d = (b 8, a)@,. (6.289) 

thus determining the unique cogyroline Lsd, in (6.287), that passes through 
the given point c and is parallel to the given cogyroline Lib. 

Since cogyrolines in PV gyrovector spaces are Euclidean straight lines, 
parallelism in these gyrovector spaces coincides with Euclidean parallelism, 
as shown in Fig. 6.15 with the cogyrolines Llb and Lsd of (6,286) and 
(6.287). 
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A cogyroline and a point 
not on the cogyroline 

Plane Origin 

Parallel Cogyrolines 

C 
0 
C 

0 

a, t = O  
HC7 d, t = l  t = o  

a, t = O  

Fig. 6.14 A cogyroline Lib and a point c 
not on the cogyroline in a PV gyrovector 
plane P2,@+,,%). 

Fig. 6.15 The unique cogyroline Lz, that 
passes through the given point and is par- 
allel to the given cogyroline in Fig. 6.14. 

6.19 Gyrovector Space Isomorphism 

Definition 6.84 (Gyrovector Space Isomorphism). An iso- 
morphism from a gyrovector space (GI, $1,  @ I )  to a gyrovector space 
(G2, $2 ,@2)  is a bijective map 

$21 : GI + G2, ui ++ $ 2 1 ~ 1  = ~ 2 ,  vi H $ 2 1 ~ 1  = v2 

that preserves the vector space operation, 

$2 l (Ul@lVl )  = $21u1@2$21v1 = u2@2v2 (6.290) 

and scalar multiplication, 

$21(T@lVl )  = T@2421V1 = r@2v2 (6.291) 

and that keeps the inner product of unit gyrovectors invariant, 

(6.292) 

for all nonzero u, v E GI. 

An isomorphism preserves gyrations and cooperation as well. To see 
this, let us recall the gyration applications in G1 and G2, Theorem 2.8 
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and 

The isomorphism inverse to 4 2 1  is denoted 412. The isomorphisms be- 
tween the gyrovector spaces of Mobius, Einstein and PV are presented in 
Table 6.1. 

Table 6.1 Gyrovector Space Isomorphisms. 

The isomorphism between Einstein addition eE and Mobius addition 
in the ball Vc is surprisingly simple when expressed in the language of 

gyrovector spaces. As we see from Table 6.1, the relationship between 

We clearly have
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and eM is given by the equations 

U R V  = 2@( ;@ueM ;@v) 

U Q V  = ;@(2@UeM2@v) 
(6.296) 

for all u,v E Vc. The related connection between Mobius transformation 
and Lorentz transformation of Einstein’s special theory of relativity was 
recognized by H. Liebmann in 1905 [Needham (1997), Chap. 31. 

As an illustration, the derivation of the isomorphisms #UM and q$MU of 
Table 6.1 from the isomorphisms d U E ,  4 E U ,  # M E r  and &M follows. Noting 
(6.272) and (6.235), and the definition of the factors ,6 and y in (3.159) and 
(3.129), we have 

4 U M  = #UE$EM : v H 2 % ~  H yzqV2%v = 2 7 : ~  (6.297) 

and 

dMU = dMEdEU : v ++ PVv H i%(Pvv) = ypvv PVv = &V (6.298) 
l+YPVV 

Definition 6.85 (Gyrovector Space Models). W e  say that two iso- 
morphic gyrovector spaces are two equivalent models of the abstract gyrovec- 
tor space. 

Accordingly, we see from Table 6.1 that Einstein, Mobius, and PV gy- 
rovector spaces are three equivalent models of the abstract gyrovector space. 
Indeed, we will find in Chap. 7 that the Einstein, Mobius, and PV gyrovec- 
tor spaces provide the setting for three models of the hyperbolic geometry of 
Bolyai and Lobachevsky. These are, respectively, the Poincarb ball model, 
the Beltrami (or, Klein) ball model, and the PV space model. 

6.20 Gyrotriangle Gyromedians and Gyrocentroids 

The gyromidpoint prv of two points u and v of the abstract gyrovector 
space (G, el 8) is given by, (6.91), 

pm uv =1. ,@(uEw (6.299) 

Definition 6.86 (Gyrotriangle Gyromedians, Gyrocentroids). 
The gyrosegment connecting the gyromidpoint of a side of a gyrotriangle 
with its opposite vertex, Fig. 6.16, is called a gyromedian. The point of 
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Fig. 6.16 The gyromidpoints of the three sides of a gyrotriangle uvw in the Einstein 
gyrovector plane (R:, G,Q) are shown along with its gyromedians and gyrocentroid. 
Interestingly, Einsteinian gyromidpoints and gyrocentroids have interpretation in rel- 
ativistic mechanics, fully analogous to the interpretation of Euclidean midpoints and 
centroids in classical mechanics that one discovers in the vector space approach to Eu- 
clidean geometry [Hausner (1998)]; see Fig. 10.3. 

concurrency of the three gyrotriangle gyromedians is called the gyrotriangle 
gyrocentroid. 

We will now study the gyrotriangle gyromedians and gyrocentroid in 
Einstein, Mobius, and PV gyrovector spaces [Ungar (2004a)l. 

6.20.1 I n  Einstein Gyrovector Spaces 

Einstein gyrovector spaces (Vc, R, R) are particularly suitable for the 
study of gyromedians and gyrocentroids since gyrolines are Euclidean 
straight lines so that the calculation of points of intersection of gyrolines 
can be performed by methods of linear algebra. The resulting determina- 
tion of gyrocentroids in Einstein gyrovector spaces can readily be translated 
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into other isomorphic gyrovector spaces. 
It follows from (6.299), by (3.156) and the scalar associative law of 

gyrovector spaces, that the gyromidpoint prv in Einstein gyrovector spaces 
is given by the equation 

(6.300) 

- - YUU + YVV 

Yu + Yv 

We have thus obtained the following 

Theorem 6.87 (The Einstein Gyromidpoint). Let u, v E Vc be any 
two points of an  Einstein gyrovector space (Vc, eE, BE). The gyromidpoint 
prv of the gyrosegment uv is  given by the equation 

m - Yuu+YvV 
Puv - 

Yu + Yv 
(6.301) 

The gyromidpoints of the three sides of a gyrotriangle uvw in the 
Einstein gyrovector plane (R;, BE, %), and its gyrocentroid are shown in 
Fig. 6.16. Gyromidpoints are gyrocovariant under left gyrotranslations, 
Theorem 6.36. Therefore a left gyrotranslation by x E rW; of the gyroseg- 
ment uv in Fig. 6.16 into the gyrosegment (ex@u)(ex@v) in Fig. 6.17 
does not distort the gyrosegment gyromidpoint. Hence, the gyromidpoint 
of the gyrotranslated gyrosegment (ex@u)(ex@v), Fig. 6.17, is given by 
the equation 

(6.302) 

thus uncovering the interesting identity 

(6.303) YUU + YVV - - Ye,eu@X@U + YeXev@@V ex@ 
Yu + Yv Yex@u + Yexev 

in any Einstein gyrovector space. 
Gyrolines in the Beltrami ball model of hyperbolic geometry, that  is, in 

Einstein gyrovector spaces, are Euclidean straight lines. Hence, by elemen- 
tary techniques of linear algebra, one can verify that the three gyromedians 
in Fig. 6.16 are concurrent, and that the point of concurrency, that  is, the 
gyrocentroid Cuv, of gyrotriangle uvw, is given by the elegant equation 
(6.304) that we place in the following 
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Fig. 6.17 A left gyrotranslation by xE(Rz ,@,  @) of the gyrotriangle uvw of Fig. 6.16 in 
an Einstein plane is shown. Gyromidpoints are gyrocovariant under left gyrotranslations, 
Theorem 6.36. Hence, a left gyrotranslation of a gyrotriangle does not distort its side- 
gyromidpoints and gyrocentroid. Accordingly, related formulas are left gyrotranslated 
gyrocovariantly. 

Theorem 6.88 (The Einstein Gyrotriangle Gyrocentroid). Let 
u, v, w E Vc be any three nongyrocollinear points of an Einstein gyrovec- 
tor space (Vc, eE, BE).  The gyrocentroid CFvw of the gyrotriangle uvw, 
Fig. 6.16, is given by  the equation 

YUU + 7VV + YWW 
Yu + 7v + Yw c u v w  = (6.304) 

Gyromidpoints are gyrocovariant, Theorem 6.36. Therefore a left gyro- 
translation by xERz of the gyrotriangle uvw in Fig. 6.16 into the gyrotrian- 
gle (ex@u)(ex@v)(ex@w) in Fig. 6.17 does not distort the gyrotriangle 
side gyromidpoints and gyrocentroid. Hence, the gyrocentroid of the gyro- 
translated gyrotriangle (ex@u)(ex@v)(ex@w), Fig. 6.17, is given by the 
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Fig. 6.18 The hyperbolic tetrahedron 
uvwx, that is, a gyrotetrahedron, is shown 
in the Einstein gyrovector space 

underlying the Beltrami ball model of hy- 
perbolic geometry. The gyrotetrahedron 
uvwx is shown inside the c-ball Rz of the 
Euclidean 3-space R3 where it lives. The 
faces of the gyrotetrahedron are gyrotrian- 
gles. 

@ = (@!%,%) 

Fig. 6.19 Shown are also the gyromid- 
points of the 6 sides and the gyrocentroids 
of the 4 faces. The gyroline joining a ver- 
tex of a gyrotetrahedron and the hyper- 
bolic centroid, gyrocentroid, of the oppo- 
site face is called a gyrotetrahedron gyro- 
median. The four gyromedians of the gy- 
rotetrahedron uvwx are concurrent. The 
point of concurrency is the gyrotetrahedron 
gyrocentroid CUv,, . 

equation 

- - @excmexcwexm 
thus uncovering the interesting identity 

YUU + YVV + YWW 
Yu + Yv + Yw 

- - Ye,$u@x@U + Yex$veX@V + Ye,$weX@W 

e m  
(6.306) 

Yexcm + Yexw + Y e x e w  

in any Einstein gyrovector space. 
Euclidean triangle centroids have classical mechanical interpretation 

[Hausner (1998)l. Interestingly, we will see in Chap. 10 on Einstein’s 
special theory of relativity that gyrocentroids in Einstein two and three- 
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dimensional gyrovector spaces (or, equivalently, in the Beltrami disc and 
ball model of hyperbolic geometry) have analogous relativistic mechanical 
interpretation in which the gamma factor plays the role of the relativistic 
mass correction. 

Further extension to n-dimensional gyrotetrahedrons in n-dimensional 
Einstein gyrovector spaces, n 2 3, shown in Figs. 6.18 and 6.19 for n = 3, is 
obvious. Thus, for instance, the gyrocentroid CuvWx of the gyrotetrahedron 
uvwx in Fig. 6.19 is given by the equation 

6.20.2 In Mobius Gyrovector Spaces 

Let 

(6.307) 

(6.308) 

be, respectively, the Einstein and the Mobius gyrovector spaces of the ball 
Vc of a real inner product space V. They are gyrovector space isomorphic, 
with the isomorphism $EM and its inverse isomorphism $ME from G, into 
Ge shown in Table 6.1. Accordingly, the correspondence between elements 
of G, and Ge is given by the equations 

ve E Ge, v m  E G,. 
Hence, by (6.309) and the first identity in (6.275) we have 

Similarly, following (6.309) and (6.272) we have 

(6.309) 

(6.310) 

(6.311) 
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Hence, by (6.301), (6.310) and (6.311) we have 

so that 

(6.3 12) 

(6.313) 

We have thus obtained in (6.313) the following 

Theorem 6.89 (The Mobius Gyromidpoint). Let u, v E Vc be any 
two points of a Mobius gyrovector space (Vc,@,,@M). The gyromidpoint 
pFv of the gyrosegment uv joining the points u and v in Vc is given by the 
equation 

(6.3 14) 

Similar to (6.312) and (6.313) we have, by (6.304), (6.310) and (6.311), 
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Fig. 6.20 A triangle uvw in the Mobius gyrovector plane ( R z , s , @ )  is shown with 
the gyromidpoints puv, puw and pvw of its sides, and its gyromedians, and centroid 
CU"W , 

so that 
1 - cu,v,wm - ~@Mc*,v,w, 

for any u,, v,, wm E G,. 
We have thus obtained in (6.316) the following 

Theorem 6.90 (The Mobius Gyrotriangle Gyrocentroid). Let 
u, v, w E Vc be any three nongyrocollinear points of a Mobius ggrovector 
space (V,,, eM, gM). The centroid Cuvw, Fig. 6.20, of the hyperbolic triangle 
uvw in V, is given by the equation 

(6.317) 
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The gyrotriangle gyrocentroid in the Mobius gyrovector space (that is, 
the hyperbolic triangle centroid in the PoincarB ball model) was also stud- 
ied by 0. Bottema [Bottema (1958)l. The gyrocentroid of the hyperbolic 
triangle u v w  in the Poincar6 disc model, as determined by (6.317), is shown 
in Fig. 6.20. 

6.20.3 In PV Gyrovector Spaces 

Let Ge = (Vcl @&, @&) and G, = (V, @" , @) be, respectively, the Einstein 
and the PV gyrovector spaces of the ball Vc of a real inner product space 
V and of the real inner product space V. They are gyrovector space iso- 
morphic, with the isomorphism &U and its inverse isomorphism &,E from 
G, into G, shown in Table 6.1. Accordingly, the correspondence between 
elements of G, and G, is given by the equations 

v, E G,, v, E G,, so that 

1 - 
l̂v, - ~ 

Hence, by (6.301) and (6.319) we have 

PV, 

- u, + v, 

Pu, Pv, 

- 1  1 -+-  

(6.318) 

(6.319) 

(6.320) 

so that, using the notation ~ ( v )  = 3; when convenient, we have 

PF,V, = Y(PUeVJPL m (6.321) 

Similarly, the gyrocentroid CueVew, of gyrotriangle u,v,we in G, is 
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Fig. 6.21 Gyrotriangle gyromedians in a Fig. 6.22 Cogyrotriangle cogyromedians 
PV gyrovector space are concurrent. The in a PV gyrovector space are not concur- 
gyrotriangle gyroangles satisfy rent. The cogyrotriangle cogyroangles sat- 

Cu+P+y<.rr isfy a+a+-r=.rr 

given in terms of corresponding points of Gu by the equation 

- u, + v u  + wu 
- 1  1 1 -+-+- 

Pu, Pv, Pw, 

(6.322) 

so that the gyrocentroid Cuuv,w, of gyrotriangle u,v,w, in G, is given 
by the equation 

cu,v,w, = Y(CU,V,We)CUeV.W. (6.323) 

A gyrotriangle in the PV gyrovector plane (a2, &, R), along with its 
gyromedians and gyrocentroid, is shown in Fig. 6.21. 

We may finally note that cogyrocentroids of cogyrotriangles do not ex- 
ist since the cogyromedians of a cogyrotriangle are not concurrent as we 
see, for instance, in Fig. 6.22. The non-concurrency of the cogyrotriangle 
cogyromedians is "explained" by the bifurcation principle in the hyperbolic 
bifurcation diagram of Fig. 8.38. 
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(1) Verify the last identity in (6.269). 
(2) Prove the identity 

Y3@V(3@4 = (47; - YV)V (6.324) 

for any gyrovector v in an Einstein gyrovector space (Vs, %, %). 
(3) The Einstein Quarter. Prove the identity 

-&v 1 = 7 V  
4 Yv + 1 + J r n V  (6.325) 

for any gyrovector v in an Einstein gyrovector space (Vs, R, s). 
Hint: Use the Einstein half (6.268) successively, noting the scalar 
associative law of gyrovector spaces. 

(4) Verify Theorem 6.45 by employing Theorem 3.8 and the gyrocom- 
mutative law. 

(5) Identities (6.205) and (6.210) along with the gyrocommutative law 
suggest the identity 

gYr[P:b, bIgyr[b, 4 = gYr[P:b, a1 

(Why?) Verify the suggested gyroautomorphism identity (6.326). 

(6.326) 



This page intentionally left blank



Chapter 7 

Rudiments of Differential Geometry 

In this chapter we uncover the link between gyrovector spaces embedded 
in the Euclidean n-space R", n 2 2, and differential geometry. Accord- 
ingly, we explore the differential geometry of Mobius gyrovector spaces 
(RF, eM BM), Einstein gyrovector spaces (R!, eE, B ~ ) ,  and PV gyrovector 
spaces (R", R, Bu)7 where RF is the c-ball of the Euclidean n-space, 

IW: = {v E R" : llvll < c} (7.1) 

We will find that the differential geometry of Mobius and Einstein 
gyrovector spaces reveals that Mobius gyrovector spaces coincide with 
the Poincar6 ball model of hyperbolic geometry while Einstein gyrovec- 
tor spaces coincide with the Beltrami (also known as the Klein) ball model 
of hyperbolic geometry. In contrast, PV gyrovector spaces seem to provide 
a new space (as opposed to  ball) model of hyperbolic geometry. 

In R" we use the vector notation 

r = ( 2 1  , x27. . . 7 2") 
dr= (dxl,dxa, . . . ,  dx,) 

n 

i=l 
n 

dr2 = drsdr = (ldr(12 = C d x :  

r.dr = xidxi 
i=l 

(rxdr)2 = r2dr2 - (rsdr)' 

noting that by the last equation in (7.2) (rxdr)' is defined in R" for any 

215 
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dimension n. 

7.1 The Riemannian Line Element of Euclidean Metric 

To set the stage for the study of the gyroline and the cogyroline element of 
the gyrovector spaces (EX:, @, @) and ( E X n ,  @, @) in Secs. 7.3-7.8 we begin 
with the study of the Riemannian line element ds2 of the Euclidean vector 
space En with its standard metric given by the distance function 

The differential 

AS = (V + Av) - v = AV (7.4) 

has the norm 

The latter gives the distance between the two neighboring points v and 
v + Av in Rn, where Av is of sufficiently small length, JJAvll < E for some 
& > 0. 

Let v , A v  E EX: or Rn be represented by their components rela- 
tive to rectangular Cartesian coordinates as v = ( 2 1 ,  . . . x,) and Av = 
(Ax1, . . . Axn). The differential As can be written as 

+ ~ i A x i  + ...  +&,Ax, 

where ~ 1 ,  . . . , cn 4 0 as E + 0. 
We write (7.6) as 

and use the notation ds2 = l ld~11~.  
Since 

-- - (0,. . . ,1,.  . . , O )  dAs 
a A ~ k  
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(a 1 in the lcth position), (7.7) gives 

ds = (dxl,. . . , dx") (7.9) 

so that the Riemannian line element of the Euclidean n-space R" with its 
standard metric (7.3) is 

n 
ds2 = x d x :  = dr2 (7.10) 

Following the calculation of the Riemannian line element (7.10) of the 
Euclidean n-space R" with its metric given by the Euclidean distance func- 
tion (7.3) the stage is set for the presentation of analogies in Sec. 7.2 and, 
subsequently, for the calculation of the 

i=l 

(1) gyroline element of each of the gyrovector spaces in Secs. 7.3- 
7.8 with their gyrometrics given by their respective gyrodistance 
functions; and the 

(2) cogyroline element of each of the gyrovector spaces in Secs. 7.3-7.8 
with their cogyrometrics given by their respective cogyrodistance 
functions. 

7.2 The Gyroline and the Cogyroline Element 

The gyrometric and the cogyrometric of a gyrovector space (G,@,@) is 
given by its gyrodistance and cogyrodistance function 

d@(bea) = llbeall 
dm(b E a) = Ilb I3 all 

(7.11) 

respectively, in full analogy with (7.3). 
To determine the line element ds2 of the n-dimensional Riemannian 

manifold which corresponds to a gyrovector space gyrometric and cogy- 
rometric, we consider the gyrodifferential and the cogyrodifferential given, 
respectively, by the equations 

AS = (V + A v ) e v  
A s = ( v + A v ) B v  

(7.12) 

in a gyrovector space (G, $, @I), where G = R: or G = R". The analogies 
that the gyrodifferential and the cogyrodifferential in (7.12) share with the 
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differential in (7.4) are obvious. 

respectively, the gyrodistance and the cogyrodistance 
The norm of the gyrodifferential and the cogyrodifferential in Rn gives, 

between the two neighboring points v and v + Av of or Rn. Here + 
is vector addition in R", and Av is an element of rW: or Rn of sufficiently 
small length, llAvll < E for some E > 0, in full analogy with (7.5). 

Let v ,Av E RF or Rn be represented by their components rela- 
tive to rectangular Cartesian coordinates as v = (XI,  . . . x,) and Av = 
(Ax1, . . . Ax,). The differential As can be written as 

+ ~ l A x l +  . . .  +&,AX, 

where €1, . . . , E, -+ 0 as E 4 0. 
We write (7.14) as 

and use the notation ds2 = llds112. Following the origin of ds from a gyrod- 
ifferential or a cogyrodifferential, we call ds the element of arc gyrolength 
or cogyrolength, and call ds2 = llds1I2 the gyroline or cogyroline element, 
respectively. Each gyroline and cogyroline element forms a Riemannian line 
element. 

For the sake of simplicity, further details are given explicitly for the 
special case of n = 2, but the generalization to any integer n > 2 is obvious, 
and will be presented without further details. In the special case when 
n = 2, (7.15) reduces to 

dAs, dAs, 
dxl + [El { Ax1 = 0}  dx2 [ dAxl] { Ax1 = 0 } d s =  - 

Ax2 = 0 Ax2 = 0 (7.16) 
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where XI, XZ : Rz t R2 (where G = Rz) or XI, XZ : R2 --f R2 (where 
G = EX2) are given by 

(7.17) 

k = 1,2.  
Following standard notation in differential geometry [Carmo (1976), 

p. 921, the metric coefficients of the gyrometric or cogyrometric of the gy- 
rovector plane (I@, @, 8) or (R2, @, @) in the Cartesian xlxz-coordinates 
are 

E = X1*X1 
F = Xl'X2 
G = x 2 . X ~  

These metric coefficients give rise to the Riemannian line element 

(7.18) 

suggesting the following two definitions. 

Definition 7.1 (Gyrometric and Cogyrometric Coefficients). The  
metric coefficients (7.18) that result f rom the gyrodistance (cogyrodistance) 
(7.11) in a gyrovector space (G, $, 8) are called the gyrometric (cogyromet- 
ric) coefficients of the gyrovector space. 

Definition 7.2 (Gyroline and Cogyroline Elements). The Rieman- 
nian line element (7.19) that results f rom the gyrodistance (cogyrodistance) 
(7.11) in a gyrovector space (G,@,@) is called the gyroline (cogyroline) 
element of the gyrovector space. 

The gyrovector plane (EX:,@,@) or (Rz,@,@), with its gyrometric or 
cogyrometric, results in a Riemannian line element ds2 .  The latter, in turn, 
gives rise to the Riemannian surface (R,", ds2) or (EX', ds2). The Gaussian 
curvature K of this surface is given by the equation [McCleary (1994), 
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p. 1491 

{ det 
1 

(EG - F2)2  
K =  

\ 

-det iE2 E F 

F G 

where El = d E / d x l ,  F12 = d2F/dxldx2, etc. 
In the special case of F = 0 (7.20) reduces to the equation 

EG > 0,  [Carmo (1976), p. 2371 [McCleary (1994), p. 1551 [Oprea (1997), 
p. 1051. 

The following definition is natural along the line of Defs. 7.1 and 7.2. 

Definition 7.3 ( Gyrocurvature and Cogyrocurvature). The Gaus- 
sian curvature of a gyrovector space with i ts  gyroline (cogyroline) element 
is  called a gyrocurvature (cogyrocurvature). 

Following Defs. 7.1, 7.2 and 7.3, any gyrovector space possesses (i) a 
gyrodistance and a cogyrodistance function; (ii) a gyrometric and a cogy- 
rometric; (iii) gyrometric and cogyrometric coefficients; (iv) a gyroline and 
a cogyroline element; and (v) a gyrocurvature and a cogyrocurvature. 

Concrete examples are presented in Secs. 7.3 - 7.8, and are summarized 
in Table 7.1 of Sec. 7.9. 

7.3 The Gyroline Element of Mobius Gyrovector Spaces 

In this section we uncover the Riemannian line element to which the gyro- 
metric of the Mobius gyrovector space (It!, &, %) gives rise. 
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Let us consider the gyrodifferential (7.12), 

AS, = (V + Av)e,v 

(7.22) 

in the Mobius gyrovector plane (R:, @,, @,), where ambiguously, + is the 
Euclidean addition in R2 and in R. To calculate X1 and X2 we have 

dAs, dAs, ds, = [ - dAxl] { Ax1 = 0}  dxl + [&I{ Axl=O} dx2 

Ax2 = O  Ax2 = 0 (7.23) 

(7.24) 

where r2 = x! + xi. 

plane in the Cartesian x~x~-coordinates are therefore 
The gyrometric coefficients of the gyrometric of the Mobius gyrovector 

c4 
(c2 - 2 2 r )  

c4 
(c2 - ,2)2 

E = X1.Xl = 

F = X1.X2 = 0 (7.25) 

G = x 2 . X ~  = 

Hence, the gyroline element of the Mobius gyrovector plane (R,", @, , a) 
is the Riemannian line element 

d s i  = IldsMl12 

(7.26) = Edxf + 2 F d ~ l d ~ 2  + Gdxg 

c4 
(c2 - 2 2 r )  

- - (dx: + dxg) 

known as the Poincar6 metric. Thus, for instance, the Riemannian line 
element of the Poincar6 disc or, equivalently, the Mobius gyrovector plane 
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(IR;=,, s, %), is [McCleary (1994), p. 2261 

dx:  + d x $  
d s ,  = 

(1 - $)2 
(7.27) 

An interesting elementary study of the Riemannian structure (7.26) in 
the context of the hyperbolic plane is presented in the introductory chapter 
of [Helgason (1984)]. The Riemannian line element d s c  is identified in 
[Farkas and Kra (1992), p. 2161 as a Riemannian metric on the Riemann 
surface IDc=l, where Dc=l is the PoincarB complex open unit disc. 

Following Riemann [Stahl (1993), p. 731 we note that E,  G and EG - 
F 2  = EG are all positive in the open disc I%:, so that the quadratic form 
(7.26) is positive definite [Kreyszig (1991), p. 841. 

The gyrocurvature of the Mobius gyrovector plane is the Gaussian cur- 
vature K of the surface with the line element (7.26). It is a negative con- 
stant, 

4 K = - -  
C2 

as one can calculate from (7.21). 
Extending (7.26) from n = 2 to n >_ 2 we have 

c4 
(c2 - r 2 2 dr2 

2 d s ,  = 

d r 2  
(1 + aKr2)2 

- - 

(7.28) 

(7.29) 

The Riemannian line element ds;  reduces to its Euclidean counterpart 
in the limit of large c,  

lim d s i  = dr2 
c-00 

(7.30) 

as expected. 
The study of the line element (7.29) by Riemann is described in [Coxeter 

(1998), p. 121. In two dimensions it is known as the PoincarB metric of the 
Poincark disc [McCleary (1994)l. We have thus established the following 

Theorem 7.4 The gyroline element of a 
(IR;,eM,BM) is given by the equation 

d r 2  
2 c4 

d s ,  = 

Mobius gyrovector space 

(7.31) 
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and its gyrocurvature is given by  the equation 

4 K = - -  
C2 

(7.32) 

In particular, for n = 2 and c = 1 the gyroline element (7.31) coincides 
with the Riemannian line element of the Poincare' disc model of hyperbolic 
geometry. 

A Riemannian metric g in W" has the form 

(7.33) 

Two Riemannian metrics 91 and 92 are said to be conformal to each other 
if there is a positive smooth (that is, infinitely differentiable) function f : 
Rn + R>O such that g1 = f g 2  [Lee (1997)], R>O = { r  E R : r > 0) being 
the positive ray of the real line W. 

The Riemannian metric of Mobius gyrovector spaces (Rp, eM, gM), 
given by (7.29), is conformal to the Riemannian metric 

n 

dr2 = dx: 
i=l 

(7.34) 

of the Euclidean n-space Rn. Hence, hyperbolic spheres in Mobius gyrovec- 
tor spaces are also Euclidean spheres. However, Euclidean and hyperbolic 
sphere centers need not coincide, as shown in Fig. 7.1. The reason in terms 
of analogies that Euclidean and hyperbolic geometry share is clear. For 
any two tangent Euclidean circles with centers a, c and concurrent point 
b, the points a, b, c are collinear. In full analogy, for any two tangent 
Mobius circles with centers a, c and concurrent point b, the points a, b, c 
are gyrocollinear, as shown in Fig. 7.1. 

7.4 The Cogyroline Element of Mobius Gyrovector Spaces 

In this section we uncover the Riemannian line element to which the cogy- 
rometric of the Mobius gyrovector space (WF, s, BM) gives rise. 
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Fig. 7.1 The Mobius gyrocircle Ca,b, given by the equation 
cos 8 - sin 8 

is the hyperbolic circle in the Mobius gyrovector plane (Ra, Q,, Q). It is a Euclidean 
circle with hyperbolic radius ]/%a& bll, hyperbolically centered at a. 
A second gyrocircle, Cc,b, that intersects ca ,b  at a single point, b, is shown. In full 
analogy with Euclidean geometry, the two gyrocenters a and c and the concurrent point 
b are gyrocollinear. 

Let us consider the cogyrodifferential (7.12), 

AScM = (v + Av) El, v 
(7.35) 

in the Mobius gyrovector plane (Rz, %, Q), where + is the Euclidean 
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addition in R2 and R. To calculate X1 and X2 we have 

where X I ,  Xz : R: -+ R2, obtaining 

C2 

C2 

x1 (x1, z2) = 

Xz(x1,zz) = 

(c2 + x: - x;, 221x2) E vc = R: 

(221x2, c2 + x: - x i )  E vc = rwq 
(7.37) 

where r2 = xf + x:. 
rovector plane in the Cartesian xlx2-coordinates are therefore 

The cogyrometric coefficients of the cogyrometric of the Mobius gy- 

c4 
(c4 - r4)2 

E = X1.X1 = { (c2 + r2l2 - 4c2x;} 

(7.38) 

Hence, the cogyroline element of the Mobius gyrovector plane 
(W:, eM, BM) is the Riemannian line element 

2 d s i ~  = IldsCMIl 

= Edxq + 2 F d ~ l d ~ z  + Gdxi 

c4 
- - (c4 - 4 2 {(c2 + r2)'(dz; + dx;) - 4c2(zldxz - zzdxl)'} 

r )  

Following Riemann [Stahl (1993), p. 73]), we note that E, G and 

(7.39) 

(7.40) 
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are all positive in the open disc Rg, so that the quadratic form (7.39) is 
positive definite [Kreyszig (1991), p. 841. 

In vector notation the Riemannian line element (7.39), extended to n 
dimensions, takes the form 

{ (c2 + r2)’dr2 - 4c2(r x dr)’} (7.41) 
c4 

(c4 - 4 2 r )  
dsLM = 

in Cartesian coordinates. 

counterpart in the limit of large c,  
As expected, the Riemannian line element dskM reduces to its Euclidean 

lim d s i M  = dr2 
C’CU 

(7.42) 

The cogyrocurvature of the Mobius gyrovector plane is the Gaussian 
curvature K of this surface. It is a positive variable, 

(7.43) 

as one can calculate from (7.20). We have thus established the following 

Theorem 7.5 
(RF, eM1 gM) is given by the equation 

The cogyroline element of a Mobius gyrovector space 

c4 
d s & f  - - (.4 - 4 2 { (c2 + r2)’dr2 - 4c2(r x d r ) 2 }  (7.44) 

r )  

and its cogyrocurvature is given by the equation 

(7.45) 

7.5 The Gyroline Element of Einstein Gyrovector Spaces 

In this section we uncover the Riemannian line element to which the gyro- 
metric of the Einstein gyrovector space (RF, %, %) g’ ives rise. 

Let us consider the gyrodifferential (7.12), 

AS, = (V + Av)%v 

(7.46) 
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in the Einstein gyrovector plane (Rz, eE, mE), where + is the Euclidean 
addition in R2 and in R. To calculate X1 and Xp we have 

a A s E  d A s ,  
dxl + [G] { Ax1 = O }  dx2 [ d A x l ]  { Ax1 = 0 } ds, = - 

Ax2 = 0 A22 = 0 (7.47) 

where R2 = c2 - r2,  

plane in the Cartesian x1 zz-coordinates are therefore 

r2 = xf + xi. 
The gyrometric coefficients of the gyrometric of the Einstein gyrovector 

c2 - x; 
(c2 - 2 2 r )  

X1.X1 = E = c2 

(7.49) 

c2 - x: x2.X~ = G = c2 
(c2 - r2)2 

Hence, the gyroline element of the Einstein gyrovector plane 
(Rz, eE, BE) is the Riemannian line element 

ds: = l l d ~ E 1 1 ~  

(7.50) = Edxf + 2 F d ~ l d ~ 2  + Gdxi 

dx? + d ~ $  2 (x ldz l  + ~ 2 d . 2 ) ~  
(c2 - 2 2 . r )  

= c2 + C  c2 - r2 

Following Riemann [Stahl (1993), p. 731, we note that E ,  G and 

C6 
EG-  F2 = (.2 - 2 3 r )  

(7.51) 

r2 = x: + xi, are all positive in the open disc R:, so that the quadratic 
form (7.50) is positive definite [Kreyszig (1991), pp. 84-85]. 
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The Riemannian line element ds2, of Einstein gyrometric in the disc 
turns out to be the line element of the Beltrami (or Klein) disc model of 
hyperbolic geometry. The Beltrami line element is presented, for instance, 
in McCleary [McCleary (1994), p. 2201, for n = 2, and in Cannon et al 
[Cannon, Floyd and Walter (1997), dsg ,  p. 711, for n 2 2. An account of the 
first fifty years of hyperbolic geometry that emphasizes the contributions 
of Beltrami, who prepared the background for Poincark and Klein, is found 
in [Milnor (1982)l. 

The gyrocurvature of the Einstein gyrovector plane is the Gaussian cur- 
vature of the surface with the line element (7.50). It is a negative constant, 

1 K = - -  
C2 

(7.52) 

as one can calculate from (7.20). 
Extending (7.50) from n = 2 to n 2 2 we have 

ds; = ~ C2 dr2 + (.2 - C2 ,2)2 (r.dr)2 (7.53) c2 - r2 

in Cartesian coordinates. As expected, the hyperbolic Riemannian line 
element (7.53) reduces to its Euclidean counterpart in the limit of large c ,  

lim ds: = dr2 
C’OO 

(7.54) 

Interestingly, the Beltrami-Riemannian line element (7.53) can be writ- 
ten as 

1 c2dr2 - (r x dr)2 
-ds& = 

(.2 - 2 2 C2 r )  
(7.55) 

as noted by Fock [Fock (1964), p. 391. 
The line element ds; in (7.50) is the line element of Einstein gyromet- 

ric. It turns out to be the metric that the Italian mathematician Eugenio 
Beltrami introduced in 1868 in order to study hyperbolic geometry by a 
Euclidean disc model, now known as the Beltrami disc [McCleary (1994), 
p. 2201. An English translation of his historically significant 1868 essay on 
the interpretation of non-Euclidean geometry is found in [Stillwell (1996)l. 
The significance of Beltrami’s 1868 essay rests on the generally known fact 
that it was the first to offer a concrete interpretation of hyperbolic geometry 
by interpreting “straight lines” as geodesics on a surface of a constant neg- 
ative curvature. Using the metric (7.50), Beltrami constructed a Euclidean 



Rudiments of Diflerential Geometry 229 

disc model of the hyperbolic plane [McCleary (1994)] [Stillwell (1996)], 
which now bears his name. 

We have thus established the following 

Theorem 7.6 
(RE, @El gE) is given by the equation 

The gyroline element of an Einstein gyrovector space 

C2 C2 
dsi = - dr2 + (c2 - r 2 ) 2  (r.dr)2 

c2 - r2 

and its gyrocurvature is given by the equation 

1 K = - -  
C2 

(7.56) 

(7.57) 

In particular, for n = 2 and c = 1 the gyroline element (7.56) coincides 
with the Riemannian line element of the Beltrami disc model of hyperbolic 
geometry. 

7.6 T h e  Cogyroline Element of Einstein Gyrovector Spaces 

In this section we uncover the Riemannian line element to which the cogy- 
rometric of the Einstein gyrovector space (RE, @,, G) g' ives rise. 

Let us consider the cogyrodifferential (7.12), 

ASCE = (V + Av) El, v 

(7.58) 

in the Einstein gyrovector plane (R~l@ElgE)l where + is the Euclidean 
addition in R2 and R. To calculate XI and X2 we have 

(7.59) 
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where X I ,  X2 : Iwz -+ EX2, obtaining 

(7.60) 

where r2 = x: + xz. 
rovector plane in the Cartesian xlx2-coordinates are therefore 

The cogyrometric coefficients of the cogyrometric of the Einstein gy- 

2c2 - r2 
(c2 - r2)2 X1.X2 = F = X l X 2  (7.61) 

Hence, the cogyroline element of the Einstein gyrovector plane 
(Iwz, &, &) is the Riemannian line element 

ds$E = IIdScEI12 

(7.62) = Edx? + 2 F d ~ l d ~ 2  + Gdxg 

where r2 = xf + xz.  In the limit of large c, c 3 00, the Riemannian line 
element ds$, reduces to its Euclidean counterpart. 

Following Riemann [Stahl (1993), p. 731, we note that E l  G and 

(7.63) 
c4 

(.2 - 2 2 r )  
E G - F ~ =  

are all positive in the open disc EX:, so that the quadratic form (7.62) is 
positive definite [Kreyszig (1991), p. 841. 

The cogyrocurvature of the Einstein gyrovector plane is the Gaussian 
curvature K of the Riemannian surface (DC, ds2cE). It is a positive variable, 

c2 - r2 
c4 

K = 2 -  (7.64) 

as one can calculate from (7.20). 
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Extending (7.62) from n = 2 to n 2 2 we have 

2c2 - r2 
r )  

ds%, = dr2 + (c2 - (r. dr)2 (7.65) 

in Cartesian coordinates. As expected, the hyperbolic Riemannian line 
element reduces to its Euclidean counterpart in the limit of large c, 

2 lim dsz, = dr 
C+CC 

(7.66) 

We have thus established the following 

Theorem 7.7 
(R:, eE, BE) is given by the equation 

The cogyroline element of an Einstein gyrovector space 

and its cogyrocurwature is given by  the equation 

c2 - r2 
c4 

K = 2 -  

(7.67) 

(7.68) 

7.7 The Gyroline Element of PV Gyrovector Spaces 

In this section we uncover the Riemannian line element to which the gyro- 
metric of the PV gyrovector space (Rn, @,, @,) gives rise. 

Let us consider the gyrodifferential (7.12), 

AS,, = (V + Av)e,v 
(7.69) 

in the PV in gyrovector plane (Rp, @,, &) where + is the Euclidean addi- 
tion in R2 and in R. To calculate X1 and X2 we have 

dAs, dAs, 
dsv = - 

[,Axl]{ Ax1 = O }  dxl -I- [El { Axl = O }  dx2 
Ax2 = O  Ax2 = O  (7.70) 



232 Analyt ic  Hyperbolic Geometry 

where XI,  X2 : lR2 4 lR2, obtaining 

1 
XZ(X1,  x2) = c2 + r2 + cdm(-x lx2 ,  c2 + r2 + c m  - x;) 

(7.71) 

The gyrometric coefficients of the gyrometric of the PV gyrovector plane 
in the Cartesian x1 x2-coordinates are therefore 

(7.72) 

Hence, the gyroline element of the PV gyrovector plane (It2, @, , cq,) is 
the Riemannian line element 

dsz = IIds,112 

= Edx: + 2 F d ~ l d ~ 2  + Gdxi  (7.73) 
2 1 

= dx: + dx2 - y---(xidxi + ~ 2 d 2 2 ) ~  
c +r2 

where r2 = xf + x i .  
Following Riemann [Stahl (1993), p. 731, we note that E ,  G and 

(7.74) 

are all positive in the R2, so that the quadratic form (7.73) is positive 
definite. 

The gyrocurvature of the PV gyrovector plane is the Gaussian curvature 
K of the surface with the line element (7.73). It is a negative constant, 

1 K = - -  
C2 

as one can calculate from (7.20). 
Extending (7.73) from n = 2 to n 2 2 we have 

2 2 1 
ds, = dr - -(rdr)2 

c2 + r2 

(7.75) 

(7.76) 
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and, as expected, the hyperbolic Riemannian line element reduces to its 
Euclidean counterpart in the limit of large c,  

lim dst = dr2 
c- 00 

(7.77) 

We have thus established the following 

Theorem 7.8 The gyroline element of a PV gyrovector space 
(Rn, eU, BU) is given by the equation 

ds, 2 = dr 2 1  - -(r.dr)2 
c2 + r2 

and its gyrocurvature is given by  the equation 

(7.78) 

(7.79) 

7.8 The Cogyroline Element of PV Gyrovector Spaces 

In this section we uncover the Riemannian line element to which the cogy- 
rometric of the PV gyrovector space (Rn, @,, 8,) gives rise. 

Let us consider the cogyrodifferential (7.12), 

(7.80) 

in the PV gyrovector plane (RE, eE, BE), where + is the Euclidean addition 
in R2 and R. To calculate XI and X2 we have 

(7.81) 
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where XI, X2 : IR: -+ R2, obtaining 

The cogyrometric coefficients of the cogyrometric of the PV gyrovector 
plane in the Cartesian x~x~-coordinates are therefore 

(7.83) 

Hence, the cogyroline element of the PV gyrovector plane (R2, R, BU) 
is the Riemannian line element 

d d u  = IldScu [ I 2  

(7.84) 
c4 

(c2 + r 2 ) 2  
- - (dx: + dx;) 

where r2 = x? + x;. In vector notation, (7.2), the Riemannian line element 
(7.84), extended to n dimensions, takes the form 

(7.85) 

and, as expected, the hyperbolic Riemannian line element reduces to its 
Euclidean counterpart in the limit of large c, 

(7.86) 

The metric (7.85) has the form ds2 = X(r)dr2, X(r)  > 0, giving rise to 
an isothermal Riemannian surface (R2, d&,) [Carmo (1976)l. 

The Riemannian metric ds:, in (7.84) is similar to the Riemannian 
metric ds; in (7.26). It is described in [Farkas and Kra (1992), p. 2141, 
as a Riemannian metric on the Riemann surface M ,  M being the entire 
complex plane C U {w}. 
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The cogyrocurvature of the PV gyrovector plane is the Gaussian curva- 
ture K of this surface. It is a positive constant, 

16 
C2 

K = -  (7.87) 

as one can calculate from (7.20). We have thus established the following 

Theorem 7.9 The cogyroline element of a PV gyrovector space 
(W", $", @+,) is given by the equation 

and its cogyrocurvature is given by the equation 

16 
C 2  

K = -  

(7.88) 

(7.89) 

7.9 Table of Riemannian Line Elements 

The three analytic models of hyperbolic geometry that we study in this book 
are governed by the mutually isomorphic gyrovector spaces of Einstein, 
Mobius, and PV. They are all differentiable manifolds with a Riemannian 
metric. The Riemannian metric ds2 on a Euclidean space V = Rn, or on 
its ball Vc = WF, is a function that assigns at each point x E V, or Vc, a 
positive definite symmetric inner product on the tangent space at x, varying 
differentiably with x. Having studied the Riemannian line elements ds2 in 
several gyrovector spaces, we we now summarize the results in Table 7.1. 

Interestingly, the table shows that the Gaussian curvatures of the Rie- 
mannian gyrometrics of the gyrovector spaces of Einstein, Mobius and PV 
are negative, inversely proportional to the square of their free parameter c. 

In contrast, the Gaussian curvatures of the Riemannian cogyrometrics 
are positive. The gyrometric and cogyrometric of a Euclidean space co- 
incide, being reduced to the standard Euclidean metric. Accordingly, the 
Gaussian curvature of the Riemannian metric of the Euclidean space is 
zero, the only real number that equals its own negative. 

In modern terms, hyperbolic geometry is the study of manifolds with 
Riemannian metrics with constant negative curvature. However, we see 
from Table 7.1 that in classical hyperbolic geometry, that is, the hyperbolic 
geometry of Bolyai and Lobachevsky, constant negative curvatures and 
variable positive ones are inseparable. 
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Table 7.1 The Riemannian line element, ds2,  in vector notation, (7.2), for gyrovec- 
tor space gyrometrics llbeall and cogyrometrics Ilb Elall. In the special case when 
a gyrovector space is a Euclidean vector space, the gyrovector space gyrometric and 
cogyrometric jointly reduce to the vector space metric. Interestingly, speaking gy- 
rolanguage, the gyrocurvatures are negative, the cogyrocurvatures are positive, and 
the curvature is zero. 

Metric 
Gyrometric 
Coqrometric 

Gyrovector Riemannian Gaussian 
Space Line Element Curvature 

Metric 
Ilb - all 

Euclidean ds:,, = dr2 
vector r2 2 o 
space Rn Line Element 
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K = -  Gyrometric PV dsc = dr2 - &(r.dr)2 c +r 7 
gyrovector r2 2 0 (PV Model) Gyrocurvature 
space R" Gyroline Element negative 

llbeuall 

c4 zdr2 K = S  Cogyrometric PV d 6 U  = (cZ+rz) 
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Chapter 8 

Gyrotrigonometry 

Gyrotrigonometry is the study of how the sides and gyroangles of a gyro- 
triangle are related to each other, acting as a computational gyrogeometry. 
Gyrogeometry, in turn, is the geometry of gyrovector spaces. Since gy- 
rovector spaces include vector spaces as a special case, gyrotrigonometry 
unifies Euclidean and hyperbolic trigonometry in the same way that gy- 
rogeometry unifies Euclidean and hyperbolic geometry. Before embarking 
on gyrotrigonometry we must introduce the notion of the gyroangle and 
the study of the Pythagorean theorem of right-gyroangled gyrotriangles in 
gyrovector spaces. 

8.1 Gyroangles 

Definition 8.1 (Unit Gyrovectors). Let ea@b be a nonzero gyrowec- 
tor in a gyrovector space (G, @, N). Its gyrolength is  IIeaebll and its asso- 
ciated gyrovector 

is called a unit gyrowector. 

Unit gyrovectors represent “gyrodirections” . A gyroangle is, accord- 
ingly, a relation between two gyrodirections. 

Definition 8.2 (The Gyrocosine Function And Gyroangles, I). 
Let ea@b and ea@c be two nonzero rooted gyrovectors rooted at a common 
point a in a gyrovector space (G, @, 8). The gyrocosine of the measure of 
the gyroangle a, 0 5 a 5 r, that the two rooted gyrovectors generate is 

237 
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given by the equation 

The  gyroangle a in (8.2) is  denoted by a = Lbac or, equivalently, a = 

Lcab. Two gyroangles are congruent af they have the same measure. 

Theorem 8.3 The measure of a gyroangle i s  model independent. 

Proof. Following Def. 6.85 let (GI, @ I ,  @I) and (G2, @2,@2)  be two iso- 
morphic gyrovector spaces with isomorphism 4 : GI --+ G2. Furthermore, 
let a1 be a gyroangle in GI given by 

= cosa1 

so that a1 and a 2  have the same measure, a1 = a2. 0 

Mobius gyrovector spaces are conformal to corresponding Euclidean 
spaces, as explained in Sec. 7.3, p. 220. Accordingly, it is convenient to 
visualize gyroangles in the Mobius gyrovector plane, Fig. 8.1, where the 
measure of the gyroangle between two intersecting gyrolines is equal to the 
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measure of the Euclidean angle between corresponding intersecting tangent 
lines. 

To calculate the gyrocosine of a gyroangle a generated by two intersect- 
ing gyrolines, Fig. 8.1, we place on the two intersecting gyrolines two rooted 
gyrovectors with a common tail at the point of intersection. In Fig. 8.1 we, 
accordingly, place the two nonzero gyrovectors ea@b and ea@c or, equiva- 
lently, ea@b’ and eaec’ so that the measure of the gyroangle a in Fig. 8.1 
is given by the equation 

or, equivalently, by the equation 

In the following theorem we show that, as expected, (8.6) and (8.7) give 
the same gyroangle measure for the gyroangle a. 

Definition 8.4 (Gyrorays). Let o and p be any two distinct points of 
a gyrovector space (G, @, @). A gyroray with origin o containing the point 
p is the set L of points in G given by 

Theorem 8.5 Let 

Lab = a@(ea@b)@t 
Lac = a@(ea@c)@t 

t E IWzo, be two gyrorays emanating from a point a in a gyrovector space 
(G, @, @), and let b’ and c’ be any points, other than a, lying on  Lab and 
La,, respectively, Fig. 8.1. Furthermore, let a be the gyroangle between the 
two gyrorays, expressed in terms of b’ and c‘, 

(8.10) 

Then, a is independent of the choice of the points b’ and c‘ on  their re- 
spective gyrorays. 
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Fig. 8.1 A Mobius gyroangle a generated by two intersecting Mobius geodesic rays 
(gyrorays). Its measure equals the measure of the Euclidean angle generated by corre- 
sponding intersecting tangent lines. 

Proof. Since the points b’ and c’ lie, respectively, on the gyrorays Lab 
and La,, and since they are different from a, they are given by the equations 

for some t l ,  t 2  > 0. Hence, 

(8.11) 

(8.12) 
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so that, by (8.10), (8.12), and the scaling property (V4) of gyrovector 
spaces, we have 

(8.13) 

Hence, cosa is independent of the choice of the points b‘ and c’ on their 
respective gyrorays, Fig. 8.1. 0 

Theorem 8.6 Gyroangles are invariant under gyrovector space motions. 

Proof, We have to show that the gyroangle a = Lbac  for any points a, 
b, c of a gyrovector space (G, @, @) is invariant under the gyrovector space 
motions, Def. 6.6. Equivalently, we have to show that 

Lbac  = L(Tb)(Ta)(Tc) (8.14) 

and 

for all a, b, c, x E G and all 7 E Aut(G). 
Employing (6.7) we have 

= cosLbac 

(8.16) 

since automorphisms preserve the inner product and the norm, thus veri- 
fying (8.14). 
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Fig. 8.2 Left gyrotranslations keep gy- 
roangles invariant by Theorem 8.6. Two 
successive left gyrotranslations of the gy- 
roangle a of Fig. 8.1 towards the origin of 
the Mobius disc are shown in Figs. 8.2 and 
8.3. The measure of the gyroangle a be- 
tween two gyrolines equals the Euclidean 
measure of the angle between correspond- 
ing Euclidean tangent lines. 
With vertex a # 0 ,  the gyroangle a has a 
gyrocosine, denoted cos a. 

Fig. 8.3 At the Euclidean origin of the 
Mobius disc the gyrolines that generate a 
gyroangle a coincide with their respective 
Euclidean tangent lines, and the gyroangle 
a coincides with its Euclidean counterpart. 
At the Euclidean origin of a Mobius disc 
(or ball), thus, the concepts of gyroangles 
and angles coincide. 
With vertex a = 0,  the gyroangle a be- 
comes an angle, and its gyrocosine becomes 
a cosine. 

Noting the Gyrotranslation Theorem 3.13, we have 

= cos Lbac 

since gyroautomorphisms preserve the inner product and the norm, thus 
verifying (8.15). 

Figures 8.2 and 8.3, along with Theorem 8.6, show that gyroangles 
behave like angles so that, in particular, gyroangles add up to 27r. 
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Theorem 8.7 
gyrovector space (G, @, 8)  then 

If a point b lies between two distinct points a and c in a 

Labc  = T (8.18) 

The three points a, b, c are gyrocollinear, by Lemma 6.25 and Proof. 
Def. 6.22. 

By Lemmas 6.25 and 6.26 we have 

b = a@(ea@c)@to 
b = c@(ec@a)@(l - t o )  

for some 0 < t o  < 1. Hence, by left cancellations, 

ea@b = (ea@c)@to 
ec@b = (ec@a)@(l - t o )  

(8.19) 

(8.20) 

Therefore, by the gyrocommutative law, the invariance of the inner 
product under gyrations, the scaling property of gyrovector spaces, Identity 
(6.82), and the automorphic inverse property we have the chain of equations 

thus verifying (8.18). 

(8.21) 

0 
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Left gyrotranslating the points of the Mobius gyrovector plane in 
Fig. 8.1 by e a  amounts to gyrotranslating the gyroangle a to the ori- 
gin of the gyroplane. This gyrotranslation, in turn, keeps the gyroangle 
invariant according to Theorem 8.6. Once at the origin of its Mobius gy- 
rovector space, a gyroangle measure coincides with its Euclidean measure 
and its generating gyrolines reduce to generating Euclidean straight lines, 
as shown in Figs. 8.2 and 8.3 for the Mobius gyrovector plane. 

An extension of Def. 8.2 to the gyroangle between two gyrovectors that 
need not be rooted at a common point is natural, giving rise to the following 

Definition 8.8 (Gyroangles Between Gyrovectors, 11). Let 
eal$bl and eaz$bz be two nonzero gyrovectors in a gyrovector space 
(G,$,@). The gyrocosine of the gyroangle Q, 0 _< a 5 T ,  between the two 
gyrovectors, 

Q = L(eal$bl)(eaz@bz) (8.22) 

is given by  the equation 

(8.23) 

Definition 8.9 (Gyrovector Parallelism and Perpendicularity). 
Two gyrovectors are parallel (perpendicular) i f  the gyroangle a between them 
satisfies cosa = 1, that is, Q = 0 ( C O S ~  = 0, that is, a = x / 2 ,  resp.). 

Theorem 8.10 
tors invariant. 

Proof. 

Gyrovector translations keep gyroangles between gyrovec- 

Gyrovector translations, Def. 5.6 and Theorem 5.7, do not modify 
0 

In order to visualize the gyroangle of Def. 8.8 in a Mobius gyrovector 
plane one may gyrovector translate the two rooted gyrovectors eal $bl 
and eaz$bz that generate a gyroangle in (8.23) into new ones that possess 
a common tail, as shown in Fig. 8.4. 

Thus, the notion of the gyrovector translation of gyrovectors allows, 
in Def. 8.8, to complete the analogy that the gyroangle of Def. 8.2 shares 
with its Euclidean counterpart. We can now define the gyroangle between 
gyrorays as well. 

The gyroangle between any gyrovector and itself vanishes, Def. 8.8, so 
that any gyrovector is parallel to itself. Hence, by Theorem 8.10, successive 

the value of gyrovectors and, hence, keep (8.23) invariant. 
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Fig. 8.4 Gyrovector translation allows the visualization of the gyroangle generated by 
two rooted gyrovectors that have distinct tails, a1 and az. The gyroangle is visually 
revealed by gyrovector translating the rooted gyrovectors into new rooted gyrovectors 
with a common tail x. The two cases of x = x’ and x = x” in the Mobius gyrovector 
plane are shown. Thus 

8alebl  = 8x’Bb; = 8x”eb;’ 
8azBbz = 8x’eb; = ex/’@b‘; 

The measure of the included gyroangle between two gyrovectors that share a common 
tail in a Mobius gyrovector space equals the measure of the included angle between two 
tangent rays at the common tail. These tangent rays are, therefore, shown. 

gyrovector translations of any given gyrovector form a family of gyrovectors 
that are parallel to each other. The gyroray analog, a family of parallel 
gyrorays, is shown in Fig. 8.8. 

Theorem 8.11 
rouectors in a gyrovector space (G,  el @). 
eazeb2 are parallel if and only if 

Let eaeb,  ealebl  and 8azebz be three nonzero gy- 
The  gyrovectors eal$bl and 

(8.24) 
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Proof. If (8.24) holds then, by Def. 8.8, 

(8.25) 
- e a e b  ea2eb2 e a e b  ealebl  
- 

IIeaebii ’ 11ealeblll IIeaebll‘ 11ea2eb211 

imp 1 y i n g 

) = 0  (8.26) 

in the carrier V of G. Owing to the positive definiteness of the inner product 
in the carrier vector space V, Def. 6.2, (8.26) implies 

ea$b ealebl  - ea2eb2 
IIeaebil.( 11ealeblll 11eazeb211 

for some X > 0 in the carrier vector space V. 

is given by the equation 
Hence, the gyroangle Q between the gyrovectors ealebl  and ea2$bp 

eal$bl ea2eb2 
ilealeblli ’ 11ea2eb211 

cosa = 

(8.28) 

= 1  

implying Q = 0 so that the two gyrovectors eal@bl and eazeb2 are 
parallel. 

Conversely, if the two gyrovectors eal$bl and eaz$bz are parallel 
then the gyroangle between them vanishes, 

(8.29) 

implying 

for some X > 0 in the carrier vector space V. The latter, in turn, implies 
0 (8.25), which is equivalent to (8.24). 
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Definition 8.12 
Between Gyrorays, 111). Let L be a gyroray with origin 0, 

(Gyroray Carriers of Gyrovectors, Gyroangles 

L : o @ ( e o @ p ) @ t  (8.31) 

t E I R ~ O ,  containing the point a in a gyrovector space (G, @, @). Then, the 
gyrovector eo@a lies on the gyroray L and, equivalently, the gyroray L 
carries (or, is the carrier of) the gyrovector eo@a. 

Let L1 and L2 be two gyrorays carrying, respectively, the gyrovectors 
ea@b and ec@d. Then the gyroangle a between the gyrorays L1 and L2 is  
given by the gyroangle between the two gyrovectors e a e b  and w e d ,  that 
is, 

(8.32) 

It  follows from Def. 8.12 that the origin of a gyroray coincides with the 

In terms of Def. 8.12, Theorem 8.5 can be stated as follows. 
tail of any gyrovector that it contains. 

Theorem 8.13 
choice of the gyrovectors lying on the gyrorays. 

The gyroangle between two gyrorays is independent of the 

Owing to the presence of gyrations, the gyroangle between two gyrorays 
that lie on the same gyroline in the same direction does not vanish in 
general, as the following theorem demonstrates. 

Theorem 8.14 Let 

L1 : o l @ ( e o l @ p l ) @ t  
L2 : 0 2 @ ( e o 2 @ p 2 ) @ ~  

(8.33) 

s , t ~ I R 2 ~ ,  be two gyrorays in a gyrovector space (G,@,@) such that L2 is 
contained in L1, Fig. 8.6. Then, the gyroangle a between L1 and L2 is 
given by  the equation 

(8.34) 

Proof. 
Hence, there exist real numbers t l ,  t 2  > 0 ,  t 2  - tl > 0,  such that 

Since L2 is contained in L1, the points 0 2  and p2 of L:! lie on L1. 

(8.35) 
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Hence, (i) by the Gyrotranslation Theorem 3.13, (ii) the first equation 
in (8.35) and the scalar distributive law (V2) of gyrovector spaces, (iii) 
Theorem 2.30, and (iv) axiom (V5)  of gyrovector spaces, we have 

e02@p2 = e{ol @( 801 @~1)@~~}@{0~@(e0~ @pl)@tz) 

=gyr[ol, ( e 0 1 @ ~ ~ ) ~ t ~ ] ( e ( e 0 ~ ~ ~ ~ ) @ . t ~ @

=g~r[02, e O 1 l ( e O 1 @ p l ) N - t l  + t 2 )  

={gyr[o2, e o l ] ( e 0 1 @ P l ) } @ ( - t l  + t 2 )  

=gyr[ol, eol@02](e01@~l)@"(t~ + t 2 )  (8.36) 

The gyroangle a between the gyrorays L1 and L2 is given by the equation 

(8.37) 

Finally, substituting eo2@p2 from (8.36) in (8.37), and noting axiom 
(V4) of gyrovector spaces and that gyrations preserve the norm, we have 
(8.34). 0 

Theorem 8.15 Let 

(8.38) 

s, t E RLo, be two cogyrolinear gyrorays (that is, two gyrorays lying on the 
same gyroline) in a gyrovector space (G, @,@I), non of which contains the 
other one, Fig. 8.7. Then, the gyroangle a between L1 and L2 is given by 
the equation 

Proof. The proof is identical with that of Theorem 8.14 with one excep- 
tion. Here t:! - tl < 0 (rather than t 2  - tl > 0 in Theorem 8.14), resulting 

0 in the negative sign in (8.39). 

8.2 Gyrovector Translation of Gyrorays 

Definition 8.16 (Gyrovector Translation Of Gyrorays). Let 
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t E RIo ,  be a gyroray in a gyrovector space (G,@,@), represented by its 
origin, 0, and any point p that it contains. Furthermore, let eo’@p’ be 
the gyrovector translation by t of gyrovector eo@p, Def. 5.6. Then, the 
gyro ray 

0% (eo’ep‘) @t (8.41) 

t E W r o ,  is said to be the gyrovector translation by t of the gyroray (8.40). 

Lemma 8.17 The gyrovector translation of the gyroray 

o@ (eo@p)@t (8.42) 

by  a gyrovector t in a gyrovector space (G, @, @) results in the gyroray 

gY+, tI{ [t@ol@(e[t@ol@[t@~l)@t} (8.43) 

(which is obtainable from the original gyroray (8.42) by  a left gyrotransla- 
tion of the points o and p by  t, followed by a gyration gyr[o, t]). 

Furthermore, (8.43) can be written as 

(o@t)@(eo@p)@t (8.44) 

(which is obtainable from the original gyroray (8.42) by  a right gyrotrans- 
lation of the first o by t). 

Proof. 
given by (8.41), in which 0’ and p’ are determined by Def. 5.6, 

By Def. 8.16 the gyrovector translation of gyroray (8.42) by t is 

(8.45) 

tEIW?’, thus verifying both (8.43) and (8.44). 

We may note that it follows from Lemma 8.17 that 

Hence, by (8.41), (8.45), the Gyrotranslation Theorem 3.13, the gyration
inversive symmetry (2.93), and the gyrocomutative law, we have
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(1) while the original gyroray (8.42) has origin 0, corresponding to 

(2) the gyrovector translated gyroray (8.44) by t has origin o@t, cor- 
t = 0, and contains the point p, corresponding to t = 1, 

responding to t = 0, and contains the point 

(o@t)@(eo@d = g d o ,  t l ( t@~)  (8.47) 

corresponding to t = 1. 

Interestingly, the origin of the gyrovector translated gyroray by t is right 
gyrotranslated by t from o to o@t, as we see from the passage from (8.42) 
to (8.44) that the gyrovector translation by t generates. 

Theorem 8.18 A gyrovector translation by t of a gyroray 

o@( eo@p)@t (8.48) 

t€R>', with origin o in a gyrovector space (G, @, 8)  is independent of the 
selection of the point p on the gyroray. 

Proof. 
there exists a positive number T such that 

Let b be any point, different from 0, on the gyroray (8.48). Then, 

b = 0@(00@p)@,r (8.49) 

so that by left gyroassociativity and a left cancellation, 

eO@b = eo@{o@(eo@p)@~} 
(8.50) 

= (eo@p)@r 

The gyrovector translation by t of the gyroray 

o@(eo@b)@t (8.51) 

tEIR2', given by Lemma 8.17, is shown in (8.52) below, where we further 
manipulate it by means of (8.50) and the scalar associative law (V3) of 
gyrovector spaces. 

o'@(eo'@b')@t = (o@t)@(eo@b)@t 
= (o@t)@((eo@p)w)at (8.52) 

= (o@t)@(eo@p)@(rt) 

rtEIW2'. Comparing (8.52) with the extreme right hand side of the result 
(8.46) of Lemma 8.17 we see that the choice of the point b on the gyroray, in 
(8.51), instead of the point p on the gyroray, in (8.48), does not modify the 
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gyrovector translated gyroray. Rather, it only reparametrizes the gyroray, 
replacing the positive parameter t by another positive parameter, rt ,  where 
r is a positive number that depends on b. 0 

Theorem 8.19 Gyrovector translations of gyrorays keep gyroangles be- 
tween gyrorays invariant. 

Proof. By Def. 8.12, gyroangles between gyrorays are given by gyroangles 
between gyrovectors that respectively lie on the gyrorays. 

Similarly, by Def. 8.16, gyrovector translations of gyrorays are given by 
gyrovector translations of gyrovectors that respectively lie on the gyrorays. 

But, by Theorem 8.10, gyrovector translations keep gyroangles between 
gyrovectors invariant. Hence, gyrovector translations keep gyroangles be- 
tween gyrorays invariant as well. 

It is instructive to present a second, direct proof of Theorem 8.19. 

Proof. A second, direct proof of Theorem 8.19: Let 

(8.53) 

s, tEWLo,  be two gyrorays in a gyrovector space (G, @, @), Fig. 8.5. They 
carry, respectively, the gyrovectors 

eol 
eo2@p2 

so that their gyroangle Q is given by the equation, Def. 8.12, 

(8.54) 

(8.55) 

The gyrorays Li and Li carry, respectively, the following gyrovectors, each 
of which is manipulated by the Gyrotranslation Theorem 3.13 and the gy- 
ration inversive symmetry (2.93), 

Let us simultaneously gyrovector translate the gyrorays L1 and L2 by
t, obtaining by Lemma 8.17,
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I 1  11 11 Lp’lo‘ph = LPlO Pa 

Fig. 8.5 It follows from Theorem 8.19 that in a gyrovector space one can gyrovector 
translate each of the two gyrorays olpl and o z p z  to a new position where they share 
a common origin so that their gyroangle can be visualized as the gyroangle between 
two gyrorays that emanate from the same point. Since, by Theorem 8.19, gyrovector 
translations keep gyroangles between gyrorays invariant, the position of the common 
origin can be selected arbitrarily. 
Accordingly, in this figure the two gyrorays olpl and ozpz are gyrovector translated 
(i) to the common origin o1 and (ii) to the common origin ol1. As expected, the gy- 
roangle Lpio’p; of the gyrovector translated gyrorays o’p; and o lp& and the gyroangle 
Lp;’o”p; of the gyrovector translated gyrorays 0 ” ~ ; ’  and o”p; are equal. 
The measure of the included gyroangle between two gyrorays that share a common 
origin in a Mobius gyrovector space equals the measure of the included angle between 
two tangent rays at the common origin. These tangent rays are, therefore, shown. 

Hence, like the original gyrorays L1 and Lz, also their simultaneously gy- 
rovector translated gyrorays Li and L‘, carry, respectively, the gyrovectors 
(8.54). The gyroangle between L’, and L’, is therefore given by (8.55) as 
desired. 0 

In Fig. 8.5 two gyrorays 

(8.58) 
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Fig. 8.6 This figure presents a special case 
of Fig. 8.5, illustrating Theorems 8.14 and 
8.19 in the Mobius gyrovector plane. A 
gyroray, 0 1 ~ 1 ,  containing another gyroray, 
0 2 ~ 2 ,  is shown. In order to visualize the 
gyroangle included between the gyrorays 
olpl and ozpz, these gyrorays are gyrovec- 
tor translated to the common origin o’, or 
to the common origin 0”. As expected 
from Theorem 8.19, the gyroangle at the 
common origin 0’ equals the gyroangle at 
the common origin 0”. 

Fig. 8.7 This figure presents a special case 
of Fig. 8.5, illustrating Theorems 8.15 and 
8.19 in the Mobius gyrovector plane. Two 
gyrocollinear gyroray, o l p l  and 0 2 ~ 2 ,  non 
of which contains the other, are shown. In 
order to visualize the gyroangle included 
between the gyrorays olpl and 0 2 ~ 2 ,  these 
gyrorays are gyrovector translated to the 
common origin o’, or to the common origin 
0”. As expected from Theorem 8.19, the 
gyroangle at the common origin 0’ equals 
the gyroangle at the common origin 0”. 

tERLo, with distinct origins 01 and 02 are gyrovector translated by tl and 
t 2 ,  respectively, to a new, common origin 0’ (and, similarly, 0”) resulting 
in the gyrorays, (8.44), 

O’P; = ( o l @ t l ) @ ( e O l e p l ) m  

0 p2 = ( ~ ~ @ t ~ ) @ ( e ~ ~ @ ~ ~
I ‘  (8.59) 

tEIW>O, that have a common origin o’, where 

Clearly, to validate (8.60) we must select 

(8.60) 

k = 1,2.  

(8.61) 
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\ 

Fig. 8.8 Two gyrorays are parallel if their included gyroangle vanishes. The two gy- 
rorays olpl and ozpz ,  01 = 02, in the figure contain each other so that their included 
gyroangle vanishes and, hence, they are parallel. By Theorem 8.19, successive gyrovector 
translations of gyroray ozp2 give a family P of gyrorays that remain parallel to gyroray 
olpl and, hence, are parallel to each other. Several gyrovector translations of gyroray 
ozpz by k@t ,  k = 1,2,, . ., are shown in the Mobius gyrovector plane. All the gyrorays 
in this figure are, thus, parallel to each other. 

The gyrorays (8.59) contain, respectively, the points, (8.47), 

(8.62) 

Selecting a different common origin, o”, in Fig. 8.5 results in the gy- 
rorays ol’py and 0‘’~;. By Theorem 8.19, the resulting gyroangles at the 
origins 0‘ and 0“ are equal, as shown graphically in Fig. 8.5. 

Two special cases when the gyrorays (8.58) in Fig. 8.5 are gyrocollinear, 
studied in Theorems 8.14 and 8.15, are illustrated in Figs. 8.6 and 8.7. It 
is clear from Theorems 8.14, 8.15 and 8.19, and their illustration in these 
figures that, owing to the presence of a gyration, gyrorays on the two senses 
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Fig. 8.9 The family P of parallel gyrorays in Fig. 8.8 is shown along with an additional, 
non-parallel gyroray op. In analogy with Euclidean geometry, the gyroray op meets each 
of the gyrorays in the family P at the same gyroangle. Thus, Lpio2p2=Lpjo3p3= 
LP:O~P~=LP;O~P~, etc. 

of the gyroline respond differently to gyrovector translations. Indeed, only 
when the gyration in (8.34) and (8.39) is trivial, these two equations reduce 
to COSQ = f l ,  that is, a = 0 and a = T ,  respectively. As a result, gyrorays 
admit parallelism, as we will see in Sec. 8.3, while gyrolines do not. 

8.3 Gyrorays Parallelism and Perpendicularity 

Definition 8.20 ( Gyroray Parallelism and Perpendicularity). 
Two gyrorays are parallel if the included gyroangle between them vanishes, 
and two gyrorays are perpendicular (orthogonal) if the included gyroangle 
between them is ~ 1 2 ,  Fig. 8.10. 
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Fig. 8.10 The family P of parallel gyrorays in Fig. 8.8 is shown along with an ad- 
ditional, perpendicular gyroray op. In analogy with Euclidean geometry, the gyrc- 
ray op meets each of the gyrorays in the family P at a right gyroangle ~ / 2 .  Thus, 
~ / 2  = Lp;ozpz=Lpjo3ps= Lpbo4p4=Lp~o5p5, etc; see Theorem 8.22 for perpendic- 
ular gyrorays. 

The generation of a family of parallel gyrorays by successive gyrovector 
translations in a Mobius gyrovector space is shown in Fig. 8.8. Owing to 
the presence of gyrations, parallelism in gyrorays cannot be extended to 
gyrolines. Gyrorays in the two senses of the gyroline respond differently to  
gyrovector translations if a non-trivial gyration is involved, as we see from 
Theorems 8.14 and 8.15 and from their illustration in Figs. 8.6 and 8.7. 

The analogies that parallelism in gyrorays shares with parallelism in 
rays are further enhanced by Theorem 8.21 and illustrated in Fig. 8.9. In 
the same way that any family of parallel rays is intersected by a non-parallel 
ray in equal angles, any family of parallel gyrorays is met by a non-parallel 
gyroray in equal gyroangles. 
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Theorem 8.21 
space (G, $, 63). The gyrorays olpl and 0 2 p 2  are parallel if and only if 

Let op, olpl, and 0 2 p 2  be three gyrorays in a gyrovector 

Proof. The Theorem follows immediately from Theorem 8.11 since, by 
Def. 8.12, gyroangles between gyrorays are given by gyroangles between 

0 gyrovectors that  respectively lie on the gyrorays. 

Theorem 8.22 Let 

(8.64) 

tERLo, be two gyrorays in a gyrovector space (G, $, 8). They are perpen- 
dicular if and only if 

Proof. Gyrorays L1 and L2 carry, respectively, the gyrovectors eol @pl 
and @02@p2. Hence, by Def. 8.12, the gyroangle between gyrorays L1 and 
L2 equals the gyroangle between gyrovectors @01@p1 and eo2@p2.  The 

0 latter is n/2 if and only if (8.65) is satisfied. 

We thus see that gyroray parallelism and perpendicularity is fully anal- 
ogous to ray parallelism and perpendicularity. Owing to the presence of 
a gyration, a disanalogy emerges. Parallelism between gyrorays cannot be 
extended to lines. 

8.4 Gyrotrigonometry i n  Mobius Gyrovector Spaces 

Defini t ion 8.23 (Gyrotr iangles) .  A gyrotriangle ABC in a gyrovec- 
tor space (G,@,@) is a gyrovector space object formed by the three points 
A, B ,  C E G, called the vertices of the gyrotriangle, and the segments AB, 
AC and BC, called the sides of the gyrotriangle. These are, respectively, 
the sides opposite to the vertices C, B and A. The gyrotriangle sides gen- 
erate the three gyrotriangle gyroangles a,  p, and y at  the respective vertices 
A, B and C,  Fig. 8.11. 
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. .  . .  

c o s y  = cos(7r -:a - 
cosa = m.m, \ 6 = 7T;- (a 

Fig. 8.11 A Mobius gyrotriangle ABC in the Mobius gyrovector plane D = (Rz, @, @) 
is shown. Its sides are formed by gyrovectors that link its vertices, in full analogy 
with Euclidean triangles. Its hyperbolic side lengths, a ,  b, c, are uniquely determined in 
(8.158), p. 280, by its gyroangles. The gyrotriangle gyroangle sum is less than A. Here, 
a, = a/s, etc. Note that in the limit of large s, s 4 00, the cosy equation reduces to 
cosy = cos(7r - a - p) so that a + p + y = A,  implying that both sides of each of the 
squared side gyrolength equations, shown in the figure and listed in (8.158), vanishes. 

Definition 8.24 (Congruent Gyrotriangles). Two gyrotriangles are 
congruent if their vertices can be paired so that ( i )  all pairs of correspond- 
ing sides are congruent and (ii) all pairs of corresponding gyroangles are 
congruent. 

The six elements of the gyrotriangle are the gyrolengths of its three sides, 
and the measure of its three gyroangles. The purpose of gyrotrigonometry 
is to deduce relations among the gyrotriangle elements. As we will see in the 
sequel, when three of the gyrotriangle elements are given, gyrotrigonometry 
allows the remaining three to be determined. 

Theorem 8.25 
tor Spaces). 

(The Law of Gyrocosines in Mobius Gyrovec- 
Let ABC be a gyrotriangle in a Mobius gyrovector space 
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(Vsl @, @) with vertices A,  B ,  C E V,, sides a, b, CEV, and side gyrolengths 
a,b,cE (-s,s), Fig. 8.11, 

a = eC@B,  

c = eB@A, 

a = llall 

c = llcll 

b = &@A, b = llbll (8.66) 

and with gyroangles a, p and y at the vertices A, B and C ,  Fig. 8.11. Then 

c2 a2 b2 1 2P~a@bcosy 
- = --$-@- 
s s s sl-$p,2a@bcosy 

where pa is the beta factor 

1 

(8.67) 

(8.68) 

Furthermore, the law of gyrocosines (8.67) can be written, equivalently, 
as 

a: + b: - 2asb, cosy 
1 + azbz - 2a,b, cosy cp = 

and as 
a? + bz - c: - azb:cz 

2a, b, (1 - cz) 
cosy = 

(8.69) 

(8.70) 

where a, = :, etc. 

Proof. 
have 

By (8.66), Fig. 8.11, and the Gyrotranslation Theorem 3.13 we 

ea@b = e(eC@B)@(eC@A) 
= gyr[eC, B](BB@A) (8.71) 

= gyr[eC, B]c 

so that 11ea@blI = I(c(I and, accordingly, yc = Tea@.,. 
gamma identity (3.128) we have 

Hence, by the 

7," = y&@b 
2 1 

2 1 
S2 54  

= y:-Y:(1 - -pb + -llal1211b112) s4 

= yEyt(l - -abcosy + -a2b2) 

(8.72) 
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Identity (8.72), in turn, is equivalent to each of the identities (8.67), (8.69), 
and (8.70). 0 

Remark 8.26 Identities (8.69) and (8.70) involve addition, rather than 
gyroaddition. Accordingly, in these identities one may assume s = 1 without 
loss of generality. The more general case of s > 0 can readily be recovered 
from the special case of s = 1. This is, however, not the case in Identity 
(8.67) since it involve gyroadditions which, in turn, depend implicitly on  
the positive parameter s. 

Remark 8.27 W e  may note that the Mobius addition @ in (8.66) is  
a gyrocommutative gyrogroup operation in the Mobius gyrovector space 
(Vs,@,@). I n  contrast, the Mobius addition @ in (8.67) is a commuta- 
tive group operation in the Mobius group (II,@), II being the open interval 
II = (-S, s). Thus, 

a + b  a@b = ___ 
l + $  

(8.73) 

Remark 8.28 
of cosines, 

I n  the limit of large s, s --+ 00, (8.69) reduces to the law 

c2 = a2 + b2 - 2abc0sy (8.74) 

which further reduces to the Euclidean Pythagorean identity 

c2 = a2 + b2 (8.75) 

when y = 7~12. 

Remark 8.29 It  is interesting to compare the law of gyrocosines (8.67) in 
the Mobius gyrovector plane (Rf, ,  @, @) with the standard hyperbolic law 
of cosines in the Poincare' disc. The latter is given by the identity [VariEak 
(1 91 Ob)] 

cosh c' = cosh a' cosh b' - sinh a' sinh b' cosy (8.76) 

(see, for  instance, [Schwerdtfeger (1 962), p.  15.41 and [Pierseaux (2OO4), 
p. St?]), which is equivalent to (8.67) when s = 1 and when 

(8.77) l + c  l + b  l + a  
1 - a '  l - b '  l - C  

c' = log- b' = log- a' = log- 
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In  the special case when y = 7~/2  we have cosy = 0,  and the standard hyper- 
bolic law of cosines (8.76) reduces to the standard hyperbolic Pythagorean 
theorem 

cosh C' = cosh a' cosh b' (8.78) 

an the Poincure' disc (see, for  instance, [Schwerdtfeger (1962), p .  1511). 
Unlike results in gyrogeomety, neither formula (8.76) nor formula (8.78) 
shares visual analogies with its Euclidean counterpart. 

The law of gyrocosines (8.67) is an identity in the Mobius vector space 
(I, @, 8). To solve it for cosy we use the notation 

u2 b2 c2 
Pabc = -@ -e - 

s s s  

so that (8.67) can be written as 

implying 

spabc 

(1 + $Pabc)Qab  
cosy = 

(8.79) 

(8.80) 

(8.81) 

Similarly, by cyclic permutations of the gyroangles and sides of gyrotriangle 
ABC, Fig. 8.11, we have 

and 

spcab 

(1 -t :Pcab)Qca 
cosp = 

(8.82) 

(8.83) 

Theorem 8.30 (Side- Side- Side (SSS)). If, in two gyrotriangles, 
three sides of one are congruent to three sides of the other, then the two 
gyrotriangles are congruent. 

Proof. It follows from the law of gyrocosines, Theorem 8.25, that the 
three side gyrolengths of a gyrotriangle determine the measure of its three 
gyroangles. Hence, by Def. 8.24, the two gyrotriangles are congruent. 0 
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Theorem 8.31 (Side - gyroAngle- Side (SAS)). If, in two gyrotri- 
angles, two sides and the included gyroangle of one, are congruent to two 
sides and the included gyroangle of the other, then the gyrotriangles are 
congruent. 

Proof. It follows from the law of gyrocosines, Theorem 8.25, that the 
side gyrolengths of two sides of a gyrotriangle and the included gyroangle 
determine the third side gyrolength. Hence, by SSS congruency (Theorem 

0 8.30), the two gyrotriangles are congruent. 

The Pythagorean theorem has a long history [Veljan (2000)l. It plays an 
important role in trigonometry, giving rise to the elementary trigonometric 
functions s ina ,  cosa,  etc. In the special case of y = 7r/2, corresponding 
to a right gyroangled gyrotriangle, Fig. 8.12, the law of gyrocosines is of 
particular interest, giving rise (i) to the hyperbolic Pythagorean theorem in 
the Poincark ball model of hyperbolic geometry, and (ii) to the elementary 
gyrotrigonometric functions sin a, cos a,  etc. 

The resulting hyperbolic Pythagorean theorem 8.32 shares with its Eu- 
clidean counterpart visual analogies, shown in Fig. 8.12. 

Theorem 8.32 (The Mobius Hyperbolic Pythagorean Theorem). 
Let ABC be a gyrotriangle an a Mobius gyrovector space (V,,@,@) with 
vertices A,  B ,  C E V,, sides a, b, c E V, and side gyrolengths a ,  b, c E 

(-s, s), 

a = eB@C, 
b = eC@A, b = llbll (8.84) 
c = eA@B,  

a = llall 

c = llcll 

and with gyroangles a, p and y at the vertices A ,  B and C.  If y = 7r/2, 
Fag. 8.12, then 

c2 a2 b2 - = - @ -  
s s s  

(8.85) 

Proof. The hyperbolic Pythagorean identity (8.85) follows from the law 
0 of gyrocosines (8.67) with y = n/2. 
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Fig. 8.12 Gyrotrigonometry in the PoincarQ Model. A Mobius right gyroangled gyro- 
triangle ABC in the Mobius gyrovector space (Vs, $, @) is shown for the special case of 
the Mobius gyrovector plane (Rj,  $, 8). Its sides, formed by the gyrovectors a, b and 
c that join its vertices A,  B and C, have gyrolengths a,  b and c,  respectively. They 
satisfy the Mobius hyperbolic Pythagorean identity (8.85). Its acute gyroangles cr and 0 
satisfy gyrotrigonometric identities analogous to their trigonometric counterparts, where 
a, , ap , b, , b,, c,, cp are related to a, b, c by (8.93). The right gyroangled gyrotriangle 
defect 6 is calculated in (8.127), giving rise to the remarkably simple and elegant result 
tan(bl2) = asbar where a, = a / s ,  b, = b/s and c, = c/s. 

Remark 8.33 
of large s, s + 00, the Mobius Hyperbolic Pythagorean Identity (8.85), 

(The Euclidean Pythagorean Identity). In  the limit 

(8.86) 

in Mobius gyrovector spaces @:,@,@I) reduces to the Euclidean 
Pythagorean Identity 

a’ + b2 = c2 (8.87) 

in  Euclidean spaces (Rn, +, .); see Fig. 8.12 and Remark 8.28. 
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The gyroangles a and p in (8.82) - (8.83) that correspond to y = 7 ~ / 2  
in (8.81), shown in Fig. 8.12, are of particular interest. When y = n/2 we 
have cosy = 0 and, hence, by (8.81), Pabc = 0 implying, by (8.79), the 
hyperbolic Pythagorean identity (8.67). The latter, in turn, implies 

b2 a2 b2 a2 
= -e(-e-)e- 

s s s  s 

b2 
= 2 8 -  

S 

(8.88) 

- 2b2/s - 
1 + b4/s4 

Finally, by substituting (8.88) in (8.82) and straightforward algebra, we 
have 

Similarly, we also have 

as shown in Fig. 
As suggested 

8.12, where we use the notation in (8.91) below. 
in (8.89) - (8.90), we introduce the notation 

(8.89) 

(8.90) 

for aEVs ,  where ya and pa are the gamma and the beta factors given by 
the pair of similar equations 

for any v E V,. We call a, and a7, respectively, the gamma and the beta 
corrections of a. 
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Taking magnitudes in (8.91), we have 

llall - a - 
1 - lla112/s2 1 - a2/sz = IlaYll = llallr = i l l a l l  = 

IlaoII = llallo = P3Iall = 

(8.93) 

- Ilall - a - 
1 + lla112/s2 1 + a2/s2 - 

for a E V,, Clearly, a? E [ O , o o )  and a. E [O,s/2). 
Inverting the equations in (8.91) and (8.93) we have, 

and hence 

or, equivalently, 

2% 
1 + J1- (2a,)2/s2 

a =  

(8.94) 

(8.95) 

(8.96) 

Theorem 8.34 
gyrotriangle in a Mobius gyrovector space (V3, @, @), Fig. 8.12. Then 

Let a, b, c be the side gyrolengths of a right gyroangled 

(8.97) 
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Proof. 
of ordinary addition rather than Mobius addition, takes the form 

The hyperbolic Pythagorean identity (8.85), expressed in terms 

so that 

1 { ( 4 ) 2  + (n)'} = ( f ) 2  

1 + 7  

(8.98) 

(8.99) 

Expressing a ,  b,  c in terms of their gamma and beta corrections by the 
identities in (8.96) for a and by similar identities for b and c ,  and substitut- 
ing these appropriately in (8.99) give the desired identities, (8.97), of the 
theorem. 0 

The identities of Theorem 8.34 can be written, by means of (8.89)- 
(8.90), as (z)2+cos 2 a = l  

(8.100) 
2 

cos2p+ (2)  = 1 

where a and ,Ll are the two acute gyroangles of a right gyroangled gyrotri- 
angle, Fig. 8.12. The identities in (8.100) suggest the following 

Definition 8.35 (The Gyrosine Function). Let ABC be a right gy- 
roangled gyrotriangle an a Mobius gyrovector space (V8, @, @) with acute 
gyroangles a and ,Ll, Fig. 8.12. Then 

a Y  s ina  = - 
c-r 

Following Def. 8.35, identities (8.100) can be written as 

2 2 sin a + cos a = 1 

cos2 ,B + sin2 p = 1 

(8.101) 

(8.102) 

for the right gyroangled gyrotriangle in Fig. 8.12, thus uncovering the ele- 
mentary gyrotrigonometric functions gyrosine and gyrocosine, which share 
remarkable properties with their trigonometric counterparts. There are 
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also important disanalogies. Thus, for instance, if a and p are the two 
non-right gyroangles of a right gyroangled gyrotriangle, Fig. 8.12, then in 
general cos a # sin p and sin a # cos ,8 as implied from formulas shown in 
Fig. 8.12. 

The gyrosine and the gyrocosine functions of gyroangles behave like the 
sine and the cosine functions of (Euclidean) angles. To see this one can 
move the vertex of any gyroangle to the origin of its Mobius gyrovector 
space, where the gyroangle and its gyrosine and gyrocosine becomes an 
(Euclidean) angle with its sine and cosine, as demonstrated in Figs. 8.2 and 
8.3. Hence the gyrotrigonometric functions can be treated in the same way 
that we commonly treat the trigonometric functions. Thus, for instance, 
the gyrosine addition formula is the familiar sine addition formula 

sin(a + p) = sin a cos /3 + cos a sin p (8.103) 

Accordingly, any trigonometric identity is identical with a corresponding 
gyrotrigonometric identity. 

Theorem 8.36 (The Law of Gyrosines in Mobius Gyrovector 
Spaces). Let ABC be a gyrotriangle in a Mobius gyrovector space 
(V3,@]@) with vertices A,B,C E V,, sides a,b,c E V,, and side gy- 
rolengths a ,  b, c E (-s, s), 

a = eB@Cl a = llall 

c = eA@B, c =  llcll 

b = @?@A, b =  llbll (8.104) 

and with gyroangles a, p and y at the vertices A, B and C, Fig. 8.13. Then  

CY (8.105) 
L=b,-- a - 

s ina  s inp siny 

Proof. Following Def. 8.35 of the gyrosine function] the proof of the law 
of gyrosines is fully analogous to its Euclidean counterpart] as shown in 
Fig. 8.13. 0 

Employing the identity sin2y = 1 - cos2y and the condition s h y  2 0 
for any gyroangle y of a gyrotriangle, we obtain from (8.70) an expression 
for siny in terms of the gyrotriangle sides, Fig. 8.13, 

$(a1 bl c; $)$(-a,  bl c; s)7/J(a1 4 1  c; sM(a1 b, -c; s) 
2asb3 

2 siny = 7 c  (8.106) 
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a = eB@C 

b = &@A 

c = @A@ 

h = eC,,@C 

. .  \ 

\ h, = a,  siri..p .:.; = / b, sin a 

Fig. 8.13 The law of gyrosines in Mobius gyrovector spaces. 

where 

bc 
$(a, b, c; s) = J f [ ( b @ c )  + a ] ( l  + -) 52 = J a ,  + b, + c, + asbscs (8.107) 

The function $(a, b, c;  s )  is real and symmetric in its variables a ,  b, c that 
represent the three sides of a gyrotriangle, Fig. 8.13. It follows from the 
gyrotriangle inequality b@c 2. a that the function 

= J-a,  + b, + c, - asbscs 
(8.108) 

A similar remark applies to the functions $(a,  -b , c ; s )  and is real. 
$(al b, -c; s) as well. 

Theorem 8.37 (gyroAngle - gyroAngle - Side (AAS)). I’ in two 
gyrotriangles, two gyroangles and a non-included side of one, are congruent 
respectively to two gyroangles and a non-included side of the other, then the 
two gyrotriangles are congruent. 



Gyrotrigonometry 269 

Proof. Let us consider the gyrotriangle ABC in Fig. 8.13, where gyroan- 
gles a and ,f3 and side b are given. Then side a can be calculated by means 
of the law of gyrosines, Theorem 8.36. By the gyrotriangle equality, side c 
equals the gyrosum 

Part IIeA@Co(l of the gyrosum can be calculated by means of cos a and side 
b, and Part eCo@B of the gyrosum can be calculated by means of cosp 
and side a, as explained in Fig. 8.12. Having sides b and c and gyroangle 

0 a,  the proof follows from SAS congruency (Theorem 8.31). 

8.5 Gyrotriangle Gyroangles and Side Gyrolengths 

Noting the symmetry of the function $(a, b,  c; s )  in a,  b, c ,  it follows from 
(8.106) by cyclic permutations of the gyrotriangle sides, Fig. 8.11, that the 
gyroangles a,  p, y of a gyrotriangle ABC with corresponding sides a ,  b, c 
are given by the equations 

so that 

(8.1 11) 

The law of gyrosines (8.105) can be recovered by dividing all sides of (8.111) 
by abc. 

Identity (8.70) with cyclic permutations of the gyrotriangle gyroangles 
and sides, Fig. 8.11, gives the following 

Theorem 8.38 (The SSS to AAA Conversion Theorem). Let ABC 
be a gyrotriangle in a Mobius gyrovector space (Vs, @, @), Fig. 8.11, p. 258, 
with vertices A, B ,  C ,  corresponding gyroangles a, p, y, 0 < a + p + y < T ,  

and side gyrolengths (or, simply, sides) a ,  b, c. 
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The gyroangles of the gyrotriangle ABC are determined by its sides 
according to the S S S - t o - A A A  equations 

Solving the first equation in (8.112) for c, we have 

Q f J(a; - bz) ( l  - a:b:) + Q 2  

1 - a:bz 
c, = 

(8.112) 

(8.113) 

where 

Q = (1 - a:)b, cosa (8.114) 

If a, = b, then (8.113) reduces to 

cos a c, = - 2a3 

1 + a: (8.115) 

determining the side of an isosceles gyrotriangle (that is, two of its sides 
are congruent) in terms of one of the two congruent sides and one of the 
two congruent gyroangles of the isosceles gyrotriangle. 

If a, > b, then the ambiguous sign in (8.113) must be replaced by the 
positive sign to insure that c, > 0. 

Theorem 8.39 (Side-side - gyroAngle (SsA)). If, in two gyrotri- 
angles, two sides and the gyroangle opposite the longer of the two sides in 
one are congruent respectively to two sides and the gyroangle opposite the 
longer of the two sides in the other, then the two gyrotriangles are congru- 
ent. 

Proof. Let a and b and a be two given sides and the gyroangle opposite 
the longer side, a, of a gyrotriangle. The third side, c, is determined by 
(8.113) in which the ambiguous sign specializes to the positive one, 

Q + J(a: - b:)(l- a:b:) + Q2 

1 - azbz 
c, = (8.116) 

Hence, by SSS congruency, Theorem 8.30, the two gyrotriangles in the 
theorem are congruent. 0 
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Theorem 8.40 Let a and be two gyroangles of a gyrotriangle, and let 
c be the gyrolength of the included side. Then the third gyroangle, y, of the 
gyrotriangle is  given by the equation 

cos y = - cos a cos p + (y,"/p,") sin a sin p (8.11 7) 

The proof follows straightforwardly from (8.110) and (8.112). 0 

In the limit of large s, s --+ 00, the gyrotriangle gyroangle identity 

Proof. 

(8.117) approaches the triangle angle identity 

cosy = - cosacos,B + s inas inp  = cos(n - CY - p) (8.118) 

or, equivalently, 

y = n - a - p  (8.119) 

thus recovering an identity for the triangle angles in Euclidean geometry. 

Theorem 8.41 Let a ,  b, c be the three sides of a gyrotriangle ABC with 
corresponding heights ha, hb, h, in a Mobius gyrovector space (Vs, $, @I), 
Fig. 8.14. Then 

a,  (ha)-, = b-, (hb)-,  = cy (hc)- ,  (8.120) 

By Def. 8.35, the three heights of gyrotriangle ABC, Fig. 8.14, Proof. 
are given by the equations 

(ha),  = b, sin y = c, sin p 
(hb), = a, sin y = c, sin a 
( h,), = a, sin ,6 = b, sin a 

(8.121) 

Hence, 

ay ( ha), = a,b, sin y = a,cy sin ,B 
b, ( h b ) ,  = a,b, sin y = b,c, sin cy 

c,(h,), = a+, sinp = b,c, sin a 
(8.122) 

thus obtaining the desired gyrotriangle heights identity (8.120). 

Definition 8.42 (The Gyrotriangle Constant). Let a ,b , c  be the 
three sides of a gyrotriangle ABC with corresponding heights h a ,  hb, h, in 
a Mobius gyrovector space (Vs, $, @I), Fig. 8.14. The number S,,, , 

s~~~ = (ha)-, = (h)-, = cy (hc)7 (8.123) 
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Fig. 8.14 A Mobius gyrotriangle ABC in the Mobius gyrovector plane (It;, @, 8) and 
its heights are shown. The gyrotriangle heights are concurrent, and their lengths can be 
calculated by gyrotrigonometric techniques. 

is called the gyrotriangle constant of gyrotriangle ABC. 

8.6 The Gyroangular Defect of Right Gyroangles Gyrotri- 
angles 

Definition 8.43 (The Gyrotriangular Defect). Gyroangle gyrotrian- 
gle sum is always smaller than T .  The dafference between this sum and T 

is called the defect of the gyrotriangle, Fig. 8.14. 

The sum of the gyroangles cy and p of the right gyroangled gyrotriangle 
ABC in Fig. 8.12 is smaller than 5 so that it possesses a positive gyroangular 
defect 6 = $ - (a + P). The gyrocosine and the gyrosine of the gyroangular 
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defect 6 of gyrotriangle ABC are 

7T 
C O S S  = cos (- - (a  + P ) )  

2 

= sin(& + 0) 
= sin a cos p + cos a sinp 

(8.124) 

and 

sin6 = sin (I - (a  + P ) )  

= cos(a + p) 

- a, b, 

(8.125) 
= cosacosp - sincrsinp 

- 
c; c; 

Interestingly, the tangent tan(S/2) of the half gyroangular defect 6/2 is 
particularly simple and elegant. It follows from (8.124) and (8.125), 

2asbs tan6 = - 
1 - azb; 

so that the y and ,8 corrections disappear, and 

(8.126) 

(8.127) tan - = asbs 

thus recovering a known result; see [Ungar (2001), (8.127)] and [Hartshorne 
(2003), Fig. 51. This result that corresponds to  the right-gyroangled gyro- 
triangle is extended in Theorem 8.44 to any gyrotriangle. 

6 
2 

8.7 Gyroangular Defect of the Gyrotriangle 

Theorem 8.44 (The Gyrotriangle Defect Identity, I). Let ABC be 
a gyrotriangle in a Mobius gyrovector space (Vs, @, @), Fig. 8.11, with ver- 
tices A, B ,  C ,  corresponding gyroangles a l p ,  y, and side gyrolengths a ,  b, C.  

The gyroangular defect 6, 

6 = 7r - (a  + p + y) (8.128) 
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of the gyrotriangle ABC is related to the gyrotriangle side gyrolengths and 
gyroangles by the identities 

(8.129) 
bscs sin a - - ascs sin p 6 asbs siny - - t an -  = 

2 l - a a s b s c o s ~  l - a a , c , c o s ~  l-bb,c,cosa 

Proof. Let a,  /3 and y be the gyroangles of the hyperbolic gyrotriangle 
ABC in Fig. 8.11. The gyrocosines of these gyroangles are calculated by 
means of the law of gyrocosines, and the gyrosines of these gyroangles are 
related to each other by the law of gyrosines, enabling us to calculate cos S 
where 6 = 7r - (a + p + y) is the gyrotriangle defect. We thus obtain 

1 2 2 2  -CoS6 = 5YaybTc (as + bs + c, + asbscs)(-a, + b, + cs - a,b,c,)x 

(a ,  - bs + c, - a,b,c,)(a, + b, - c, - asb,cs) 
(8.130) 

or, equivalently, 

implying 

The identities in (8.130) are employed to calculate tan(6/2) by means of 
the gyrotrigonometric identity tan2(q5/2) = (1-cos $)/(l+cos q5), obtaining 

(8.133) 
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or, equivalently [Ungar (2004b)], 

6 
2 tan - = da, + b8 + C S  + a ,b , c ,~ -a ,  + b8 + c8 - asbscs x 

da8 - b, + c, - a,b ,c ,~a ,  -I- b, - c, - asbscs x 

- - @(a,  b, c; s)@( -a, b, c; +/o, -4 c; s)@(a, b,  -c; s) 
2 + azbzcz - a? - b: - cz 

Finally, it follows from (8.134), (8.70) and (8.106) that 

S a,b,siny 
2 1 -a,b,cosy 

t an -  = 

(8.134) 

(8.135) 

Identity (8.135), along with permutations of its sides and their correspond- 
0 

Clearly, (8.135) reduces to (8.127) when y = 7r/2. Moreover, it follows from 
(8.135) that 

ing gyroangles, completes the proof. 

2 6 1 absiny 1 -_  t a n -  = - - -a,b,siny 
K 2 2 1 - a,b,cosy s-co 2 (8.136) 

K = -4/s2 being the Gaussian curvature, (7.28), where a, and be are 
corresponding Euclidean side lengths; see Remark 8.45 below. 

Remark 8.45 W e  should note that in the limit (8.136) of large s the 
gyrotriangle side gyrolengths a and b implicitly depend on s ,  Fig. 8.11 since 
they are given by  the equations 

(8.137) 

where Mobius addition @ depends on  s. I n  the limit of large s Mobius ad- 
dition @ in a Mobius gyrovector space (Vs, @, @) reduces to vector addition 
in the vector space V so that 

a,  = lim a = lim IlGB@Cll = 1 1  - B + CIJ 

be = lim b = lim IIeC@All = 1 1  - C + All 
(8.138) 8 - M  3-00 

3-00 3-00 

Accordingly, a,  and be are Euclidean side lengths of triangle ABC. 
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The gyrotriangle gyroangular defect 6 is additive. Hence, it is a con- 
venient choice for the measure of the area of gyrotriangles up to a multi- 
plicative constant, so that the area of two disjoint gyrotriangles equals the 
sum of their areas. However, motivated by analogies with classical results, 
Identity (8.135) and its associated limit in (8.136) suggest the following 

Definition 8.46 The gyroarea IABCl of gyrotriangle ABC with corre- 
sponding sides a ,  b, c and gyroangles a, p, y in a Mobius gyrovector space 
(Vs, @, @), Fig. 8.11, is given by the equation 

(8.139) 
2 6  1ABCI = --tan - 
K 2  

where 6 is the defect of gyrotriangle ABC, and where K = -4/s2 is the 
Mobius gyrovector space Gaussian curvature, (7.28). 

If we use the notation 

ae + be + ce 
P =  2 

then the first equality in (8.134) gives rise to the limit 

(8.140) 

2 6  s2 6 
lim (-- tan -) = lim (- tan -) 

s-cc K 2 s+cc 2 2 

= V'P(P - a e ) b  - be)(p - c e )  

thus recovering Heron's formula for the Euclidean triangle area. Hence, 
the gyrotriangle gyroarea reduces to the triangle area in the standard limit 
s 4 00, as one would expect. 

Clearly, Remark 8.45 about the limit in (8.136) applies to  the limit in 
(8.141) as well. 

We see from (8.135) - (8.141) that  gyrotriangle gyroarea measure 

ab sin y IABCl = $ 
1 - $cosy 

(8.142) 

of gyrotriangle ABC, Fig. 8.14, is a smooth extension of its corresponding 
triangle area measure, 

$aebe sin? (8.143) 



Gyrotrigonometry 277 

to which it reduces in the limit s 4 00. The assumption in the title of [Ruoff 
(2005)], “Why Euclidean area measure fails in the noneuclidean plane”, is 
therefore wrong. 

8.8 Gyroangular Defect of the Gyrotriangle - a Synthetic 
Proof 

In this section we prove the result in (8.135) with s = 1 by employing 
synthetic studies of hyperbolic geometry rather than analytic studies of 
gyrovector spaces. Accordingly, we use in this section the language of hy- 
perbolic geometry rather than gyrolanguage. 

Theorem 8.47 (The Gyrotriangle Defect Identity, 11). Let D = 
R:=l, Fig. 8.15, be the open unit disc of the Euclidean plane R2, and let 
ABC be a hyperbolic triangle in the Poincare‘ disc model D. The triangle 
ABC has vertices A, B and C ,  corresponding hyperbolic angles a ,  P and 
y, and sides BC, AC, and AB with corresponding hyperbolic lengths a = 

IBCI, b = lACl and c = (ABI. The gyroangular defect 6 ,  

6 = 7r - (a + P + r) (8.144) 

of the hyperbolic triangle ABC is related to the triangle hyperbolic side 
lengths [that is, gyrolengths) and hyperbolic angles [that is, gyroangles) by 
the identities 

(8.145) bc sin (Y - - ac sin P - - 6 absiny 
2 1 - abcosy  1 - accosp 1 - bccosa  

t an -  = 

Proof. Keeping hyperbolic angles and hyperbolic triangle side lengths 
invariant, we can move triangle ABC in the disc D by the motions of the 
disc. By appropriate motions of the disc we place the triangle in the position 
shown in Fig. 8.15. Vertex C of the triangle is placed at the center of the 
disc, and vertex A is placed at a point on the positive ray of the horizontal 
Cartesian coordinate of the disc. The sides AC and BC are now Euclidean 
straight line segments, and the side AB is a geodesic segment lying on a 
circle L,  as shown in Fig. 8.15. Unlike the hyperbolic length c = IAB( of 
side AB, the hyperbolic lengths a = (BC( and b = (AC( of sides BC and 
AC, respectively, coincide with their Euclidean lengths. Furthermore, the 
included angle y is both hyperbolic and Euclidean, allowing us to employ 
in hyperbolic geometry tools from Euclidean geometry. 
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Fig. 8.15 The synthetic approach to the defect 6 of gyrotriangle ABC, (8.157). 

The circle L intersects the boundary dD of the disc D orthogonally, and 
its center, 0, is known as the pole of the hyperbolic segment AB. We 
extend the straight line C A  on its right to the point D ,  where it intersects 
circle L,  and on its left to the point G that forms the Euclidean right-angled 
triangle DBG. The midpoint E of AD forms the Euclidean right-angled 
triangle AEO. Similarly, we extend the straight line CB to the point F 
that forms the Euclidean right-angled triangle BOF. 

Let H be a point of intersection of the circles dD and L ,  Fig. 8.15. Since 
the two circles are orthogonal, the radius C H  of dD is tangent to circle L. 
Being a secant and a tangent of circle L drawn from the same point C,  the 
Euclidean lengths ICA], ]CD) and )CHI of sides C A ,  C D  and CH satisfy 
the identity [Hartshorne (2000)l 

ICAI.ICDI = ]CHI2 (8.146) 

But, ]CAI = b and the radius-length of the disc boundary dD is [CHI = 1, 
so that (8.146) gives 

1 
lCDl = - 

b 
(8.147) 
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The lengths (both Euclidean and hyperbolic) of the two orthogonal sides 
of triangle GBC are 

lGBl = asin(n- - y) = asiny 
(8.148) 

lGCl = UCOS(T - 7) = - U C O S ~  

Hence, by (8.147) - (8.148) we have, 

(8.149) 
1 
b 

lGDl = lGCl+ lCDl = - - U C O S ~  

For the hyperbolic angle Q in triangle ABC we clearly have 
n- 

Q + - + LOAE = 2~ 
2 

2 
LAOE + 1 + LOAE = 2n- 

(8.150) 

so that 

a = LAOE (8.151) 

as shown in Fig. 8.15. 
Similarly, for the hyperbolic angle p in triangle ABC we clearly have 

7r p + - + LOBF = 27~ 
2 (8.152) 

LBOF + + LOBF = 2n- 
2 

so that 

/3 = LBOF (8.153) 

as shown in Fig. 8.15. 
Finally, we have 

(8.154) I T I T  LFOE + - + - + y = 2 ~  
2 2  

implying LFOE = IT - y, so that the angle 

6 = LFOE - a  - p  = T - ( a + P + y )  = LAOB (8.155) 

shown in Fig. 8.15, turns out to be the defect of triangle ABC. 

angle 6/2 at D [Hartshorne (2000)], as shown in Fig. 8.15. Thus, 
Since the arc A B  of circle L subtends the angle 6 at 0, it subtends the 

(8.156) 
6 

LGDB = - 
2 
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Hence, by (8.148) - (8.149) and (8.156) we have, 

6 lGBl absiny 
2 lGDl 1-abcosy 

tan - = - - - (8.157) 

Similarly, by circular permutations on the triangle parameters we obtain 
0 the triangle angular defect identities (8.145). 

8.9 The Gyrotriangle Side Gyrolengths in Terms of its 
Gyroangles 

The following Theorem 8.48 presents a most important disanalogy with Eu- 
clidean triangle similarity. This theorem and Theorem 8.38 are the converse 
of each other while, in contrast, the Euclidean counterpart of Theorem 8.38 
has no converse. 

Theorem 8.48 (The AAA to SSS Conversion Theorem). Let ABC 
be a gyrotriangle in a Mobius gyrovector space (V,, @, @), Fig. 8.11, p .  258, 
with vertices A, B ,  C,  corresponding gyroangles a ,  0, y, 0 < a + /3 + y < T, 
and side gyrolengths (or, simply, sides) a ,  b, c. 

The  sides of the gyrotriangle ABC are determined by i ts  gyroangles 
according t o  the A A A - t o - S S S  equations 

2 -  cos a! + C O S ( P  + y) 
- cosa! + COS(P - y) 

2 cos p + cos(a + y) 
cos p + cos(a - y) 

b, = (8.158) 

2 cosy + cos(a + p) 
cosy + cos(a - p) c, = 

Conversely, the angles of the gyrotriangle ABC are determined by i ts  
sides according to  the system of equations, (8.112), 

-a: + b: + c: - a:b:c: 

a: - b: + c: - a2b2c2 

a: + b: - c: - a:b:c: 

7 U  cosa = 
2b3c3 

cosp = 3ryb2 
2a3c3 

cosy = TI2 
2a3b3 

(8.159) 
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Proof. Solving the three identities of Theorem 8.47, 

a, b,  sin y 6 
1 - asbs cosy 2 

a,c, sin ,f3 6 
1 - a,c, cosp 2 

b,c, sin a 6 
1 - bscs cos 2 

= t an-  

= tan - 

= tan - 

(8.160) 

for a,, b,  , c,, we have 

2 s ina  + cosa tan 4 6 
a, = tan - 

(sinp+cosPtang)(siny+cosytang) 2 

sin@ + cos p tan 4 

siny + cosy tan 4 

6 
tan - (8.161) 2 

2 b, = 
(sina + cosa tan $)(sin7 + cosytan 

6 
c: = tan - 

(sin a + cos a tan :)(sin p + cosp tan 4) 2 

Substituting 

(8.162) tan - 6 = tan( - 7T - a + P + r ) = c o t  a + P + y  
2 2 2 2 

in (8.161) and simplifying, we obtain the system of equations (8.158). 
Finally, the system of equations (8.159) has already been established in 

It follows from Theorem 8.48 that any three gyroangles a, p, y that sat- 
isfy the condition 0 < a + p + y < 7~ give rise to three real numbers a,, b, , c, 
according to (8.158) and, hence, can be realized as the three gyroangles of 
a gyrotriangle in a Mobius gyrovector space (V,, $, 8)  with sides a ,  b, c. 

Example 8.49 (An Isosceles Gyrotriangle). As an elegant example 
of the use of Theorem 8.48 let us calculate the side gyrolengths a ,  b and c of 
a gyrotriangle in a Mobius gyrovector space (Vs=l, $, 8)  with gyroangles 
a,  a12 and 012, shown in Fig. 8.16. By Theorem 8.48 these are 

(8.112). 0 

2 2cosa 
a =  

1 + cosa 

cos 5 + cos 9 
2 cos 5 b2 = c2 = = cosa 

(8.163) 
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\ 
2 - 2 c o s a  

l+cos a a -- 

. .  . .  b2 = c2 = C O S ~  . .  
b.c cosa’,= bc 

Fig. 8.16 A special isosceles gyrotriangle in a Mobius gyrovector plane (R:=,, $, @), 
illustrating Example 8.49. Note that owing to the presence of a gyration, in general 
a’ # @a, etc. 

We see from (8.158) that if the gyrotriangle gyroangle sum is T ,  

a + ,B + y = 7r, than the gyrotriangle sides vanish. If a gyroangle gyro- 
triangle vanishes than its two generating sides have gyrolengths s, as we 
see from (8.158), so that its corresponding gyrotriangle vertex, called an 
asymptotic vertex, lies on the boundary of the ball V, in the space V. 
Accordingly, a gyrotriangle with a single vanishing gyroangle is called an 
asymptotic gyrotriangle. Similarly, a gyrotriangle with two (three) van- 
ishing gyroangles is called a doubly (triply) asymptotic gyrotriangle [Ryan 
(1986)l. 

Solving the third identity in (8.158) for cosy we obtain the identity 

cosy = 27: sin a sin P - cos(a - P )  (8.164) 
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that determines a gyroangle y of a gyrotriangle in terms of the other two 
gyrotriangle gyroangles, a and p, and the gyrolength c of their included 
side. 

In the limit of large s, s + m, we have yc + 1 so that (8.164) reduces 
to the familiar trigonometric result for Euclidean triangles, 

cosy = 2s inas inp  - cos(a - P )  
= cos(7r - (a + p))  

(8.165) 

which is equivalent to the condition 

a + P + y = 7 r  (8.166) 

Theorem 8.50 (gyroAngle - gyroAngle - gyroAngle (AAA)). If, 
in two gyrotriangles, three gyroangles of one are congruent to three gyroan- 
gles of the other, then the two gyrotriangles are congruent. 

Proof. The three gyroangles of a gyrotriangle determine the three side 
gyrolengths of the gyrotriangle by Theorem 8.48. Hence, by SSS congruency 

0 

Theorem 8.51 (gyroAngle- Side-gyroAngle (ASA)). If, in two 
gyrotriangles, two gyroangles and the included side of one, are congruent to 
two gyroangles and the included side of the other, then the two gyrotriangles 
are congruent. 

Proof. The two gyroangles of a gyrotriangle and the gyrolength of the 
included side determine its third gyroangle by (8.117) or, equivalently, by 
(8.164), or by the cosy equation in Fig. 8.11. Hence, by AAA congruency, 

0 

In the special case when gyrotriangle ABC is right-gyroangled, with 

(Theorem 8.30), the two gyrotriangles are congruent. 

Theorem 8.50, the two gyrotriangles are congruent. 

y = 7 ~ 1 2 ,  Fig. 8.12, p. 263, the identities in 

cos a - sin 0 
cos a + sin /3 

a: = 

cosp - s ina  
cos p + sin a b, = 

2 cos(a+P)  
cos(a - p) c, = 

(8.158) reduce to 

(8.167) 

cos a cos p - sin a sin p 
cos a cos p + sin a sin p 

- - 
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satisfying the hyperbolic Pythagorean identity 

a: + b: 
c, = - 

1 + azb3 (8.168) 

in Mobius gyrovector spaces, Fig. 8.12. 
Formally, replacing 

(cos a,  sin p, cos p, sin a )  --$ (x, y, x’, y’) (8.169) 

Identities (8.167) - (8.168) suggest the following elegant one-dimensional 
Mobius addition formula 

x - y 2’ - y’ X X I  - yy‘ 
z + y 2’ + y’ zz’ + yy’ 
-69- - - (8.170) 

that holds for any real (or complex) numbers x, x’, y ,  y’ as long as the de- 
nominator does not vanish. The one-dimensional Mobius addition @ in 
(8.170), shown for instance in (8.168) or (3.133), is obviously both com- 
mutative and associative, as expected. Furthermore, it coincides with the 
one-dimensional Einstein addition as we see from (3.133) and (3.151). It 
is owing to (8.170) that Einstein addition emerges in some linear bound- 
ary value problems [Loewenthal and Robinson (2000); Vigoureux (1993); 
Vigoureux (1994)l. In the special case when x = x’ = 1, Identity (8.170) 
reduces to a “scalar Q function” identity of Lindell and Sihova [Lindell and 
Sihova (1998)l. 

8.10 The Semi-Gyrocircle Gyrotriangle 

Theorem 8.52 (The Semi-Gyrocircle Theorem). The point C 
lies on  a gyrocircle with gyrodiameter AB in a Mobius gyrovector space 
(V,, 69, @), Fig. 8.17, zf and only if 

LABC + LBAC = LACB (8.171) 

Proof. Let 0 be the center of the gyrocircle with gyrodiameter AB that 
contains the point C, Fig. 8.17. Then, the gyrotriangles BOC and AOC 
are isosceles so that a = y1 and p = yz, and y1+y2 = y, where a = LBAC, 
p = LABC, y = LACB, y1 = LOCA, and 7 2  = LOCB, thus verifying 
a + /3 = y, (8.171). 

Conversely, if y = a+P, let 0 be the point on the gyrodiameter AB such 
that LAC0 = a and LBCO = p. Then gyrotriangles OAC and OBC are 
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a + p = y  

U C O S ~  = bcosp 

c: = 1 - t a n a t a n p  

Fig. 8.17 The Semi-Gyrocircle Theorem. The point C lies on the gyrocircle with gyro- 
diameter .AB in a Mobius gyrovector plane (W:, @, @) if and only if a + p = y. The two 
equations a + p = y and a cos a = bcos are also valid in the corresponding Euclidean 
semi-circle theorem. In contrast, owing to the condition a+p+y = R for Euclidean angle 
sum and a + p + y < R for hyperbolic angle sum, the condition y = 1r/2 is valid in the 
Euclidean semi-circle theorem but not in its hyperbolic counterpart. The gyrodiameter 
gyrolength c = IleAcBBII satisfies the gyrodiameter identity c: = 1 - tan a tan p, where 
cs = c/s. As expected, the Euclidean counterpart of the gyrodiameter identity is trivial, 
0 = 1 - tan a tan p. 

isosceles, satisfying JOB\ = lOCl = JOAJ. Hence T = JOB1 = IOCJ = IOAJ 
0 is the radius gyrolength and C lies on the gyrocircle. 

Let C be a point lying on a gyrocircle with gyrodiameter AB in a 
Mobius gyrovector space (V,=, , $, @), and let the sides of gyrotriangle 
ABC be a = ( (eB@C((,  b = ( (eA$C(( ,  c = (leA@B(i. Furthermore, let the 
gyroangles of gyrotriangle ABC be a = LBAC, p = LABC, y = LACB, 
Fig. 8.17. Then, by Theorem 8.52, 

y = a + p  (8.172) 
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Hence, by Theorem 8.48, 

cos a! + COS(P + y) 
cos a! + COS(P - y) 

a2 = 

- CO@ - 7) + cos(P + 7) - 
2 cosa! 

cos p cos y - - 
cos a 

and, similarly, 
2 cosacosy 

b =  
cos p 

and 

2 cosy i- cos(a! + P )  
cosy - cos(a! - p) 

cos(a! + P )  
cos a! cos p 

c =  

- - 

(8.173a) 

(8.17313) 

(8.173~) 

= 1 - t a n a t a n p  

It follows from (8.173a) (8.173b) that the gyrolengths of the two non- 
diametric sides of gyrotriangle ABC in Fig. 8.17 are related by the elegant 
equation 

acosa! = bcosp (8.174) 

Remarkably, the relation (8.174) is valid in the corresponding Euclidean 
semi-circle theorem as well. 

8.11 Gyrotriangular Gyration and Defect 

In this section we relate the gyrotriangular defect 6, studied in Sec. 8.8, to 
gyrations. 

Definition 8.53 (The Gyrotriangular Gyration). Let ABC be a 
gyrotriangle in a gyrovector space (G, @, 18) with vertices A, B, C, sides 
a, b,c, and defect 6 ,  Fig. 8.11. The three successive gyrations 

(8.175) 
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generated by the gyrotriangle vertices can be written as a single gyration, 
Theorem 3.14, 

gyr[A, @]gyr[B, eC]gyr[C, e A ]  = gyr[BA@B, e (eA@C)]  (8.176) 

called a gyrotriangle gyration of the gyrotriangle ABC. 

If the three points A, B and C are gyrocollinear, then, by the gyrotransi- 
tive gyration law, Theorem 6.29, the gyrotriangle gyration (8.175) is trivial. 
Hence, a gyrotriangle gyration is trivial when the area of its “gyrotriangle” 
vanishes (Of course, a “gyrotriangle” with vanishing area is not considered 
a gyrotriangle in the usual sense). Indeed, the rotation gyroangle that the 
gyrotriangle gyration (8.176) generates in the gyrotriangle gyroplane equals 
the gyrotriangle gyroangular defect 6 as shown in Identity (8.177) below. 
The gyrotriangle gyroangular defect 6, in turn, measures the gyrotriangle 
area. 

Remark 8.54 (The Gyroangle of the Gyrotriangular Gyration 
Equals the Gyrotriangular Defect). Let x be any gyrovector in the 
gyroplane generated by the gyrotriangle ABC as, for instance, x = eC@B, 
or x = &@A, or x = eB@A.  W e  m a y  interject here that as in Euclidean 
geometry, a gyroplane generated by a gyrotriangle is  the set of all points 
lying o n  gyrolines that intersect the gyrotriangle sides at two points. Then, 
a gyrotriangle gyration gyr[eA@B, e (eA@C)]  of the gyrotriangle ABC 
rotates x by the gyrotriangle gyroangular defect 6 ,  (8.129), that is, 

(8.177) 

8.12 The Equilateral Gyrotriangle 

Theorem 8.55 (The Equilateral Gyrotriangle). Let ABC be an  
equilateral gyrotriangle (that is, all its sides are congruent) in a Mobius 
gyrovector space (Vs, @, @), the side gyrolengths of which are a and the 
gyroangles of which are a ,  cr >_ 0 ,  Fig. 8.18. Then  

a ,  = d 2 c o s a -  1 (8.178) 

0 < a < s, and 
7F 

O l C X < -  
3 

(8.179) 
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Fig. 8.18 The Mobius Equilateral Gyrotriangle. A Mobius equilateral gyrotriangle 
ABC in the Mobius gyrovector plane (R i ,@,@)  is shown. Its sides have equal gy- 
rolengths, a = b = c,  its interior gyroangles have equal measures, a,  and its altitude MA 
bisects both the base BC and the gyroangle a at the vertex A.  The gyrovectors a, b, 
c,  and h, rooted respectively at the points B, C, A, and again A,  form the sides of the 
equilateral gyrotriangle ABC and one of its heights. 

Conversely, let a E I%,>' = (0 , s ) .  Then there exists an equilateral gy-  
rotriangle the gyrolength of each side of which is a,  and the measure a of 
each of its gyroangles is 

1+a: a = cos-1 - 
2 

(8.180) 

satisfying the condition 

+ < cosa < 1 (8.181) 

Furthermore, the gyrolength h of each height of the gyrotriangle is given 
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by the equation 

h where h, = ;. 

Proof. By Theorem 8.48 for a = p = y we have 

cos a + cos 2 a  
1 + cosa u: = = 2cosa - 1 

(8.182) 

(8.183) 

where a 2 0 must satisfy the condition (8.179) to insure the reality of a, 
and to exclude a, = 0, thus verifying (8.178). Solving (8.183) for cosa 
we obtain (8.180). In the proof of (8.182) we use the notation shown in 
Fig. 8.18. 

The midpoint M of points B and C is given by the equation, (6.85), 

M = B@(eB@C)& = B@@a (8.184) 

so that, by (6.235), 

eB@M = $@a = &a (8.185) 

By the Mobius hyperbolic Pythagorean theorem 8.32, Fig. 8.18, we have 

1 +"la 

for the right gyroangled gyrotriangle AMB 

(8.186) 
1 1 1 
- I ~ ~ A ~ M ) ~ ~ ~ ~ I ~ B B @ MS = - 1 1 ~ 1 1 ~  S 

or equivalently, noting that JJcJJ 2 -  - c 2 -  - u ,  2 

Hence 

(8.187) 

(8.188) 

noting that @ in (8.187) - (8.188) is a vector space operation (commutative 
and associative). 

Substituting 

2 2 2 - 1  a = s -  
72 

(8.189) 
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P1 = P 2  = y1 = 7 2  = E 

Fig. 8.19 A Mobius gyroparallelogram. Fig. 8.20 A Mobius gyrosquare. 

in (8.188), and expressing the operation 0 in (8.188) according to (3.133) 
we finally obtain (8.182). O 

In Euclidean geometry equilateral triangles come with a unique an- 
gle Q = n/3, but with an arbitrary side length. In contrast, in hyper- 
bolic geometry equilateral gyrotriangles come with arbitrary gyroangles a, 
0 < Q < n/3, but each admissible gyroangle a allows a unique equilateral 
gyrotriangle with side gyrolength given by (8.178). Clearly, equilateral tri- 
angles lack the richness of equilateral gyrotriangles that we see in gyrovector 
spaces. 

8.13 The Mobius Gyroparallelogram 

A gyroparallelogram ABDC, Def. 6.40, is shown in Figs. 8.19 and 8.20 in 
the Mobius gyrovector plane. By Theorem 6.45 opposite sides of a gyropar- 
allelogram are equal modulo gyrations, so that they have equal gyrolengths. 
Furthermore, by applying Theorem 6.45 to the gyroparallelogram ABDC 
in each of Figs. 8.19 and 8.20 we have 
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b H c = d  u 
Fig. 8.21 The gyroparallelogram law and 
the Mobius gyroparallelogram ABDC in 
Fig. 8.19 give rise to the commutative gy- 
roparallelogram addition law of gyrovec- 
tors, shown here as a first example. 

Fig. 8.22 The gyroparallelogram law and 
the Mobius gyroparallelogram ABDC in 
Fig. 8.19 give rise to the commutative 
gyroparallelogram addition of gyrovectors, 
shown here as a second example. 

so that, 

(8.191) 

Moreover, by Theorem 6.39 the gyroparallelogram diagonals intersect 
at their midpoints. The midpoints of the diagonals AD and BC are, re- 
spectively, 

PzD = ;@(AH D) 
(8.192) 

P& = +@(B C) 

and their equality follows from Def. 6.40 of the gyroparallelogram according 
to which D = ( B  C)eA ,  implying A EFl D = B H C. 

Each diagonal of the gyroparallelogram forms two congruent gyrotrian- 
gles, from which several congruent gyroangles can be recognized. If two 
adjacent sides of the gyroparallelogram are congruent, then the diagonals 
are perpendicular, as shown in Fig. 8.20. If two adjacent sides of the gy- 
roparallelogram are congruent and perpendicular, the gyroparallelogram is 
called a gyrosquare. A gyrosquare in the Mobius gyrovector plane is shown 
in Fig. 8.20. 



292 Analytic Hyperbolic Geometry 

By the gyroparallelogram law, Theorem 6.42, we have for the Mobius 
gyroparallelogram A B D C ,  Figs. 8.21 and 8.22, 

(@A@B) H (eA@C) = eA@D 
(eB@A)  El ( e B @ D )  = eB@C 

(8.193) 
(&@A) El (eC@D) = eC@B 
( e D @ B )  EEI ( e D @ C )  = e D @ A  

The first gyroparallelogram addition in (8.193) can be written as 

as we see from the definition of the gyrogroup cooperation H, (2.2). 

Remark 8.56 Interestingly, the gyration gyr[eA@B, e(eA@C)] in 
(8.194) is the gyrotriangle gyration of the gyrotriangle ABC, Fig. 8.21, 
as we see from Def 8.53. This gyration, in turn, gyrates (rotates) the 
side eA@C of the gyroparallelogram ABDC in Fig. 8.21 by the gyroan- 
gular defect, (8.176), of the gyrotriangle ABC so as to ‘%lose” the gy-  
roparallelogram. It  is also interesting to realize that the gyration an (8.194) 
that “closes” the gyroparallelogram A B D C  is the defect of the gyrotriangle 
ABC, as remarked in Remark 8.54. 

The gyroparallelogram is a gyrovector space object, Theorem 6.38, so 
that it can be moved in its gyrovector space by the gyrovector space motions 
without distorting its internal structure. The gyroparallelogram internal 
structure, in turn, gives rise to the gyroparallelogram law of gyrovector 
addition. Figure 8.21 shows the application of the gyroparallelogram law 
to the addition of the gyrovectors b = eA@B and c = eA@C, (8.193), the 
latter being equivalence classes by Def. 5.4. 

Hence, gyrovectors are equivalence classes of directed gyrosegments that 
add according to the gyroparallelogram law just like vectors, which are 
equivalence classes of directed segments that add according to the common 
parallelogram law. 

Some gyroparallelogram properties are presented in Sec. 6.7, p. 160. Fol- 
lowing the gyroangle definition, Def. 8.2, we can now explore relationships 
between gyroparallelogram gyroangles. 

Theorem 8.57 
site gyroangles of a gyroparallelogram are congruent. 

(Gyroparallelogram Opposite Gyroangles) . Oppo- 
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Proof. Let ABA’B’ be a gyroparallelogram in a gyrovector space, and let 
a = LBAB’ and a’ = LBA’B’ be opposite gyroangles, Fig. 8.23. Then, by 
(6.129) of Theorem 6.45 we have (identifying the gyroparallelogram abdc of 
Theorem 6.45 with the gyroparallelogram ABA’B’ of the present theorem) 

8A’@B = egyr[A’, eA](@A@B’) 
eA’@B’ = Bgyr[A’, eA](@A@B) 

(8.195) 

so that 

(8.196) 

and 

(eA’@B). (eA’@B’) = gyr[A’, @A] (eA@B’)-gyr[A’, @A] (8A@B) 

= (eA@B’).(eA’@B) 
(8.197) 

since gyrations preserve the inner product. Hence, 

The proof of p’ = p for the opposite gyroangles ,B = LABA’ and 0‘ = 
LAB’A’ is similar. 0 

8.14 Gyrotriangle Defect in the Mobius Gyroparallelogram 

Definition 8.58 (The Gyroparallelogram Defect). Gyroangle gy- 
roparallelogram s u m  is  always smaller than 27r. The difference between this 
sum and 27r i s  called the defect of the gyroparallelogram 

Instructively, a numerical example is found useful to illustrate gyrotri- 
angle defects in the Mobius gyroparallelogram, Fig. 8.23. For our numerical 
demonstration we arbitrarily select the three points 

A = (0.10000000000000, 0.20000000000000) 
B = (0.60882647943831, - 0.02106318956871) (8.199) 

B‘ = (0.34782608695652, 0.69565217391304) 
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Fig. 8.23 Gyrotriangle defects in the Mobius gyroparallelogram in the Mobius gyrovec- 
tor plane (W:=, , $, @). The gyroparallelogram ABA’B’ has (i) two side gyrolengths, a 
and b; opposite sides are congruent; (ii) two gyroangles, a! and p; opposite gyroangles are 
congruent; and (iii) two diagonals, da and do. The diagonals concurrent point coincides 
with their gyromidpoints. Alternate gyroangles are congruent. 

in a Mobius gyrovector plane ( R k , ,  @, @), Fig. 8.23, and complete them 
to a gyroparallelogram ABA’B’ by adding the fourth point A’ which is 
determined by the gyroparallelogram condition in Def. 6.40, 

A’ = ( B  ffl B’)0A (8.200) 

that is, 

A’ = (0.34782608695652, 0.69565217391304) (8.201) 

The resulting four gyrovectors that form the gyroparallelogram sides are 
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therefore 

a = 8A@B = (0.50000000000000, - 0.30000000000000) 
b = eA@B’ = (0.30000000000000, 0.60000000000000) 
a’ = eA’@B’ = (-0.53960557633458, 0.22096565793948) 
b’ = eA’@B = (-0.20584835090105, - 0.63845630737844) 

(8.202) 

As expected from Theorem 6.45, opposite sides of the gyroparallelogram 
are congruent, 

llall = 0.58309518948453 
llbll = 0.67082039324994 
lla’ll = 0.58309518948453 
Ilb’ll = 0.67082039324994 

The four gyroangles of the gyroparallelogram are 

(8.203) 

= 0.77010692104966 
(8 B’@A’).( eB’@A) 
I( eB’@A’(I 1 1  eB’@All 

p’ = LA‘B’A = cos- 

so that opposite gyroangles of the gyroparallelogram are congruent, a = a’ 
and p = p’, as expected from Theorem 8.57. 

According to Theorem 8.44, the defects G(ABA’), G(AB’A’), G(BAB’), 
and G(BA’B’) of the gyrotriangles ABA‘, AB‘A‘, AB‘A‘, and BA’B’, that 
comprise the gyroparallelogram ABA’B’ in Fig. 8.23, assume the values 

S(ABA’) = 0.72391751447546 
G(AB’A’) = 0.72391751447546 
6( BAB’) = 0.72391 75 1447546 
b(BA’B‘) = 0.72391751447546 

(8.205) 

The equalities G(BAB’) = b(BA’B’) and S(ABA’) = G(AB’A’), ob- 
served numerically in (8.205), are not surprising since, according to (8.129), 



296 Analytic Hyperbolic Geometry 

they are generated by two equal side gyrolengths and equal included gy- 
roangles, 

a b  sin Q 6(BAB’) = S(BA’B’) = 2 tan-’ 
1 - abcosa 

(8.206) 
ab sin G(ABA’) = b(AB’A’) = 2 tan-’ 

1 - abcosp 

However, on first glance, the equality S(BAB’) = S(ABA’), observed 
numerically in (8.205), is surprising since, by (8.129), while its two sides 
are generated by the same side gyrolengths they are generated by different 
included gyroangles, 

a b  sin a G(BAB’) = 2 tan-’ 
1 - abcosa 

(8.207) 
ab sin p S(ABA’) = 2 tan-* 

1 - abcosp 

The defect S(ABA’B’) of gyroparallelogram ABA’B’ equals the sum of 
the defects of its comprising gyrotriangles, 

S(ABA’B’) = b(ABA’) + S(AB’A’) 
= S(BAB’) + G(BA’B’) (8.208) 
= 1.44783502895092 

which equals 

2~ - 2(a + p) = 1.44783502895092 (8.209) 

It follows from the defect equalities in (8.208) and (8.207) that the two 
consecutive gyroparallelogram gyroangles Q and p, Fig. 8.23, are related by 
the equation 

(8.2 10) 
sin p - sin a 

- 
1 - abcosa 1 - abcosD 

or, equivalently, by the equation 

(8.21 1) 
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The resulting quadratic equation (8.211) admits two solutions for cosp, 

cos p = cos a 

2ab - (1 + a2b2) cosa 
(1 + a2b2) - 2abcosa 

cosp = 
(8.212) 

giving rise to a necessary condition for to be the second gyroangle of a 
gyroparallelogram with sides gyrolengths a and b and with an included gy- 
roangle a. On first glance, it seems from the two equations in (8.212) that 
a gyroparallelogram with sides gyrolengths a and b with an included gy- 
roangle a,  Fig. 8.23, admits two distinct gyroparallelograms corresponding 
to a gyroangle p, p = a, that comes from the first condition in (8.212) and 
to a different gyroangle p that comes from the second condition in (8.212). 
This is, however, not the case since the first condition in (8.212) is included 
in the second one as a special case, as we show below. 

When p = a in the gyroparallelogram ABA’B’, Fig. 8.23, its included 
gyrotriangle B‘AB has two unspecified sides a and b with an included gy- 
roangle a and two remaining gyroangles a / 2  and a /2 .  The three gyroangles 
a,  a / 2  and a / 2  of gyrotriangle B’AB determine its side gyrolengths a and 
b according to Theorem 8.48, obtaining 

cos? +co+ - a2 = b2 = - cosa 
2 cos $ (8.21 3) 

as in Fig. 8.16 (where the notation for sides is slightly different). 
The substitution of the gyrolengths a and b from (8.213) into the second 

equation in (8.212) gives cosp = cosa, thus recovering the first equation 
in (8.212). This demonstrates that the second condition in (8.212) includes 
the first one as a special case. Hence, the first condition in (8.212) can be 
deleted with no loss of generality, as we formalize in the following 

Theorem 8.59 Let P be a gyroparallelogram in a Mobius gyrovector 
space (Vs, @, 8) with two distinct side gyrolengths a and b and a gyroangle 
a. Then, the remaining distinct gyroangle p of P ,  Fig. 8.23, is given by 
the equation 

2a,b, - (1 + azb:) cosa 
1 + u:bi - 2asb, cos a 

In the limit of large s, s -+ a, (8.214) reduces to 

cosp = 

cosp = -cosa 

(8.214) 

the identity 

(8.215) 
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that recovers a known result about the Euclidean parallelogram, according 
to which a + p = T .  

Theorem 8.60 With the notation of Fag. 8.23, let P be a gyroparal- 
lelogram in a Mobius gyrovector space (V,,, , $, 8) with two distinct side 
gyrolengths a and b, two distinct gyroangles a and p, and two diagonal gy-  
rolengths d ,  and dp. Then, the two diagonal gyrolengths are related to the 
gyroparallelogram side gyrolengths by  the identity 

(a2 + b2 - 2a2b2)(a2 + b2 - 2) 
(1 - a2b2)2 d i d ;  - (d: + d;) - = o  (8.2 16) 

or, equivalently, by the identity 

yd,ydB = 7; + Yb 2 - (8.2 17) 

Proof. Applying the law of gyrocosines, Theorem 8.25, to each of the 
gyroparallelogram comprising gyrotriangles ABB' and A'B'B, Fig. 8.23, 
we respectively obtain the following two identities, 

(8.218) 

Here one should note that the Mobius addition @ in (8.218) is a com- 
mutative group operation, as remarked and presented in Remark 8.27. 

Eliminating cos a and cos p between the three equations in (8.214) and 
(8.218) one recovers (8.216), which turns out to be equivalent to (8.217). 

For the sake of simplicity it is assumed s = 1 in Theorem 8.60. However, 
its extension to s > 0 is instructive and simple. Thus, (i) Identity (8.217) 
remains valid for all s > 0, the parameter s being implicit in y factors; and 
(ii) Identity (8.216) takes the form 

or, equivalently, 

(a2 + b2 - $a2b2)(ai + bz - 2) 
= 0 (8.220) 1 2 2  ,,dado - ( d i  + d;) - (1 - -$a2b2)2 
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. . . . . . . . . . . . . . ,  

Fig. 8.24 Parallel Transport. The parallel transport of a rooted gyrovector Bao@bo 
rooted at a0 to the rooted gyrovector 8alebl rooted at al along the gyroline that links 
the points a0 and a1 in the Mobius gyrovector plane (R;, @, 8). 

In the limit of large s, s -+ 00, (8.220) reduces to the identity 

d i  + dg = 2(a2 + b2)  (8.221) 

that recovers the known result of Euclidean geometry, according to which 
the sum of the squares of lengths of the four sides of a parallelogram equals 
the sum of the squares of the lengths of the two diagonals. 

The reduction of the hyperbolic identities (8.214) and (8.220) to cor- 
responding familiar Euclidean identities (8.215) and (8.221) that the free 
parameter s allows demonstrates the usefulness of the parameter. 

8.15 Parallel Transport 

Definition 8.61 (Parallel Transport). A rooted gyrovector @al @bl 
is a parallel transport (or translation) of a rooted gyrovector em@bo, # 
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Fig. 8.25 The accrued circular gyrophase shift is approximated by the accrued polygonal 
gyrophase shift 08 = Lboaobg = Lboagbg generated by the parallel transport of a 
geodesic segment along a hyperbolic regular polygonal path. Shown is a hyperbolic 
regular polygon (gyropolygon) with 8 sides approximating a hyperbolic circle centered at 
the center of the Mobius disc (R:, @, €4). An initial gyrovector Bao@bo rooted at vertex 
a0 of the gyropolygon is parallel transported counterclockwise along the gyropolygonal 
path back to  its initial root a0 = as, resulting in the final vector @as@bg. The angular 
defect of the resulting accrued gyrophase shift is the angle Bg formed by the initial 
gyrovector Bao@bo and the final gyrovector @ag@bg, both rooted at the point ag = ao. 

a l ,  (along the gyroline L that joins the points a0 and a1 , Fig. 8.24) in a 
gyrovector space (G, $, 18) i f  

Successive parallel transports along a closed regular gyropolygonal path 
that approximates a gyrocircular path is shown in Fig. 8.25. By increasing 
the number of vertices of the regular gyropolygonal path one can improve 
the approximation, as shown in [Ungar (2001), Figs. 7.19-7.211 
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In full analogy with vector spaces, a parallel transport in a gyrovector 
space is a way to transport gyrovectors from a point, a ~ ,  to another point, 
al, along the gyroline, aoal, connecting the points, Fig. 8.24, such that 
they stay “parallel” in the following sense. The gyrolength of a parallel 
transported gyrovector and its gyroangle with the connecting gyroline must 
remain invariant. The following theorem shows that this is indeed the case. 

Theorem 8.62 (The Parallel Transport Theorem I). Let the rooted 
gyrovector ealebl be a parallel transport of the rooted gyrovector @a&bo 
a0 # al, in a gyrovector space (G,@,@), let L be the gyroline passing 
through the points and al, and let a be a point on L such that a1 lies 
between a0 and a, Fig. 8.24. Then, the two rooted gyrovectors ea&bo and 
ealebl have equal gyrolength, 

and equal gyroangles with the gyroline L ,  

Lboaoal = Lblala (8.224) 

Proof. 
keep the norm invariant. 

that  it contains is 

Identity (8.223) follows immediately from (8.222) since gyrations 

The representation of the gyroline L in terms of the points a0 and a1 

L = ao@(eaoeal)@t (8.225) 

so that a representation of a point a of L that is not on the gyrosegment 
aOa1 is 

where t‘ > 1. 

subsequent explanation, verifies (8.224). 
The following chain of equations, in which equalities are numbered for 
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cos Lbowal  - - 
(8.227) 

The derivation of the numbered equalities in (8.227) follows: 

(1) Follows from (8.226). 
(2) 
(3) 

(4) 
( 5 )  
(6) 

Follows from the left gyroassociative law. 
Follows from the gyrocommutative law and the gyroautomorphic 
inverse property. 
Follows from the invariance of the inner product under gyrations. 
Follows from the scalar distributive law. 
Follows from the scaling property, noting that -1 + t’ > 0. 0 

Theorem 8.63 (Gyrovector Parallel Transport Head). Let 
P, Q, P’ be any three points of a gyrovector space (G, @, 8). The paral- 
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Fig. 8.26 Three dimensional parallel transports in the Mobius gyrovector space 
(I@, @, @), illustrating Theorem 8.64. Parallel transport keeps relative orientations in- 
variant. Shown are two gyrovectors, Bao@bo and Bao@co, in a Mobius gyrovector 
space (RBI @, @) parallel transported, respectively, to the two gyrovectors @al@bl and 
@al@cl along the gyrosegment 8 0 8 1 .  The parallel transported included gyroangle re- 
mains invariant, that is, Lboaoco = Lblalcl. 

lel transport of the rooted gyrovector PQ = eP@Q to the rooted gyrovector 
P‘X = eP’@X with tail P‘ determines its head X, 

X = P’@gyr[P’, eP](eP@Q) (8.228) 

The gyrovector P‘Q‘ is a parallel transport of the gyrovector P Q  Proof. 
along the gyroline containing points P and P’. Hence, by Def. 8.61, 

eP’@X = gyr[P’, eP](eP@Q) (8.229) 

0 from which (8.228) follows by a left cancellation. 

Theorem 8.64 (The Parallel Transport Theorem 11). Let 
ao, bo, CO, a1 be four given points of a gyrovector space (Vc, @, @). Let the 
gyrovectors e%@bo and eaoeco be parallel transported to the gyrovectors 
@al@bl and eal@cl, respectively, along the geodesic segment that joins 
the points a0 and al, Fig. 8.2& The gyroangle between the two gyrovectors 
remains invariant under their parallel transport, that is, 

Lbomco = Lblalcl (8.230) 
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Proof. 
preserve the inner product we have 

By the parallel transport equation (8.222), and since gyrations 

(8.231) 

It follows from Theorem 8.64 that any configuration of several gyrovec- 
tors that are parallel transported along a gyrosegment turns as a “gyrorigid” 
whole. Thus, for instance, it follows from Theorems 8.62 and 8.64 and from 
SAS congruency that the gyrotriangle aoboco and its parallel transported 
gyrotriangle alblcl in Fig. 8.26 are congruent. 

Theorem 8.65 
line are equivalent to a single parallel transport along the gyroline. 

Two successive parallel transports along the same gyro- 

Proof. Let ao, al, a2 be three gyrocollinear points, and let L be the gyro- 
line containing these points in a gyrovector space (GI @, @). Furthermore, 
let the rooted gyrovector ea2@b2 be the parallel transport of a rooted gy- 
rovector eal@bl along L,  where the latter, in turn, is the parallel transport 
of a rooted gyrovector eao@bo along L,  Fig. 8.27. Then, by Def. 8.61, 

Eliminating the rooted gyrovector eal@bl from the two equations in 
(8.232) we obtain the single equation 
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Fig. 8.27 
parallel transport along the gyroline. 

Two successive parallel transports along a gyroline are equivalent to a single 

Noting that the three points ao, al, a 2  are gyrocollinear, (8.233) can be 
simplified by means of the gyration transitive law, (6.80), obtaining 

so that,  by Def. 8.61, the rooted gyrovector ea2@b2 is the parallel transport 
0 of the rooted gyrovector eW@bo along the gyroline L. 

Parallel translation in Euclidean geometry splits into two kinds of hy- 
perbolic translations. These are (i) the parallel transport and (ii) the gy- 
rovector translation. The former is well-known in hyperbolic geometry and, 
more generally, in differential geometry, while the latter is unheard of in the 
nongyro-literature. When translated along a closed gyropolygonal path, the 
latter regains its original orientation while the former loses it, as explained 
in Sec. 8.16 and illustrated in Fig. 8.29. 
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Fig. 8.28 The parallel transport in 
Fig. 8.24 is contrasted here with a cor- 
responding gyrovector translation in the 
Mobius gyrovector plane (R:, $, 8). The 
gyrovector 8ao$bo, rooted at ao, is 
(i) parallel transported to the gyrovector 
Gal$bl, rooted at al,  and (ii) gyrovector 
translated to the gyrovector eal$b;, also 
rooted at al.  The two gyrovectors Bao$bo 
and 8a1 $bi are equal since they belong to 
the same equivalence class, Def. 5.4. 
The rooted gyrovector eal$b; is called 
the gyrovector translated companion of 
the parallel transported rooted gyrovector 
eal$bl. The latter is rotated relative to 
the former by the gyration gyr[al, eao], as 
we see from (8.235). 

Fig. 8.29 Contrasting successive parallel 
translations 8ak$bk with successive gy- 
rovector translations eak$b',, k = 1 ,2 ,3 ,  
of a rooted gyrovector Bao$bo along a 
closed gyropolygonal path (a gyrotrian- 
gular path in this figure) in the Mobius 
gyrovector plane (R:,$,@). Owing to 
the presence of gyrations, following suc- 
cessive parallel transports along a closed, 
gyrotriangular path the original gyrovector 
Bao$bo loses its original orientation, that 
is, 
Ileao€BboII = Ileas$bsII but 
eaoebo # ea3eb3. 
The gyrovector translated companion, in 
contrast, regains its original orientation, 
that is, Bao$bo = @as$b$. 

8.16 Parallel Transport vs.  Gyrovector Translation 

In Fig. 8.28 a gyrovector ea,,@bo is 

(1) parallel transported into the gyrovector eal@bl; and 
(2) gyrovector translated into the gyrovector eal@bi. 

Hence, by (8.222) of Def. 8.61 and (5.17) of Theorem 5.7, we have 
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The two translations of the gyrovector ew@bo in (8.235) differ by the 
presence of a gyration in the parallel transport and its absence in the gy- 
rovector translation. The first translation in (8.235), the parallel transport, 
is well-known in differential geometry in the context of manifolds. Here, in 
the context of gyrovector spaces, it involves a gyration. The second transla- 
tion in (8.235), the gyrovector translation, is gyration free. The gyrovector 
translation was suggested in Def. 5.6 by the introduction of gyrovectors as 
equivalence classes in Def. 5.4. 

A vector space is a special case of a gyrovector space in which all gy- 
rations are trivial. In this special case, the concepts of parallel transport 
and gyrovector translation, therefore, coincide as we see from (8.235). It is 
interesting to visualize geometrically, in Fig. 8.29, the significant difference 
between these two kinds of translations, which emerges in the passage from 
vector to gyrovector spaces. 

As Fig. 8.29 indicates, 

(1) following successive gyrovector translations along a closed gy- 
ropolygonal path, a rooted gyrovector returns to its original po- 
sition. In contrast, 

(2) following successive parallel transports along a closed gyropolygo- 
nal path, a rooted gyrovector does not return to its original posi- 
tion. 

In Fig. 8.29 we see three successive gyrovector translations and parallel 

The three successive gyrovector translations in Fig. 8.29 are 
transports along a closed, gyrotriangular path aoala2a3, where a3 = ao. 

eal@b; = @ao@bo 
eazeb’, = 8al@b: (8.236) 

8a3@bL = 8a2@bh 

implying 

(8.237) 

But the path is closed, a3 = a ~ ,  so that 

bi = bo (8.238) 

as shown in Fig. 8.29. Hence, following the three successive gyrovector 
translations along a closed path of the original gyrovector @a&bo, the 
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final gyrovector coincides with the original one, 

The three successive parallel transports in Fig. 8.29 are 

(8.239) 

(8.240) 

so that 

Hence, by employing the equality a3 = a0 and the gyrocommutative gy- 
rogroup identity (3.34), we have 

It follows from (8.242) that the final gyrovector, ea3@b3, equals the origi- 
nal gyrovector, eao@bo,  gyrated by the gyration 

The gyration (8.243) of the Mobius gyrovector plane turns out to be 
the gyrotriangular gyration of Def. 8.53, studied in Sec. 8.11. Furthermore, 
this gyration appears in the Gyroparallelogram Law in (8.194), illustrated 
in Fig. 8.22. It represents a rotation of the gyroplane about its origin by a 
gyroangle that equals the gyrotriangular defect of the gyrotriangle ma1 a 2 ;  

see Remarks 8.54 and 8.56. 
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Fig. 8.30 Gyrocircle Gyrotrigonometry. Gyro-Cartesian coordinates (z, y) and gyropo- 
lar coordinates (r, 0) of any point P = P(z ,  y) = P(T, 0) of the Mobius gyrovector plane 
(R:,@,@) are shown. Here -s < 2, y < s, 0 < T < s, and 0 5 f3 < 2 ~ .  The trans- 
formation from gyropolar coordinates (r, @) of a point to its gyro-Cartesian coordinates 
(z, y) is given by (8.249); and its inverse transformation, the transformation from gyrc- 
Cartesian coordinates (2, y) of a point to its gyropolar coordinates (r, 0) is given by 
(8.247) - (8.248). 

8.17 Gyrocircle Gyrotrigonometry 

Gyrotrigonometry, along with parallel transport of gyrosegments, enables 
us to develop gyrocircle gyrotrigonometry in a way fully analogous to circle 
trigonometry. This, in turn, gives rise to gyro-Cartesian and gyropolar 
coordinates for the Mobius gyrovector plane (R,”, @, @), shown in Fig. 8.30. 

Let us arbitrarily select a point 0, and construct two mutually orthogo- 
nal gyrolines passing through the point. The two gyrolines, called “z-axis” 
and “y-axis” form a coordinate system with origin 0 for the Mobius gy- 
rovector plane. In Fig. 8.30 the z-axis is the gyroline containing the points 
A,  0, B and the y-axis is the gyroline containing the points C, 0, D. 
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Let P be any point of the Mobius gyrovector plane other than 0. We 
wish to describe it as the point P = P(x ,y)  relative to the gyro-Cartesian 
coordinate system (2, y )  or, equivalently, as the point P = P(T, 0) relative 
to a corresponding gyropolar coordinate system (T ,  0). 

Denoting the gyrodistance of P from 0 by T ,  we have T = 11eO@Pll. 
Let P(T)  be the gyrocircle of radius T centered at the coordinates origin 0. 
The gyrocircle P(T)  intersects the x-axis at the points A and B and the 
y-axis at the points C and D,  Fig. 8.30. Let 9 be the gyroangle 

9 = LAOP (8.244) 

so that the point P is uniquely determined by its gyropolar coordinates, 
P = P(r, 9). Furthermore, let Px be the point on the x-axis such that 

7r 
LOP,P = - (8.245) 2 

and let 

(8.246) 

be the gyrolengths of sides OP, and PxP of the right gyroangled gyro- 
triangle OP,P. Then, by the Hyperbolic Pythagorean Theorem 8.32, we 
have 

X 2  y2  T 2  

s s  s 
-$- = - 

By (8.89) and Def. 8.35, as shown in Fig. 8.12, we have 

,@x s 2 + r 2  x cosg = -- = ~- 
,@ T S2 + X 2  T 

(8.247) 

(8.248) 

Solving the system (8.248) of two equations for the unknowns x and y 
we have 

1 
x = -rcose 

Q x  

1 
y = -rsinB 

QY 

(8.249) 
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where 

(8.250) 
Q, = ;{I- $ + J-1 

Let Py be the point on the y-axis between points 0 and D, Fig. 8.30, 
such that 

Y = IleO@p,II (8.251) 

in analogy with the first equation in (8.246). Then, the gyrosegments OP, 
and P,P in Fig. 8.30 are related to one another by a parallel transport. 
Parallel transporting the gyrovector OP, to a gyrovector with tail at P, 
gives the gyrovector P,P. We may recall here that the parallel transport 
of a gyrovector along a gyroline keeps the gyrolength of the transported 
gyrovector and its gyroangle with the gyroline invariant, Fig. 8.27. 

In Euclidean geometry parallel transport and gyrovector translations 
coincide, as we found in Sec. 8.16. Hence, in the Euclidean counterpart of 
Fig. 8.30 the vectors OP, and P,P are equal. In gyrogeometry, in contrast, 
parallel transports and gyrovector translations are different notions. Hence, 
the gyrovectors OP, and P,P are different in general. 

The pair (2, y) represents the gyro-Cartesian coordinates of the point 
P,  and the pair ( ~ ~ 0 )  represents the gyropolar coordinates of the point P 
relative to the zy-coordinate system in Fig. 8.30. 

(1) The conversion from gyro-Cartesian coordinates (z,y) of a point 
to its gyropolar coordinates (T ,  0) is given by (8.247) - (8.248); and 

(2) The conversion from gyropolar coordinates (T ,  0) of a point to its 
gyro-Cartesian coordinates (z, y) is given by (8.249). 

In the limit of large s ,  s -+ 00, the conversions between gyro-Cartesian 
and gyropolar coordinates reduce to the familiar conversions between Carte- 
sian and polar coordinates. Thus, in particular, (8.247) reduces to the fa- 
miliar relation x2 + y2 = r2 between polar and Cartesian coordinates of the 
Euclidean plane, as explained in Remark 8.33. 
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Fig. 8.31 The cogyroangle a generated by Fig. 8.32 The cogyroangle between co- 
the two rooted cogyrovectors bEa and dHc geodesics and its associated Euclidean an- 
in the Mobius gyrovector plane is shown. gle between corresponding supporting di- 
Its cosine is given by (8.254), and is nu- ameters are equal. Hence, by inspection, 
merically equal to the Euclidean angle a‘ the sum of the cogyroangles of a cogyrotri- 
generated by the corresponding supporting angle is x. a = a’, p = p‘, y = y’, and 
diameters. a’ + p’ + y’ = x. 

8.18 Cogyroangles 

Definition 8.66 Let @a Ell b be a nonzero 
rooted cogyrovector, Def. 5.9, in a gyrovector space (G, @, &I). Its  cogy- 
rolength is Ilea H bll and its associated rooted cogyrovector 

(Unit Cogyrovectors). 

is called a unit cogyrovector. 

(8.252) 

We may note that by (2.8) and Theorem 3.4 we have 

@a EEI b = Ea 83 b = b a (8.253) 

Unit cogyrovectors represent “cogyrodirections” . A cogyroangle is, accord- 
ingly, a relation between two cogyrodirections. 
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Definition 8.67 Let e a  H b and 8 c  83 d be two 
nonzero rooted cogyrovectors in a gyrovector space (G, $, 8). The gyro- 
cosine of the measure of the cogyroangle a that the two rooted cogyrovectors 
generate is given by the equation, Fig. 8.31, 

(Cogyroangles). 

(8.254) 

If a = c then cogyroangle a in (8.254) is denoted by a = Lbad or, equiva- 
lently, a = Ldab (it should always be clear from the context whether a is 
a gyroangle or a cogyroangle). Two cogyroangles are congruent if they have 
the same measure. 

Cogyroangles are invariant under automorphisms of their gyrovector 
spaces. However, unlike gyroangles, cogyroangles are not invariant under 
left gyrotranslations. 

Theorem 8.68 The cogyroangle between two cogyrolines equals the cogy- 
roangle (which is also a gyroangle) between the two corresponding origin- 
intercept cogyrolines (which are also gyrolines). 

Origin-intercept gyrolines, Def. 6.17, are origin-intercept cogyroline by The- 
orem 6.18. The origin-intercept gyroline that corresponds to a given cogy- 
roline is defined in Def. 6.67. The origin-intercept gyroline-cogyroline in 
the Mobius gyrovector space (that is, in the Poincark ball model of hyper- 
bolic geometry) turns out to be the supporting gyrodiameter, as remarked 
in Remark 6.69 and illustrated in Fig. 8.31. 

Proof. Let us consider two cogyrolines that contain, respectively, the 
cogyrosegments ab and cd, Fig. 8.31. The gyrocosine of the cogyroangle a 
between these cogyrolines is given by the equation, Def. 8.67, 

(8.255) 

By Theorem 6.68, the cogyrodifference bE a lies on the origin-intercept 
cogyroline that corresponds to the cogyroline containing the cogyrosegment 
ab and, similarly, the cogyrodifference d Ei c lies on the origin-intercept co- 
gyroline that corresponds to the cogyroline containing the cogyrosegment 
cd (as shown in Fig. 8.31, where corresponding origin-intercept cogyro- 
lines are corresponding supporting gyrodiameters). The gyrocosine of the 
cogyroangle a' (which is also a gyroangle) between these corresponding 

b E a  d E c  
cosa = -*- 

Ilb El all Ild a CII 
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origin-intercept cogyroline (which are also gyrolines) is given by the equa- 
tion 

(bEa)EO (dEc)EO 
II(b a) 011 * lPW 011 

cos a’ = 

- b E a  d E c  _-.- 
Ib all IP El cll 

(8.256) 

= cosa 

We may remark that a‘, 

a’ = L(b a)O(d c )  (8.257) 

is treated in (8.256) as a cogyroangle. However, it can equivalently be 
treated as a gyroangle simply by replacing “80” by “eo” in (8.256). Hence, 
a’ is both a gyroangle and a cogyroangle. In the models that  we study in 
this book, a gyroline that coincides with a cogyroline turns out to be a 
Euclidean line and, similarly, a gyroangle that coincides with a cogyroangle 
turns out to be a Euclidean angle. 

Theorem 8.69 
morphisms. 

Cogyroangles are invariant under gyrovector space auto- 

Proof. We have to show that the cogyroangle a = Lbac for any points 
a, b, c of a gyrovector space (G,@,@) is invariant under the gyrovector 
space automorphisms, Def. 6.5. Equivalently, we have to show that 

Lbac = L(Tb)(Ta)(Tc) (8.258) 

for all a, b, CEG and all TEAut(G). Indeed, by (2.52) and the third identity 
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in (6.7) we have 

315 

= cosLbac 

Theorem 8.70 T h e  measure of a cogyroangle is model independent. 

Proof. Following Def. 6.85 let (GI, @I ,  81) and (G2, (32, 8 2 )  be two iso- 
morphic gyrovector spaces with isomorphism 4 : G1 -+ G2. Furthermore, 
let al be a cogyroangle in G1 given by 

and let a 2  be the corresponding gyroangle in G2, 

(8.260) 

(8.261) 
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Then, by (6.295) and (6.292) we have 

(8.262) 

= C O S a l  

so that a1 and a2 have the same measure, a1 = a 2 .  

To calculate the gyrocosine of a cogyroangle a generated by two directed 
cogyrolines we place on the two cogyrolines two nonzero rooted cogyrovec- 
tors e a  H b and e c  EE d or, equivalently, ea‘ H b’ and 8c’ EH d’, Fig. 8.31. 
The measure of the cogyroangle a is given by the equation 

(8.263) 

where it is represented by the points a, b, c and d or, equivalently, by the 
equation 

(8.264) 

where it is represented by the points a’, b’, c’ and d’. 
In the following theorem we show that, as anticipated in the cogyroangle 

calculation, (8.263) and (8.264) give the same cogyroangle measure for the 
cogyroangle a. 

Theorem 8.71 
representation independent. 

Proof. Let 

The cogyroangle generated by two directed cogyrolines is 

(8.265) 
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be two cogyrolines in a gyrovector space (G, @, @), Fig. 8.31. Let a’ and b’ 
be two distinct points on Lab and, similarly, let c’ and d’ be two distinct 
points on L c d .  Then 

(8.266) 

for some t k  E R, k = 1, .  . . ,4. Furthermore, we assume that the cogyrolines 
are directed such that t 2  > t l  and t 4  > t 3 .  

The cogyroangle a generated by the two directed cogyrolines (directed 
in the direction of increasing their parameter t )  Lab and LCd is given by 

(8.267) 

where it is represented by the points a’ and b’ on Lab and the points c’ 
and d‘ on Led. 

Let us express a‘ and b’ (c’ and d’) in terms of a and b (c  and d). 
As in the derivation of (6.163), by Identity (2.44) of the Cogyrotranslation 
Theorem 2.16, and the scalar distributive law we have 

(8.268) 

and, similarly, 

d’ El C’ = (d El ~ ) @ ( t q  - t 3 )  (8.269) 

Hence, by the scaling property (V4) of gyrovector spaces, noting that t 2  - 

t l  > 0 and t 4  - t 3  > 0,  we manipulate the representation of cosa by the 
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points a' and b' on Lab and c' and d' on Led, 

b' El a' d' 6 c' 
((b' El a'\\ ' ((dl El c'(( 

- (b a)@(tz - t ~ )  

C O S a  = 

(8.270) (d E3 c)@(t ,  - t 3 )  - 
II(b El a)@(t2 - tl)ll* II(d ~ ) @ ( t 4  - h ) I I  
b R a  dEc -.- - - 

lib El all IP 8 cll 
obtaining a representation of coso by the points a and b on Lab and 
the points c and d on Led. Hence, the value of coso is representation 
independent. 0 

8.19 The Cogyroangle in the Three Models 

It follows from (3.130) that the cogyroangle o generated by the cogyro- 
lines Lab and LCd in a Mobius gyrovector space, Fig. 8.31, is given by the 
equation 

bEMa d 8 , c  
COSQ = I l b  'M a l l  ' I l d  'Id '11 

(8.271) 

- - 7 3  - 7:a 7 3  - 7,". 
Ilr3 - rEall. 1173 - 7,241 

Similarly, it follows from (3.156) that the cogyroangle a generated by 
the cogyrolines Lab and Lcd in an Einstein gyrovector space is given by the 
equation 

(8.272) 

Finally, it follows from (3.162) that the cogyroangle a generated by the 
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cogyrolines Lab and Lcd in a PV gyrovector space is given by the equation 

b B , a  d 8 , c  
cosa = 

Ilb 8, all . Ild 8, CII 

- b - a  d - c  --.- 
Ilb - all Ilb - all 

(8.273) 

Interestingly, cogyrolines in PV gyrovector spaces are straight lines, as 
we see from Figs. 6.13, 6.14 and 6.15, and cogyroangles that cogyrolines 
generate have the same measure as their Euclidean counterparts, as we see 
from (8.273). As a result, the cogyrotriangle cogyroangle sum is 7r in all 
gyrovector space models that are isomorphic to a PV gyrovector space. We 
will see in Theorem 8.73 that the resulting %-Theorem” is, in fact, valid 
in any gyrovector space. 

8.20 Parallelism in  Gyrovector Spaces 

Theorem 8.72 (Hyperbolic Alternate Interior Cogyroangles 
Theorem). Let L1 and L2 be two parallel cogyrolines in gyrovector space 
(G, @, 8) that are intersected by a cogyroline at the points PI and P4 of L1 
and L2 respectively. Furthermore, let P2 and P3 be points on L1 and L2 re- 
spectively, located on opposite sides of the intersecting cogyroline, Fig. 8.33. 
Then, the two alternate interior cogyroangles are equal, 

LPlP4P3 = LP4PlP2 (8.274) 

Proof. Let 

L1 : a@t@vl, PI = a@tl@vl, P2 = a@tz@v~ 
L2 : a@t@vz, P3 = a@t3@v2, P4 = a@t4@v2 

(8.275) 

t 6 R, be two parallel cogyrolines where PI and P2 are two points on L1, 
and P3 and P4 are two points on L2 in a gyrovector space (G, @, @), as 
shown in Fig. 8.33 for the Mobius gyrovector plane. The points PI and P2 
on L1 and the points P3 and P4 on Lz correspond to selected values t l ,  t2, 
t 3  and t 4  of the parameter t in (8.275). These values are arbitrarily selected 
such that tl - t2 and t4 - t3 have opposite signs so that the points P2 and 
P3 are located on opposite sides of the cogyroline passing through PI and 
P4, as shown in Fig. 8.33. 
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The alternate cogyroangles a and a’, Fig. 8.33, are given by the equa- 
tions 

(8.276) 

By (8.275), and by Identity (2.44) of the Cogyrotranslation Theorem 
2.16, we have 

and 

By assumption, tl - t 2  and t3 - t 4  have equal signs so that, by the scaling 
property (V4) of gyrovector spaces, we have 

where the ambiguous signs go together, so that 

(8.280) 
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Fig. 8.33 Alternate interior cogyroangles, Fig. 8.34 The cogyrotriangle cogyroangle 
a and a', generated by a cogyroline inter- sum, T ,  is shown in the Mobius gyrovector 
secting two parallel cogyrolines, are equal. plane. 

Hence, finally, by (8.276) and (8.280) we have 

HP4 EE Pi EP4 P3 coscr = 11 P4 PI ' 1 1  8 P4 Ed P3 11 

= COScr' 
0 

Theorem 8.73 
of any cogyrotriangle in a gyrovector space is T ,  Fig. 8.3'4. 

Proof, 

(The 7r-Theorem). The sum of the three cogyroangles 

The proof, fully analogous to its Euclidean counterpart, follows 
0 from Theorem 8.72 and Fig. 8.34. 

8.21 Reflection, Gyroreflection, and Cogyroreflection 

In this section we show graphically (leaving the proof to interested readers) 
that the notions of (i) Euclidean reflection relative to a circle, (ii) gyroreflec- 
tion, and (iii) cogyroreflection relative to a gyroline in a Mobius gyrovector 
plane are coincident. 
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-1 -0.5 0 0.5 1 1.5 2 

Fig. 8.35 Reflection, Gyroreflection, Cogyroreflection. The point P’ is the Euclidean 
reflection of the point P relative to the circle L in the Poincar6 disc W:=, or, equiv+ 
lently, in the Mobius gyrovector plane (R:=,, @, 8). The circle L,  in turn, is the circle 
that carries the unique gyroline that passes through any two given points, PI and Pz, 
of the disc. Coincidentally, the point P’ is also the gyroreflection and cogyroreflection 
of the point P relative to the gyroline L.  Interestingly, (i) the gyroline L intersects 
the gyrosegment PP’ at the gyrosegment gyromidpoint mpp,; and also (ii) the gyro- 
line L intersects the cogyrosegment PP’ at the cogyrosegment cogyromidpoint m)pp,. 
Moreover, (i) the gyroline L is perpendicular to the gyrosegment PP’; and also (ii) the 
gyroline L is “perpendicular” to the cogyrosegment PP’ in the sense that the gyroline 
L is perpendicular to the cogyrosegment supporting diameter. Accordingly, this figure 
illustrates remarkable duality symmetries that the gyromidpoint and the cogyromidpoint 
share. 

Let PI and P2 be two given points of the Poincark unit disc, that is, 
the Mobius gyrovector plane (Rt=l,@,@), let L be the gyroline passing 
through these points, and let P be a point of the unit disc lI%~=, not on L,  
Fig. 8.35. Furthermore, let 0 and T be the Euclidean center and radius of 
the circle L that carries the gyroline L in the Euclidean plane R2. The two 
points P and P‘ are said to be symmetric relative to the gyroline L if 0, 
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P and P' are Euclidean-collinear and if, in the Euclidean geometry sense, 

( ( P  - O(( ((P' - O(( = r2 (8.282) 

The points P and P' lie on opposite sides of L in the Poincark disc, Fig. 8.35, 
and are said to be reflections of each other relative to  the circle L. 

Coincidentally, (i) the gyroline L intersects the gyrosegment PP' at its 
gyromidpoint mpp,; and also (ii) the gyroline L is perpendicular to the 
gyrosegment PP'. Hence, the gyroline L is the perpendicular bisector of 
the gyrosegment PP', Fig. 8.35, and the points P and P' are said to be 
gyroreflections of each other relative to the gyroline L. 

Furthermore, coincidentally (i) the Euclidean line containing the points 
P and P' intersects the supporting gyrodiameter of the cogyroline contain- 
ing the same points P and P' at the center 0 of circle L ;  (ii) the gyroline 
L intersects the cogyrosegment PP' at its cogyromidpoint m'p,,,; and also 
(iii) the gyroline L is perpendicular to the cogyrosegment PP' in the fol- 
lowing sense: The supporting gyrodiameter of the cogyrosegment PP' is 
perpendicular to L,  as shown in Fig. 8.35. Noting that the orientation 
of the cogyrosegment PP' is the Euclidean orientation of its supporting 
gyrodiameter, the cogyrosegment PP' is perpendicular to the gyroline L.  
Hence, the gyroline L is the perpendicular bisector of the cogyrosegment 
PP', Fig. 8.35, and the points P and P' are said to be cogyroreflections of 
each other relative to the gyroline L. 

Employing the Mobius gyrovector plane and its underlying Euclidean 
open unit disc we have thus observed the remarkable coincidence of the no- 
tions of reflection relative to a circle in Euclidean geometry, gyroreflection in 
hyperbolic geometry and cogyroreflection in cohyperbolic geometry relative 
to a gyroline. The bifurcation of non-Euclidean geometry into hyperbolic 
geometry and cohyperbolic geometry is explained in Fig. 8.38, p. 326. 

8.22 Tessellation of the Poincare Disc 

For any given triangle one can reflect each of its vertices relative to its 
opposite side obtaining three new triangles. Starting with a single trian- 
gle and applying successive reflections in its sides, and in the sides of the 
newly obtained triangles, one may attempt to arrive at a complete trian- 
gulation of the Euclidean or hyperbolic plane. Let the angles of the initial 
triangle be r / k ,  r/l, r/m, where k ,  1 ,  m are integers. A complete triangu- 
lation of the Euclidean plane is obtained by successive triangle reflections 
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Fig. 8.36 Tessellation of the Mobius gy- Fig. 8.37 Tessellation of the Mobius gy- 
rovector plane (Wp=,, @, €3)) or, equiva- rovector plane (Rp=l, @, €3)) by equilat- 
lently, the Poincar6 disc, by equilateral gy- eral gyrotriangles with gyroangle a = r /5 .  
rotriangles with gyroangle a = ~ / 4 .  The The gyrolength of each side of each equi- 
gyrolength of each side of each equilateral lateral gyrotriangle in the tessellation is 
gyrotriangle in the tessellation is d z  d2cos(n/5) - 1 in accordance with The- 
in accordance with Theorem 8.55. orem 8.55, p. 287. 

if [Carathkodory (1954), p. 1741 

1 1 1  
l m  

z + - + - = l  (8.283) 

Following Poincark’s theorem [Poincark (1882)] a complete triangulation of 
the hyperbolic plane is obtained by successive hyperbolic triangle reflections 
(that is, gyrotriangle gyroreflections) if 

1 1 1  
- + - + - < l  k l m  (8.284) 

Elementary proof of Poincark’s theorem is found in [Carathkodory (1954), 
pp. 174-1841 and in [Maskit (1971)l. 

Complete triangulations of the hyperbolic plane by equilateral trian- 
gles are special tessellations of the hyperbolic plane [Magnus (1974)], giv- 
ing elegant demonstrations of hyperbolic reflectional symmetry. Owing 
to condition (8.283) the Euclidean plane allows only the single case of 
Ic = 1 = m = 3. In contrast, owing to condition (8.284), the hyperbolic 
plane allows the infinitely many cases of k = 1 = m 2 4. Two of these 
cases, k = 1 = m = 4 and k = 1 = m = 5, are shown in Figs. 8.36 
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and 8.37. Evidently, the hyperbolic plane is richer in structure than the 
Euclidean plane. Various tilings of the Poincar6 disc by triangles are avail- 
able in the literature [Goodman-Strauss (2001)]. For instance, the case of 
( k ,  1, rn) = (2,3,7) is presented in [Mumford, Series and Wright (2002), 
p. 3821, and the cases of (7,3,2) and (6,4,2) are presented in [Montesinos 
(1987), p. 1781. 

Let abc be an equilateral triangle. The reflection a’ of a relative to its 
opposite side bc is given by the equation 

a’ = (b + c) - a (8.285) 

in the Euclidean plane (R2, +), and by the equation 

a’ = (b EEI c)ea (8.286) 

in the Mobius gyrovector plane (I&!:,@). The latter, (8.286), is obviously 
related to the gyroparallelogram in Def. 6.40. Indeed, the hyperbolic tri- 
angulations in Figs. 8.36 and 8.37 were obtained by the use of (8.286). 
The analogies that (8.285) and (8.286) share demonstrate that in order to 
capture analogies between Euclidean and hyperbolic geometry both the gy- 
rogroup operation @ and the gyrogroup cooperation 83 must be employed. 

8.23 The Bifurcation Approach to Non-Euclidean Geome- 
try 

Non-Euclidean geometry emerged from the denial of parallelism in Eu- 
clidean geometry. However, we have seen in Sec. 8.20 that parallelism 
reappears in the cogyrolines of cohyperbolic geometry of non-Euclidean ge- 
ometry, Figs. 6.6, 6.15, 8.33, and 8.34. We thus observe a Euclidean prop- 
erty which is denied in hyperbolic geometry, but reappears in cohyperbolic 
geometry. 

The result that the Euclidean parallelism is retained in a branch of 
non-Euclidean geometry that has gone unnoticed, is a part of the bi- 
furcation pattern demonstrated in Fig. 8.38. Some Euclidean proper- 
ties that have seemingly been lost in the passage from Euclidean geom- 
etry to non-Euclidean geometry reappear in cohyperbolic geometry. Evi- 
dently, Euclidean geometry bifurcates into two non-Euclidean complemen- 
tary branches, one of which is the hyperbolic geometry of Bolyai and 
Lobachevsky. Naturally, the branch that has gone unnoticed is called 
cohyperbolic geometry. The Euclidean geometry bifurcation into the two 
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Geometry 

Classical Hyperbolic Geometry Cohyperbolic Geometry %- Gyrolines, Gyroangles Cogyrolines, Cogyroangles 

I 
(1) Parallelism denied 
(2) Triangle medians are 

(3) Triangle angle sum < T 

(4) Congruence supported 
1 

concurrent 

/- \ 
(1) Parallelism supported 
(2) Triangle medians are 

not concurrent 
(3) Triangle angle sum = 7r 
(4) Congruence denied 
\ 1 

Fig. 8.38 The Hyperbolic Bifurcation Diagram 

complementary branches of non-Euclidean geometry is illustrated schemat- 
ically in Fig. 8.38. 

The two branches, hyperbolic and cohyperbolic geometry, of non- 
Euclidean geometry complement each other in the sense that they retain 
all the basic properties of Euclidean geometry. Those Euclidean proper- 
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ties that have seemingly been lost in the passage to hyperbolic geometry 
reappear in cohyperbolic geometry. Moreover, the two branches of non- 
Euclidean geometry share duality symmetries in (i) gyrovectors and cogy- 
rovectors, (ii) gyrolines and cogyrolines, (iii) gyroangles and cogyroangles. 
These duality symmetries include, for instance, Theorem 2.21 and the gy- 
ration and cogyration transitive law in Theorems 6.29 and 6.62. 

Owing to the bifurcation of Euclidean geometry properties in the tran- 
sition to  non-Euclidean geometry, any set of axioms that determines Eu- 
clidean geometry can be classified into the following three classes, 

(1) Euclidean axioms that are valid in hyperbolic geometry but invalid 

(2) Euclidean axioms that are valid in cohyperbolic geometry but in- 

(3) Euclidean axioms that are valid in both hyperbolic and cohyper- 

in cohyperbolic geometry (like the congruence axioms). 

valid in hyperbolic geometry (like the parallel axiom). 

bolic geometry. 

The three classes of Euclidean geometry axioms are disjoint. The Bi- 
furcation Principle, that Fig. 8.38 demonstrates, states that the union of 
these three disjoint classes of Euclidean geometry axioms equals the set 
of all Euclidean geometry axioms. It follows from the Bifurcation Princi- 
ple that there is no axiom of Euclidean geometry that is invalid in both 
hyperbolic and cohyperbolic geometry. 

8.24 Exercises 

(1) Verify Theorem 8.15 in detail. 
(2) Let ABC and A'B'C' be two gyrotriangles with equal defects. 

Show by numerical examples that their gyrotriangle constants, 
S,,, and SA,,,,,, Def. 8.42, need not be equal. 

(3) Show that if two gyrotriangle gyroangles are congruent their oppo- 
site sides are congruent. 

(4) Show that if two gyrotriangle sides are congruent their opposite 
gyroangles are congruent. Hint: Use Theorem 8.48. 

(5) Verify the relation (8.177) between gyrotriangular gyration and 
gyroangular defect. 

(6) Translate the gyrotriangle defect formula (8.132) for sin6 in a 
Mobius gyrovector space into a corresponding formula for sinb in 
an Einstein gyrovector space. 
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b = eC@A 

c = 0 A e B  
b = llbll 

c = J(cJJ 

b b b.c 
COSQ = 2 = - = - 

Fig. 8.39 Gyrotrigonometry in Einstein gyrovector plane (Rl,  @, @I). 

Hints: (i) Use the translation identities in (6.309); and (ii) show 
that your result coincides with [Chen and Ge (1998), Eq. (Id)]. 

(7) Verify the cosy equation in Fig. 8.11. 
(8) Figure 8.39 is the translation of Fig. 8.12, p. 263, from a Mobius 

to an Einstein gyrovector plane. Verify the identities presented in 
Fig. 8.39. Hint: Employ the translation identities in (6.309), noting 
that also the notation up, uy, etc., must be translated. 

(9) Verify Equation (8.173b). 
(10) Use the law of gyrocosines in Theorem 8.36 to calculate an al- 

ternative expression for c in (8.173~).  Show that the alternative 
expression for c and (8.173~) are equivalent. 

(11) Show that the Mobius gyroparallelogram identity (8.217) gives rise 
to the corresponding Einstein gyroparallelogram identity 

JG J1.ydo = Ta + "/b (8.287) 

Hint: Use the relationship T : ~  = (1 + yVe)/2, (6.310). 
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Fig. 8.40 The gyrocircle of Fig. 8.30 is shown here (i) as a gyrocircle with its gyrocenter 
Oh, gyroradius rh, and a gyroangle Oh, 0 5 Oh < 27r; and (ii) as a circle with its 
(Euclidean) center Oe,  (Euclidean) radius T,, and an angle Be, 0 5 Be < 27r. The 
gyroangle Oh that corresponds to the points A and P = P(Th, Oh) on the circumference 
of the gyrocircle is the gyroangle between the gyrorays OhA and OhP, Oh = LAO#. 
The gyrocosine of the gyroangle Oh, cosOh, is shown. The angle 8, that corresponds 
to the same points A and P = P ( r e , Q e )  on the circumference of the circle is the angle 
between the rays OeA and O,P,  Be = LA0,P.  The cosine of the angle O,, case,, is 
shown. 

(12) Figure 8.40 presents analogies between the gyroangle O h  and the 
angle 8, of a gyrocircle/circle about its gyrocenter/center. Show 
that in general the numerical values of Oh and 8, are different. 
What is the special case when Oh = 8,? 
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Chapter 9 

Bloch Gyrovector of Quantum 
Computation 

The Bloch vector in the open unit ball B3 = R:=, of the Euclidean 3- 
space R3 is well-known in quantum computation theory. Following a brief 
introduction, we will find in this chapter that the Bloch vector is, in fact, a 
gyrovector rather than a vector. Hence, we will discover that the geometry 
of quantum computation theory is the hyperbolic geometry of Bolyai and 
Lobachevsky, and its algebra is the algebra of gyrovector spaces. 

9.1 The Density Matrix for Mixed State Qubits 

A qubit is a two state quantum system completely described by the qubit 
density matrix p(v), 

1 :( 211 + i v 2  1 - 213 
1 + 213 211 - iW2 

p(v) = %(l+ 1 u.v) = - 

parametrized by the vector v = (211,212, 213)€B3. Here 1 is the unit matrix 
and cr = ( u 1 , ~ 2 , ( ~ 3 )  are the Pauli matrices in vector notation [Chen and 
Ungar (~ooI)] ,  

1 = (i !$ , (TI = (: i) , u 2  = ( y  ii) , ( ~ 3  = (' 0 -1 ) (9.2) 

Using vector notation we thus have uav = ~ 1 ~ 1  + V Z ~ Z  +213(~3 for any v E B3. 
The density matrix [Blum (1996)l dates back to the early indepen- 

dent work of Landau and von Neumann, has proved useful in physics 
[Urbantke (1991); Chen, Ungar and Zhao (2002); Chen, Fu, Ungar and 
Zhao (2002)l. Researchers have devoted substantial efforts in describ- 
ing the spaces defined by density matrices [Bloore (1976)], in using 
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them to analyze the separability of quantum systems [Zyczkowski (1998); 
Slater (1999)], in comparing information-theoretic properties of various 
probability distributions over them [Slater (1998)], as well as study- 
ing the question of parallel transport in this context [Uhlmann (1986); 
Uhlmann (1993); Uhlmann (1987); Urbantke (1991); LBvay (2004a); LBvay 
(2004b)l. 

The parameter v of the density matrix p(v) is known as the Bloch vector 
[Nielsen and Chuang (2000)], and accordingly, the ball B3 is called the Bloch 
ball (or, sphere). The determinant of p(v) is given by the equation 

1 
det(p(v)) = - 

47: (9.3) 

where ?; is the Lorentz gamma factor (3.129) with s = 1. 
All the postulates of quantum mechanics can be reformulated in terms 

of the density matrix language [Nielsen and Chuang (2000), p. 991. The 
generic density matrix for a mixed state qubit turns out to be the 2 x 2  
qubit density matrix p(v) [Nielsen and Chuang (2000), p. 1051. The qubit 
density matrix (9.1) obeys the constraints of unit trace (tr(p(v)) = 1) and 
positivity (det(p(v)) > 0) [Spekkens and Rudolph (2002)J. 

The qubit is, thus, a two state quantum system completely described by 
the qubit density matrix p(v), parametrized by the vector v = (v1,v2, v 3 ) ~  
B3, known as the Bloch vector. 

Remarkable identities linking the qubit density matrices p(v) to the 
Mobius gyrovector space (B3, @, @) of their Bloch vector parameter V E B ~  
will be presented, demonstrating that the Bloch vector deserves the title 
“gyrovector” rather than “vector”. 

Let p(u) and p(v) be two qubit density matrices generated by the two 
Bloch vectors u, vEB3, and let p(u@v) be the qubit density matrix gener- 
ated by the Mobius sum u@v of u and v, where @ = % is Mobius addition 
(3.127), so that u@v E B3. hrthermore, let R(u ,v )  be the 2 x 2  matrix 
given by the equation 

where we use the notation p-’(v) = (p(v))-’ and, more generally, p‘(v) = 

Remarkably, the matrix R(u, v), defined in terms of Mobius addition 
(P(V)>‘, ?-ER. 
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$, has elegant form, 

333 

) ( -(u x v)2 + i(u x v)1 1 + u*v - i(u x v)3 

1 + u.v + i(u x v)3 (u x v)2 + i(u x v)1 
R(u,v) = f 

and elegant determinant, 

4det(R(u, v)) = (1 + u . v ) ~  + IIu x v1I2 

u,veB3. Hence, R(u,v) has the form 

for some complex numbers a and b, with a non zero determinant. 
The matrix R(u,v) is a positively scaled unitary unimodular matrix 

in the sense that it can be written as a positive number, d-, 
times a unitary unimodular matrix. I t  is, thus, an element of the group 
PSU(2) = (0, co) x SU(2) of all 2 x 2 positively scaled unitary unimodular 
matrices, a group isomorphic to the multiplicative group of nonzero quater- 
nions [Altmann (1986)l. Moreover, it enjoys the following two remarkable 
features, 

and 

R(u, v) = R"v, u) (9.9) 

for all u, V E B ~ ,  Rt being the transpose, complex conjugate of R. 

R(u,v) is 
The special unitary matrix Rs(u, v)ESU(2), u,vEB3, associated with 

(9.10) 

) 
1 + u.v + i(u x v)3 (u x v)2 + i(u x v)1 

-(u x v)2 + i(u x v)1 1 + u.v - i(u x v)3 

J(1 + u.v)2 + IIU x v112 
- - ( 

It satisfies the functional equations 

(9.11) Rs(u,v) = Rs(-u, -v) 



Analytic Hyperbolic Geometry 334 

and 

R,l(u,v) = R,(v,u) (9.12) 

R,(u@v,v) = R,(u,v) (9.13) 

R, (u, v@u) = Rs (u, V) (9.14) 

for all u, V E B ~ .  Furthermore, if u and v are parallel, u I I v ,  then 

Rs(u,v) = I ,  ullv (9.15) 

I being the identity 2 x 2 matrix. Identities (9.13) - (9.14) clearly indicate 
the link with Mobius addition @ in B3. 

The denominator in (9.10), 

(9.16) 

u, v cB3, the square of which appears in the denominator of Mobius addi- 
tion law (3.127), can be written as, (3.128), 

YU@V F(u,v) = - 
YUTV 

(9.17) 

where ^/v is the Lorentz gamma factor of special relativity, (3.129), with 
s = 1. 

Furthermore, the function F ( u ,  v) satisfies the following cocycle func- 
tional equation and normalization conditions [Ungar (2001), p. 2891, 

F(u, v@w)F(v, w) = F(v@u, w)F(u, v) 

F(u, 0) = F(0 ,  v) = 1 
(9.18) 

Coincidentally, the cocycle equation (9.18) with an ordinary addition, + , 
rather than Mobius addition, @, arises in several branches of mathematics, 
as pointed out by B. R. Ebanks and C. T. Ng [Ebanks and Ng (1993)l. 
It is thus interesting to realize that with Mobius addition @ replacing the 
ordinary vector addition, the well-known cocycle equation appears in the 
study of gyrogroups [Rdzga (2000)], in general, and in the present study of 
the qubit density matrix, in particular. 

The matrices R(u,v), u,v E JIB3, play a role in the definition of the 
gyrator gyr of the gyrocommutative gyrogroup of qubit density matrices 
shown in (9.19) below. 
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We define the gyration gyr[p(u),p(v)] generated by the qubit density 
matrices p(u) and p(v) in terms of its effects on a qubit density matrix 
p(w) by the equation 

gyr[p(u), P(V)lP(W) = w u ,  v)p(w)R-l (u, v) (9.19) 

u, v,  WEB^, where we use the notation R-l(u,v) = (R(u, v))-l. 
The right hand side of (9.19) is interesting. It is in a form that describes 

the evolution of a closed quantum system by the unitary operator Rs(u, v), 
(9.10), according to [Nielsen and Chuang (2000), p. 991. 

The left hand side of (9.19) is interesting too. It satisfies the identity 

gyr[p(u), P(V)lP(W) = p(gyr[u, VIW) (9.20) 

for all u, v, w E B3, where gyr[u, w] are the gyrations of the Mobius gy- 
rogroup (B3, B). 

Interested readers may verify that (9.20) follows from (9.19) by lengthy 
but straightforward algebra that can be done by computer algebra, that is, 
by a computer software for symbolic manipulation, like MATHEMATICA 
and MAPLE. Thus, identities (9.19) - (9.20) give a quantum mechanical 
interpretation for a gyrogroup gyration. 

Finally, we define a binary operation 0 on the set 

D = {p(v) : VEB3) (9.21) 

of all mixed state qubit density matrices by the equation 

for all u, v E B3. Identity (9.20) relates the gyration of (0, a), generated 
by p(u),p(v)ED, (9.19), to the gyration of the parameter space (B3,@) of 
D ,  generated by u,vcB3. 

The groupoid (D, 0) involves the Bloch vector parameter space B3; and 
its composition law is given in (9.22) by parameter composition in B3. The 
parameter composition in B3 = (B3,@),  in turn, is given by Mobius ad- 
dition @. The groupoid ( D , @ )  thus turns out to be a gyrocommutative 
gyrogroup, which is an isomorphic copy of the Mobius gyrogroup (B3, @) 
with isomorphism given by (9.22). The elements of B3, the Bloch vec- 
tors, now naturally become gyrovectors. The identity element of the gyro- 
commutative gyrogroup D is p(O),  where 0 € B3 is the zero vector of the 
Euclidean 3-space R3. The gyrogroup inverse pe'(v) of p(v) E ( D , 0 )  is 
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pel(v) = p(8v)  where e v  = -v in B3. Indeed, by (9.22) we have, 

Pel(v)@P(v) = P(@V)@P(V) 
= p(ev@v)  (9.23) 

= P ( 0 )  

Hence, for instance, the gyration effects in (9.19) can also be written, 
according to Theorem 2.8(10) and (9.23), as 

gyr[du) ,  P(V)lP(W) = P(euev)o{P(u)o(P(v)oP(w))} (9.24) 

as interested readers may verify by computer algebra. 
The relationship between the generic qubit density matrix pv =p(v) ED 

and its Bloch gyrovector parameter v E B3 is described by the following 
commutative diagram. 

WB gyr[v,uI W@ v - u@v - v@u - 
l p  lp 

Pw 0 gY P" , pu] - pvQu ___) Pv - puopv 
Pu 0 

(9.25) 

Relationships for qubit density matrices with Einstein addition %, 
rather than Mobius addition @ = eM, are presented in [Chen and Ungar 
(2002b)], and will be encountered in (9.68). 

Density matrices for pure state qubits are given by (9.1) with a Bloch 
vector v E aB3 on the boundary of the Bloch ball B3, that is, llvll = 1, 
[Nielsen and Chuang (2000), p. 1001. The qubit composition law (9.22) for 
u, v E B3 remains valid on the closure B3 of B3 with one exception. The 
composition 

P(V)@P(-V) = P(V@V) (9.26) 

which is well-defined for all V E B ~  as p(O) ,  does not exist on aB3 in terms 
of a limit for any V E B ~  approaching v€dB3. 

In special relativity the seemingly unfortunate failure of the limit of 
Ve,v to exist when v approaches the boundary, dB3, of the ball B3 of 
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relativistically admissible velocities turns out to be a blessing. It repre- 
sents the physical experimental fact that, unlike subluminal particles, the 
photon has no rest frame. The role of the non-existence of vev for any 
v E aB3 in the quantum mechanical interpretation needs to be explored. 
Here v s v  = veE(-v), @ being the Einstein addition of relativistically 
admissible velocities. The relationship between Mobius and Einstein addi- 
tion, @ = @M and eE is presented in Table 6.1, p. 202, and in (6.296). 

9.2 The Bloch Gyrovector 

Identity (9.4) can be presented as the polar decomposition, 

P(U)P(V) = p(u@v)R(u, v) = F(u, V)P(u@V)Rs(u, v) (9.27) 

demonstrating that, in general, the matrix product of two qubit density 
matrices is not equivalent to a qubit density matrix but, rather, to a qubit 
density matrix preceded, or followed, by a positively scaled unitary uni- 
modular matrix. Indeed, Identity (9.27), in which the positively scaled 
unitary unimodular matrix R(u, v) E PSU(2) precedes the qubit density 
matrix p(u@v), is associated with the polar decomposition 

P(U)P(V) = R(u, V)P(V@U) = F(u1 v)R,(u, V)P(V@U) (9.28) 

in which the positively scaled unitary unimodular matrix R(u, v)ePSU(2)  
follows the qubit density matrix p(v@u). 

We may note that the qubit density matrix on the right hand side of 
(9.27) is parametrized by the Mobius sum u@v of Bloch gyrovectors, while 
the qubit density matrix on the right hand side of (9.28) is parametrized 
by the Mobius sum v@u of Bloch gyrovectors. 

In general, the matrix product of several qubit density matrices is not 
equivalent to a single qubit density matrix, as we see from Identities (9.27) 
and (9.28). However, there are special cases in which the matrix product of 
several qubit density matrices is equivalent to a single qubit density matrix 
with a positive coefficient. Each of these cases corresponds to a symmetric 
matrix product of qubit density matrices that we define below. These cases 
clearly exhibit the nature of the Bloch vector as a gyrovector in the Mobius 
gyrovector space (B3, @,@I) rather than a vector in the open unit ball B3 
of the Euclidean 3-space EX3. 

Definition 9.1 Since gyrogroup summation i s  nonassociative, we define 
general gyrogroup summations by successive left summations as, f o r  in- 
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stance, 
1 

@gk 91@(92@. . . @(gn-2@(gn-l@gn)) * ) (9.29) 

in a gyrogroup (G,@). One should note that the index k an (9.29) runs 
backwards from n to 1 and, accordingly, the summation runs from g n  to 91. 

k=n 

Let 
n n prk ( v k )  = pr' ( v l ) p r z  ( v 2 )  . . . fn-* (Vn-l)p'" (vn) (9.30) 

be the matrix product of n qubit density matrices parametrized by the n 
Bloch gyrovectors v1, v 2 , ,  . . , vn-l, v n c B 3 ,  and raised to the respective pow- 
ers r1 , 7-2,. . . , rnER. 

k=l 

A reversion of the matrix product (9.30) is the matrix product 

n p'"(Vk) = pTn(Vn)pTn- ' (Vn-l)  * * .  p r Z ( V 2 ) p r 1 ( V 1 )  

1 

(9.31) 
k=n 

A matrix product, ps , of qubit density matrices is symmetric i f  it is 
identically equal to its own reversion, 

n 1 

k=l k=n 

f o r  all V k  €B3, k = 1 , .  . . , n. 
Let ps = n:==, p T k ( w k )  be a symmetric matrix product of qubit density 

matrices. Its Bloch gyrovector w (or, equivalently, the Bloch gyrovector w 
that at possesses) is  given by  the equation 

1 

w = @ ( r k @ W k )  (9.33) 
k=n 

in the Mobius gyrovector space (B3, @, 8). 

Examples illustrating Def. 9.1 follow. The reversion of 

is 

(9.34) 

(9.35) 
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The matrix product p1 is, in general, different from its reversion p2 so that 
it is not symmetric. The matrix product 

is symmetric, possessing the Bloch gyrovector 

w = u @ ( v @ u )  (9.37) 

Similarly, the matrix product 

P3 = P(U)P(V)P(V)P(U) (9.38) 

is symmetric, possessing the Bloch gyrovector 

w = u@(2@v@u) = 2@(u@v)  (9.39) 

calculated by employing the Two-Sum Identity in Theorem 6.7.  

Theorem 9.2 
matrices, possessing the Bloch gyrovector wEB3. Then  

Let ps be a symmetric matrix product of qubit density 

P s  = t4PS >P(W) (9.40) 

Theorem 9.2 states that up to a positive coefficient, tr(p, ), a symmetric 
matrix product of qubit density matrices, ps , is equivalent to a single qubit 
density matrix p(w) parametrized by the Bloch gyrovector w that it pos- 
sesses. The latter, in turn, is a gyrovector in the Mobius gyrovector space 
(B3, @, @) generated by the operations @ and €3 in B3, as (9.33) indicates. 

When convenient, we may use the standard notation 

Pv = P(V) (9.41) 

for the 2 x 2 density matrix p(v) in (9.1). 
Illustrative examples of results that follow from Theorem 9.2 are pre- 

sented in Examples 1 - 4. 
Example 1. Let 

P s  = PC (9.42) 

where n is a positive integer. By Def. 9.1, ps is symmetric, possessing the 
Bloch gyrovector, (9.33), 

(9.43) 
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Hence, by Theorem 9.2, 

for all vEB3 and n c R .  Remarkably, Identity (9.44) remains valid for any 
real n as well, expressing any real power n ~ l W  of a qubit density matrix 
as a qubit density matrix with a positive coefficient. We may note that 
this remarkable result follows readily from the spectral theorem (Koranyi 
(2001)l. 

Let u = n@v so that v = ( l /n)@u in B3. Then, by (9.44), 

for all ~ E R ,  n # 0. Hence, for m = 1/n (9.45) 

for all U E B ~  and mER, m # 0. 
Renaming m and u as n and v, (9.46) can 

(9.45) 

can be written as 

Finally, comparing (9.44) and (9.47) we have, 

(9.46) 

be written as 

(9.47) 

(9.48) 

for all V E B ~  and nER,  n # 0. 

matrix p: and its trace tr(p:) for all TER. Let 
Identity (9.44) of Example 1 can be used to determine by inspection the 

V E B ~ .  Then, it follows from (9.1) and (6.234) that 

(9.49) 

(9.50) 
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where M is the matrix 

(A' + B')llvll + (A' - B')zJ~  

(A' - B ' ) ( w ~  + ~ W Z )  
(A' - B') (V~ - 2~12)  

(A' + B')ll~\\ - (A' - B')W 
M = (  

(9.51) 
v # 0 ,  so that from (9.44) and by inspection, 

AT + BT 
2' tr(pC) = (9.52) 

(9.53) 

Finally, (9.44) can be extended to a power of any real number, obtaining 

for all V E B ~  and ~ E R .  
Example 2.  Let 

2 
Ps = PUPVPU 

(9.54) 

(9.55) 

By Def. 9.1, ps is symmetric, possessing the Bloch gyrovector, (9.33), 

w = U@(V@(V@U)) 

= U@(2@V@U) 

= 2@(u@v) 

(9.56) 

In (9.56) we use the left gyroassociative law and the Two-Sum Identity in 
Theorem 6.7. 

Hence, by Theorem 9.2, 

(9.57) 

and
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But, by (9.44), 

and by (9.48), 

Analytic Hyperbolic Geometry 

Hence, (9.57) can be written as 

(9.58) 

(9.59) 

(9.60) 

Example 3. We wish to calculate [ t r ( G ) l 2  for later reference. By 
(9.48) and (6.235) we have 

(9.61) 

where the extreme right hand side of (9.61) is calculated by straightforward 
algebra. Coincidently, the extreme right hand side of (9.61) appears in 
(6.235) as well. 

Example 4. Let 

m 2n m (9.62) P s  = Pu Pv Pu 

By Def. 9.1, ps is symmetric, possessing the Bloch gyrovector, (9.33), 

w = m@u@((2n)@v@m@u) 
= m@u@(2@(n@v)@m@.u) (9.63) 

= 2@(m@u@n@v) 

as, similarly, in (9.55) and (9.56). 
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Hence, by Theorem 9.2, 

tr (PF P?PF ) 
= p(m@u@(2@(n@v)@m@u)) 

= p(2@(m@u@n@v)) 
n 

Square rooting both sides of (9.64) we have 

Tracing both sides of (9.65) we have 

(9.64) 

(9.65) 

(9.66) 

so that, finally, by squaring both sides of (9.66) we obtain the identity 

(9.67) 

for all U , V E B ~  and m,nER. 
When m=n=1/2, (9.67) gives rise to an identity for the so called Bures 

fidelity .F(pu, pv) [Nielsen and Chuang (2000); Chen and Ungar (2002a)], 
also known as Uhlmann’s transition probability for mixed qubit states [scu- 
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(9.68) 

1 l + Y U S V  
~ 

~ 2 YUYV 

def e F(u ,v )  

for all u, V E B ~ .  

below. 
The equalities in (9.68) are numbered for the respective explanation 

(1) 
(2) 
(3) 
(4) 
( 5 )  Follows from (9.61). 
(6) Follows from (9.71). 
(7) 

Presents the definition of Bures fidelity. 
Follows from (9.67) with rn = n = 1/2. 
Follows from tracing both sides of (9.47) with n = 2. 
Follows from the isomorphism (6.296) between @ = eM and s. 

Follows from (3.144) with s = 1. 

taru (1998)]. Thus,
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Identity (9.68) expresses Bures fidelity in terms of Einstein addition 
[Chen and Ungar (2002a)], 

(9.69) 

From (9.68) and (3.146), with s = 1, we obtain the elegant, obvious 
identity 

t r ( J p , p v G )  = 3 1 = ; ( I+  u.v) (9.70) 
U ”  

Indeed, 

(9.71) 

Substituting (3.146), with s = 1, in (9.69) we have, by (3.129), 

F(pu ,pv)  = ; { 1 + u.v + - 
(9.72) 

- - 2  I { 1 + u.v + diq-ipdiqTp} 
thus recovering a well-known identity for Bures fidelity [Jozsa (1994)1, and 
a link with Einstein’s special relativity theory. 

In Examples 1-4 we uncovered the tip of the giant iceberg of the rich 
gyro-algebra that qubit density matrices possess in terms of their Bloch 
gyrovector parameter in the Mobius gyrovector space (B3, $, @). 

Exploiting the convex structure of the space of all qubit density ma- 
trices, the evolution of a density matrix p ( ~ )  into another density matrix 
p(v) through continuously successive density matrices is demonstrated by 
the convex sum 

(1 - t ) P ( 4  + M v ) ,  0 l t l l  (9.73) 

At “time” t = 0 the expression (9.73) gives the density matrix p(u) and at 
“time” t = 1 the expression (9.73) gives the density matrix p(v) [Preskill 
(2004), Sec. 2.5.11, thus evolving p(u) into p(v). 

However, rather than exploiting the convex structure of the space of all 
qubit density matrices, it is more natural from the geometric viewpoint to 
exploit the rich gyrostructure and its gyrogeometry rather than the convex 
structure of the space. Among the advantages in employing the gyrostruc- 
ture of the space is that the associated geometric phase emerges naturally 
as a result in the gyrogeometry of gyrovector spaces. 
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Exploiting the gyroline (6.56) of the Poincar6 ball model of hyperbolic 
geometry, Fig. 6.1, we generate the evolution of a density matrix p(u) 
into another density matrix p(v) through continuously successive density 
matrices by the parameter transport of “time” along a gyroline, 

p(u@( eu@v)@t), O < t < l  (9.74) 

At “time” t = 0 the expression (9.74) gives the density matrix p(u) and 
at  “time” t = 1 the expression (9.74) gives the density matrix p(v). As t 
evolves from t = 0 to t = 1, the Bloch gyrovector parameter of the qubit 
density matrix in (9.74) travels from u to v along the geodesic segment (that 
is, the gyrosegment) joining the points u and v of the Mobius gyrovector 
space (B3, @, @). 

The parallel transport, Fig. 8.24, p. 299, of a Bloch gyrovector v along 
a closed path in B3 results in a geometric angle defect, studied in Chap. 8 
and in [Ungar (2001)j. The study of the resulting geometric phase of the 
evolution of the associated density matrix p(v) could be of interest in geo- 
metric quantum computation [Ekert, Ericsson, Hayden, Inamori, Jones, Oi 
and Vedral (2000)]. It, thus, remains to harness the gyrostructure of the 
qubit density matrix for work in geometric quantum computation and its 
associated geometric phase. 

9.3 The Bures Fidelity 

Two Bloch vectors u and v generate the two density matrices pu and pv 
that, in turn, generate the Bures fidelity F(p,, pv)  that we may also write 
as F(u,  v). The concept of fidelity is a basic ingredient in quantum commu- 
nication theory [Jozsa (1994)]. A good quantum communication channel 
must be capable of transferring output quantum states which are close to 
the input states. To quantify this idea of closeness, it is often necessary to 
provide a measure to distinguish different quantum states. To do so, one 
introduces the idea of fidelity. A fidelity of unity implies identical states 
whereas a fidelity of zero implies orthogonal states. Indeed this idea of fi- 
delity is not just confined to quantum communication. It is also important 
in quantum optics, quantum computing and quantum teleportation [Wang 
(2001)l. Furthermore, the corresponding Bures distance has been used [Ve- 
dral, Rippin and Knight (1997)] to define a measure of the entanglement as 
the minimal Bures distance of an entangled state to the set of disentangled 
states. 
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The Bures fidelity .F(u,v) is a most important distance measure be- 
tween quantum states pu and pv of the qubit in quantum computation and 
quantum information [Nielsen and Chuang (2000); Wang, Kwek and Oh 
(2000)], given by (9.69), 

q U , v) = [ t r  TI2 J P U P V J P U  = 4 (9.75) 

Its values range over the interval (0, 11, quantifying the extent to which pu 
and pv can be distinguished from one another. From the physical point of 
view, the properties that the Bures fidelity F(u, v) possesses are natural, 
as indicated in [Chen, Ungar and Zhao (2002)l. 

Unfortunately, Bures fidelity F(u, v), u, v E B3, is not invariant under 
left gyrotranslations of its Mobius gyrogroup (B3, @). A different defini- 
tion of fidelity that retains some properties of Bures fidelity while being 
invariant under left gyrotranslations in its Mobius gyrogroup (B3, @), is 
the gyrocovariant fidelity, given by the equation 

F"(u,v) = 1 - Iluevll (9.76) 

Like Bures fidelity, the values of the gyrocovariant fidelity range over the 
interval (0, 11 so that 3(v,v) = Fc(v,v) = 1. Unlike Bures fidelity, the 
gyrocovariant fidelity is simple and it possesses geometric significance in 
the PoincarQ three-dimensional ball models of hyperbolic geometry and in 
its algebraic structure, the Mobius gyrovector spaces (B3, @, 8).  

The realization that the home of Bloch vector is the PoincarQ ball model 
of hyperbolic geometry, where it becomes a gyrovector in a Mobius gyrovec- 
tor space, motivated PQter LQvay to explore the relationship between the 
Bures metric that results from Bures fidelity [LQvay (2004b), p. 45971 and 
the Mobius metric IIuevII, (6.257), in the ball B3, where @ = is Mobius 
addition (7.11) in the ball. He discovered [LQvay (2004a), p. 18381 [LQvay 
(2004b), p. 46031 that the Bures metric is conformally equivalent to the 
standard PoincarQ metric which is, in turn, equivalent to Mobius gyromet- 
ric, as shown in Sec. 6.15, p. 192. Accordingly, Uhlman's parallel transport, 
used to determine geometric phases [LQvay (2004b)l is equivalent to the par- 
allel transport, Fig. 8.24, in the Mobius gyrovector space (B3, @, @). 

The Bures fidelity has particularly wide currency today in quantum 
computation and quantum information geometry. However, as Nielsen and 
Chuang complain in [Nielsen and Chuang (2000), p. 4101, "Unfortunately, 
no similarly [alluding to the truce distance] clear geometric interpretation 
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is known for the fidelity between two states of a qubit”. Following the 
study of the Bloch gyrovector in this chapter it is now clear that  the elusive 
geometric interpretation for the fidelity between two states of a qubit lies 
in analytic hyperbolic geometry. 



Chapter 10 

Special Theory of Relativity: 
The Analytic Hyperbolic Geometric 

Viewpoint 

This chapter commemorates 2005 as the 100th anniversary of Albert Ein- 
stein’s (1879- 1955) miraculous year, and the 50th anniversary of his death 
in April 18, 1955. In 1905 he published the paper [Einstein (1905); 
Einstein (1998)I that founded the special theory of relativity, a term that he 
coined about ten years later. As we will see throughout this chapter, in the 
framework of analytic hyperbolic geometry (gyrogeometry) special theory 
of relativity reveals more of its intricate beauty, where Einstein velocity ad- 
dition becomes a gyrovector addition. Analytic hyperbolic geometry, thus, 
significantly extends Einstein’s unfinished symphony. As such, this chapter 
prepares non-Euclidean geometers and physicists to practice twenty-first 
century special relativity. 

The majestic scientific achievement of the 20th century in mathemat- 
ical beauty and experimental verifications has been the special theory of 
relativity that Einstein introduced a century ago in 1905 [Einstein (1905)l 
[Einstein (1998), p. 1411. Einstein’s special relativity theory is one of the 
foundation blocks of modern theoretical physics. Yet, in the year of 2005 
Einstein’s special relativity appears the first classical theory that defies com- 
mon sense. Dedicated to the centenary of the birth of the special theory of 
relativity, 1905 - 2005, this book presents the analytic theory of hyperbolic 
geometry in terms of analogies that it shares with the analytic theory of 
Euclidean geometry. The resulting unification of analytic Euclidean and hy- 
perbolic geometry allows the extension of our intuitive understanding from 
Euclidean to hyperbolic geometry, and similarly, from classical mechanics 
to relativistic mechanics as well. 

Coincidentally, it is the mathematical abstraction of the relativistic ef- 
fect known as “Thomas precession” that allows the unification and, hence, 
the extension of our intuitive understanding. The brief history of the dis- 

349 
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covery of Thomas precession is described in [Ungar (2001), Sec. 1, Chap. 11. 
For a historical account, including the ensuing discussion, see [Mehra and 
Rechenberg (1982)l. 

We add physical appeal to Einstein velocity addition law (3.141) of rel- 
ativistically admissible velocities, thereby gaining new analogies with clas- 
sical mechanics and invoking new insights into the special theory of relativ- 
ity. We place Einstein velocity addition in the foundations of both special 
relativity and its underlying hyperbolic geometry, enabling us to present 
special relativity in full three space dimensions rather than the usual one- 
dimensional space, using three-geometry instead of four-geometry. Doing so 
we uncover unexpected analogies with classical results, enabling the modern 
and unfamiliar to be studied in terms of the classical and familiar. 

In particular, we show in this chapter that while it is well-known that 
the relativistic mass does not mesh up with the four-geometry of special 
relativity, it meshes extraordinarily well with the three-geometry, providing 
unexpected insights that are not easy to come by, by other means. Our 
novel approach provides powerful, far reaching insights into the Lorentz 
transformation of Minkowski's four-vectors that could be comprehended, 
and its beauty appreciated, by the reader. Hence, readers of this book 
will find this chapter interesting and useful regardless of whether they are 
familiar with the special theory of relativity. 

10.1 Introduction 

In the small arena of terrestrial and planetary measurements, Euclidean 
geometry is the shoe that fits the foot. Over the vast reaches of intergalactic 
spacetime, Lorentzian geometry, the geometry of general relativity, appears 
to be what is wanted. Neglecting gravitation, the geometry needed is the 
hyperbolic geometry of Bolyai and Lobachevsky, the geometry of special 
relativity, [Criado and Alamo (2001); Criado and Alamo (2002)l. 

The mere mention of hyperbolic geometry is enough to strike fear in the 
heart of the undergraduate physics student. Some undergraduate physics 
students regard themselves as excluded from the profound insights of hy- 
perbolic geometry so that this enormous portion of human achievement is 
a closed door to them. But this book opens the door on its mission to 
make the hyperbolic geometry of Bolyai and Lobachevsky, which underlies 
the special theory of relativity, accessible to a wider audience in terms of 
gyrogeometry, the super analytic geometry that unifies analytic Euclidean 
and hyperbolic geometry. 
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Special relativity was introduced by Einstein a century ago in order to 
explain the massive experimental evidence against ether as the medium 
for propagating electromagnetic waves. However, as studied in all mod- 
ern physics books, special relativity is not Einsteinian special relativity, 
the special theory of relativity as was originally formulated by Einstein in 
1905 [Einstein (1905)]. Rather, it is Minkowskian special relativity, the 
special theory of relativity as was subsequently reformulated by Minkowski 
in 1908 [Lorentz, Einstein, Minkowski and Weyl (1952)]. Einsteinian and 
Minkowskian special relativity form two different approaches to the same 
special theory of relativity. In Minkowskian special relativity four-velocities 
and their Lorentz transformation law appear as a primitive, rather than 
as a derived, concept. In contrast, in Einsteinian special relativity three- 
velocities and their Einstein velocity addition law appear as a primitive 
concept, from which four-velocities and their Lorentz transformations are 
derived. The reason we have the Minkowski spacetime formalism of four- 
vectors today is that Minkowski’s friend Sommerfeld took it upon himself 
to rewrite Minkowski’s formalism and make it look like ordinary vector 
analysis. 

As a result of the dominant position of Minkowskian special relativity 
some authors of relativity books omit the concept of Einstein’s relativistic 
mass since it does not mesh up with Minkowskian special relativity [Adler 
(1987)], as will be indicated in Sec. 10.4. 

In contrast, Einstein’s relativistic mass meshes extraordinarily well with 
Einsteinian special relativity. We uncover analogies that the relativistic 
mass captures when it is studied in the context of Einsteinian special rela- 
tivity and its underlying gyrogeometry. 

Employing gyrovector space theoretic techniques, crucial analogies be- 
tween the pairs 

(10.1) 
Euclidean Geometry Gyrogeometry 

Newtonian Mechanics Einsteinian Mechanics 

get discovered in diverse situations one of which, concerning the notion of 
the relativistic center of momentum (CM) velocity, is displayed in Figs. 10.2 
and 10.3, pp. 370-371. Remarkably, the novel analogies in these figures 
stem from the relativistic mass correction, according to which the mass of 
moving objects is velocity dependent [Anderson (1967), p. 199][Tsai (1986)]. 

Einstein velocity addition provides powerful insights into the Lorentz 
transformation as well. Einsteinian velocities and space rotations param- 
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eterize the Lorentz transformation group of relativistic mechanics just as 
Newtonian velocities and space rotations parameterize the Galilei transfor- 
mation group of classical mechanics. Furthermore, the novel composition 
law of Lorentz transformations in terms of parameter composition is fully 
analogous to the well-known composition law of Galilei transformations in 
terms of parameter composition. This and other related novel analogies the 
Lorentz transformation group shares with its Galilean counterpart, as seen 
through the novel insights that Einstein velocity addition law provides, are 
presented in Sec. 10.15. Following these analogies, readers who intuitively 
understand the parameterized Galilei transformation group can straightfor- 
wardly extend their intuitive understanding to the parameterized Lorentz 
transformation group. Application of the latter to the gyrocovariant CM 
velocity is presented in Secs. 10.17 and 10.20, giving rise to the notion of 
the gyrobarycentric coordinates in Secs. 10.22 and 10.23. 

Being guided by analogies with classical results we thus place Einstein 
velocity addition in the foundations of special relativity, enabling us to 
present special relativity in full three space dimensions rather than the 
usual one-dimensional space in four-geometry. 

10.2 Einstein Velocity Addition 

Attempts to measure the absolute velocity of the earth through the hy- 
pothetical ether had failed. The most famous of these experiments is one 
performed by Michelson and Morley in 1887 [Feynman and Sands (1964)]. 
It was 18 years later before the null results of these experiments were finally 
explained by Einstein in terms of a new velocity addition law that bears his 
name, that he introduced in his 1905 paper that founded the special theory 
of relativity [Einstein (1905); Einstein (1998)l. 

Contrasting Newtonian velocities, which are vectors in the Euclidean 3- 
space R3, Einsteinian velocities must be relativistically admissible, that is, 
their magnitude must not exceed the vacuum speed of light c. Let, (3.138), 

(10.2) 

be the c-ball of all relativistically admissible velocities. It is the ball of 
radius c, centered at the origin of the Euclidean 3-space R3, consisting of 
all vectors v in R3 with magnitude JJvJJ smaller than c. Einstein addition 
@ in the ball is given by the equation [Einstein (1905)] [Einstein (1998), 
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p. 1411, (3.141), 

} (10.3) 1 + 7  u*v { Yu c2 1 + yu 
1 1 Yu u + -v + --(UT)U u@v = ~ 

C‘ 

satisfying the gamma identity, (3.144), 

^/u@v = YUYV (1 + ””> 
C2 

for all u, v~lw;, where -yu is the Lorentz factor 

1 

% =  /7y 1-- 

(10.4) 

(10.5) 

Einstein addition gives rise to the Einstein groupoid (It:, @) of Einsteinian 
velocities. 

It is clear from (10.4) that IIu@vll = IIv@uII. However, it follows from 
(10.3) that, in general, u@v # v@u. Indeed, Einstein’s expos6 of velocity 
composition for two inertial systems emphasizes the lack of symmetry in 
the formula for the direction of the relative velocity vector [Einstein (1905), 
pp. 905-9061 [Walter (1999b), p. 1171. Borel’s attempt to “repair” the 
seemingly “defective” Einstein velocity addition in the years following 1912 
is described in [Walter (1999b), p. 1171. 

Remarkably, we will see that there is no need to “repair” the breakdown 
of commutativity and associativity in Einstein velocity addition law. While 
counterintuitively Einstein velocity addition law is neither commutative nor 
associative, it reveals intriguing features of hyperbolic geometry. In partic- 
ular, it gives rise to a gyroparallelogram addition law which is commutative 
and fully analogous to the common Euclidean parallelogram addition law, 
Figs. 10.6 and 10.7, pp. 376-377. Furthermore, we will see that Einstein 
velocity addition law gives rise to a higher dimensional gyroparallelepiped 
law, which is both commutative and associative, (10.66), Fig. 10.13. 

For the sake of simplicity some normalize the vacuum speed of light 
to c = 1. We, however, prefer to leave it as a free positive parameter 
enabling Einstein addition to be reduced to ordinary vector addition in 
the Newtonian limit, when c + 00. Thus, in the Newtonian limit the 
gyrocommutative gyrogroup of Einsteinian velocities, (It; , @), reduces to 
the commutative group of Newtonian velocities, (EX3, +). 

While, in general, Einstein velocity addition is neither commutative nor 
associative, the special case when Einstein velocity addition is restricted to 
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parallel velocities, (3.150), is both commutative and associative. When it 
is necessary to contrast Einstein velocity addition (10.3) with its restricted 
velocity addition (3.150), we use the term general (as opposed to restricted) 
Einstein velocity addition for the binary operation CB in (10.3). 

10.3 Status of the General Einstein Addition 

Unlike the restricted Einstein velocity addition of parallel velocities, (3.150), 
the general Einstein velocity, (10.3), addition is unheard of in most modern 
relativity books. Why? 

Harmony is the notion that motivates and justifies our desire to im- 
pose mathematical order on natural phenomena. The discovery of Vladimir 
VariEak in 1908- 1910 [VariEak (1908); VariEak (191Oa)l that Einstein’s ad- 
dition of relativistically admissible three-velocities has natural interpreta- 
tion in the hyperbolic geometry of Bolyai and Lobachevsky was therefore a 
great triumph to Riemann and to the principle of harmony between mathe- 
matics and physics. For his chagrin, VariEak had to admit in 1924 that the 
adaption of vector algebra for use in hyperbolic space was just not possible 
[VariEak (1924), p. 801, as Scott Walter notes in [Walter (1999b), p. 1211. 
However, following Chap. 5, the introduction of vectors into hyperbolic 
geometry, where they are called gyrovectors, is now possible. 

Riemann was aware of the possible application of his geometry to 
physics. In his inaugural address in 1854 on the occasion of joining the 
University Faculty of Gottingen he said that the value of his non-Euclidean 
geometry can possibly be to liberate us from preconceived ideas, should 
ever the time come that in the exploration of the laws of physics the con- 
cepts of Euclidean geometry may have to be abandoned. These prophetic 
words were literally fulfilled fifty years later by the special theory of relativ- 
ity [Lanczos (1970), p. 911, uncovered by Einstein in 1905 [Einstein (1905); 
Einstein (1998)]. 

However, as Scott Walter notes [Walter (1999b), p. 941, in contrast 
to the amount of publicity they received, applications of the hyperbolic 
geometry of Bolyai and Lobachevsky to relativity physics produced slim 
results, the value of which was outstripped by the technical intricacy of the 
methods developed to obtain them. The seemingly lack of harmony between 
mathematics and Einstein’s original formulation of special relativity led 
Hermann Minkowski to reformulate special relativity, elaborating during 
the years 1907- 1909 a four-dimensional spacetime geometry, now known as 
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the Minkowski space [Lorentz, Einstein, Minkowski and Weyl (1952)l. The 
basic notion in Minkowski’s reformulation of special relativity is the Lorentz 
transformation law of four-velocities as opposed to Einstein’s formulation 
in terms of his addition law of three-velocities. 

Minkowski characterized his spacetime geometry as evidence that pre- 
established harmony between pure mathematics and applied physics does 
exist [Pyenson (1982)l. Subsequently, the study of special relativity followed 
the lines laid down by Minkowski, in which the role of Einstein velocity 
addition and its interpretation in the hyperbolic geometry of Bolyai and 
Lobachevsky are ignored [Barrett (1998)]. 

The tension created by the mathematician Minkowski into the special- 
ized realm of theoretical physics, as well as Minkowski’s strategy to over- 
come disciplinary obstacles to the acceptance of his reformulation of special 
relativity is discussed by Scott Walter in [Walter (1999a)I. 

According to Leo Corry [Corry (1998)l , Einstein considered Minkowski’s 
reformulation of his theory in terms of four-dimensional spacetime to be no 
more than “superfluous erudition”. More generally, the entry of mathemati- 
cians into the field of relativity was described by Einstein as an invasion, 
as Sommerfeld later recalled [Schilpp (1949), p. 1021 [Walter (1999a)I. But, 
the importance of the Minkowskian special relativity was quickly grasped 
by physicists like Arnold Sommerfeld and Max von Laue. Admittedly, later 
in life Einstein had to adopt the Minkowskian reformulation of his special 
theory of relativity [Adler (1987), fn. 271. However, had Einstein known 
that his velocity addition law of relativistically admissible velocities is a 
gyrovector space operation in the same way that the addition of Newtonian 
velocities is a vector space operation, he could have made a better case for 
his original formulation of special relativity. 

The strong objection to place Einstein velocity addition centrally in 
special relativity is traced back to Minkowski. Scott Walter thus writes: 

Minkowski neither mentioned the [Einstein] law of ve- 
locity addition, nor expressed it in formal terms. 

Scott Walter [Walter (1999b)l 

Moreover, a t  the September 1909 meeting of the German Association 
of Natural Scientists in Salzburg, Arnold Sommerfeld attempted to spark 
physicists’ interest in Minkowskian formalism of special relativity. Accord- 
ing to Scott Walter: 
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As an example of the advantage of the Minkowskian 
approach, Sommerfeld selected [in his Salzburg talk] the 
case of Einstein’s “famous addition theorem”, according 
to which velocity parallelograms do not close [that is, Ein- 
stein velocity addition is noncommutative; Italics added]. 
This “somewhat strange” result, Sommerfeld suggested, 
became “completely clear” when viewed from Minkowski’s 
standpoint. 

Scott Walter [Walter (1999b), p. 1101 

Accordingly, Roger Penrose writes: 

My own point of view would be that . . . special rel- 
ativity was not fully appreciated (either by Poincarh or 
by Einstein) until Herman Minkowski presented, in 1908, 
the four-dimensional spacetime picture. He gave a now fa- 
mous lecture at the University of Gottingen in which he 
proclaimed, ‘Henceforth space by itself, and time by it- 
self are doomed to fade away into mere shadow, and only 
a kind of union of the two will preserve an independent 
reality. ’ 

Einstein seems not to have appreciated the significance 
of Minkowski’s contribution initially, and for about two 
years he did not take it seriously. But subsequently he 
came to realize the full power of Minkowski’s point of 
view. It formed the essential background for Einstein’s 
extraordinary late development of general relativity, in 
which Minkowski’s four-dimensional spacetime geometry 
becomes curved. 

Roger Penrose [Penrose (2002)l 

Contrasting Minkowski’s inseparable spacetime, the desirability of split- 
ting spacetime into space and time in general relativity is expressed by 
Charles W. Misner, Kip S. Thorne and John Archibald Wheeler in [Misner, 
Thorne and Wheeler (1973)’ p. 5051. 

Contrasting Sommerfeld’s view that Einstein addition is geometrically 
inferior since “velocity parallelograms do not close”, we will find in Sec. 10.9 
that in Einstein gyrovector spaces velocity gyroparallelograms do close, giv- 
ing rise to the gyroparallelogram law. Moreover, in Sec. 10.14 the Ein- 
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steinian gyroparallelogram law will be extended to higher dimensions, giv- 
ing rise to the Einsteinian gyroparallelepiped law in n-dimensions, n 2 3. 

As a resuIt of the trend laid down by Minkowski, the general Einstein 
velocity addition of relativistically admissible velocities that  need not be 
parallel is unheard of in most books on relativity physics. Among out- 
standing exceptions are [Fock (1964)], [Bacry (1977)] and [Sexl and Urban- 
tke (2001)l. Not unexpectedly, thercfore, the history of gyrogroup theory 
and its application in relativity physics is presented in [Sexl and Urbantke 
(2001), pp. 141-1421. 

The status of Einstein velocity addition prior to the discovery of its 
gyrostructure is well described in [Brehme (1968)) 

The transformation law for the spatial components of 
the coordinate velocity, known as the Einstein (or relativis- 
tic) velocity addition theorem, is awkward and difficult to 
use in any but the very simplest situations [that is, Einstein 
velocity addition of parallel velocities]. 

Robert W. Brehme [Brehme (1968)] 

With the advent of the theory of gyrogroups and gyrovector spaces, 
Einstein velocity addition has acquired a rich structure. It became a gyro- 
commutative, gyroassociative gyrogroup operation, as well as a gyrovector 
space operation, placing itself on equal footing with Newton velocity addi- 
tion. Earlier, however, Einstein velocity addition was merely considered as 
a noncommutative, nonassociative binary operation - too impoverished a 
structure to stand centrally in the special theory of relativity. 

10.4 Einstein Addition is an Indispensable Relativistic Tool 

Relativistic three-velocities and their Einstein velocity addition law mesh 
extraordinarily well with the notion of the relativistic mass, as illustrated 
in Figs. 10.2 and 10.3, pp. 370-371. These figures indicate that (i) rela- 
tivistic three-velocities, (ii) relativistic mass, and (iii) hyperbolic geometry, 
interplay in Einsteinian mechanics in a way fully analogous to the interplay 
of (i) Newtonian velocities, (ii) classical mass, and (iii) Euclidean geometry 
in Newtonian mechanics 

The considerable increase of the mass of particles in particle accelerators 
has to be taken into account in the design of accelerators. Owing to the re- 
ality of the relativistic mass [Anderson (1967), p. 199][Tsai (1986)], Einstein 



358 Analytic Hyperbolic Geometry 

addition of three-velocities is an indispensable relativistic tool. Contrasting 
the harmonious interplay between three-velocities and the relativistic mass, 
the latter is in conflict with Minkowskian four-vector spacetime approach. 
Explanation and rationalization of the resulting never-ending debates about 
the status of mass in special relativity, calling it “the messy mass”, are 
provided by Beisbart and Jung [Beisbart and Jung (2004)l. We will find 
that within the frame of Einsteinian relativity, as opposed to Minkowskian 
relativity, the problem that Beisbart and Jung explain and rationalize in 
[Beisbart and Jung (2004)] does not exist. 

Taking three-velocities and their Einstein addition law as a primitive 
concept in special relativity, one can derive Minkowski’s four velocities and 
their Lorentz transformation law, as we show in Sec. 10.15. In contrast, 
taking four-velocities and their Lorentz transformation law as a primitive 
concept in special relativity leaves the theory with seemingly no need for 
Einstein addition. This is, however, not the case since the physically signif- 
icant relativistic mass does not mesh up with Minkowskian special relativ- 
ity while it meshes extraordinarily well with Einsteinian special relativity. 
Moreover, with the omission of Einstein velocity addition, the opportu- 
nity to make a very appealing hyperbolic geometrical point is lost. Hence, 
clearly, the omission of Einstein velocity addition is both unfortunate and 
unnecessary. 

The Einstein relativistic mass my, of a particle with rest mass m, m E  
R’O, and relative velocity v, V E R ~ ,  is velocity dependent [Anderson (1967), 
p. 1991. To understand the role that the relativistic mass plays in the 
geometry of special relativity we need an approach to special relativity 
that meshes smoothly with the relativistic mass concept. Hence, we are 
forced to employ Einsteinian, rather than Minkowskian, special relativity 
as illustrated by Figs. 10.2 and 10.3. 

The fact that the relativistic mass does not mesh up with the 
Minkowskian four-vector spacetime approach to the study of special rel- 
ativity led several authors to omit the relativistic mass from new books 
and new editions of old books on relativity physics regardless of its phys- 
ical reality. Remarking on “The bane of the relativistic mass” [Brehme 
(1968)], Brehme writes: 

By assigning mass a relativistic character, we obscure 
both the simplicity and the essentially kinematic nature of 
relativity. 

Robert W. Brehme [Brehme (1968)] 



Special Relativity 359 

Attributing to the relativistic mass in special relativity the role of an 
artifact [Adler (1987), pp. 742- 7431, Adler admits that the “relativistic 
mass is a concept in turmoil”: 

Any one who has tried to teach special relativity using 
the four-vector spacetime approach knows that relativistic 
mass and four-vectors make €or an ill-conceived marriage. 
. . . The solution is for physics teachers to understand that 
relativistic mass is a concept in turmoil. If they choose to 
use it in their course, they should caution the students to 
this effect. 

Carl G. Adler [Adler (1987)l 

Personal experience shows that with a little familiarity 
with the TW [Taylor and Wheeler, [Taylor and Wheeler 
(1966)]] approach, the relativistic mass concept appears 
rather artificial. 

M.A.B. Whitaker [Whitaker (1976)] 

Einstein derived the equivalence of rest mass rno and energy El express- 
ible as E2 -p2c2 = m;c4 where p is the relativistic momentum, p = rnoyvv. 
When relativistic mass m = moyv is used instead, the mass-energy equiv- 
alence equation reduces to the famous formula E = mc2. 

In the modern language of relativity theory there is 
only one mass, the Newtonian mass m, which does not 
vary with velocity; hence the famous formula E = mc2 has 
to be taken with a large grain of salt. 

Lev B. Okun [Okun (1989)] 

When relativity is put in four-dimensional form, as in 
Chapter XIII, the idea of relativistic mass is out of place 
and clumsy. 

T.M. Helliwell [Helliwell (1966), p. 1491 

The physical significance of the concept of the relativistic, velocity de- 
pendent mass is well-known; see, for instance, [Anderson (1967), p. 1991, 
[Tsai (1986)] and [Gabrielse (1995)l. Hence the rejection of this concept, 
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solely based on the breakdown of harmony with Minkowskian special rel- 
ativity, is not justified [Rindler (1990)l. Contrasting the opinion that the 
concept of the relativistic mass is in turmoil since it does not mesh up with 
Minkowskian special relativity, we will soon find that this peaceful concept 
is rather welcome. It is an asset rather than a liability since it meshes 
extraordinarily well with Einsteinian special relativity and its hyperbolic 
geometry, as will be indicated in Figs. 10.2 and 10.3. 

Readers who, following this book, choose to study the Minkowski space- 
time as a notion derived from Einsteinian special relativity, as we do in 
Sec. 10.15, rather than as a primitive notion, will be rewarded by encoun- 
tering no confusion in the concept of the relativistic mass. Rather, they will 
encounter the harmonious interplay between the relativistic mass and the 
hyperbolic geometry of Bolyai and Lobachevsky that regulates Einstein 
addition. The harmonious interplay is presented in Sec. 10.8 and is visually 
illustrated by Figs. 10.2 and 10.3. Relativistic mass, the ugly duckling of 
Minkowski’s four-vectors will, thus, turn out to be the beautiful swan of 
Einstein’s three-velocities. 

The dignity of special relativity theory requires that every possible 
means for the harmonious introduction of the relativistic mass into the 
theory be explored. Indeed, the means is provided by Einsteinian relativ- 
ity. Both Einstein velocity addition and Einstein relativistic mass capture 
important analogies: 

(1) Einstein velocity addition captures analogies with classical velocity 
addition, so that the hyperbolic geometry of Einsteinian velocities 
turns out to be fully analogous to the Euclidean geometry of New- 
tonian velocities; and 

(2) Einstein relativistic mass captures analogies with classical mass, so 
that the relativistic mass is a geometric scalar in the hyperbolic 
geometry of Einsteinian velocities in full analogy with the classical 
mass, which is a geometric scalar in the Euclidean geometry of 
Newtonian velocities. 

Einstein velocity addition and relativistic mass will, thus, turn out to 
be an indispensable ingredient for special relativity and its 3-dimensional 
hyperbolic geometry. 

Relativistic mass came into common usage in the relativity text books 
of the early 1920s written by Pauli [Pauli (1958)], Eddington [Eddington 
(1924)l and Born [Born (1964)l. The invariant mass of particles became 
more significant in the 1950s, and inevitably physicists started to use the 
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term “mass” to mean invariant mass. Gradually this took over as the 
normal convention, and the concept of relativistic mass increasing with 
velocity is presently played down. 

Einstein’s original mechanical formalism of special relativity is described 
in terms of inertial reference frames, velocities, forces, length contraction 
and time dilation. Relativistic mass fits naturally into this mechanical 
framework. In contrast, invariant mass proves to be more fundamental 
in Minkowski’s geometric approach to special relativity and, accordingly, 
relativistic mass is of no use in general relativity. The black holes of general 
relativity, if exist, provide evidence against the relativistic mass. 

Owing to length contraction and relativistic mass velocity dependence, 
an observer who moves at a speed sufficiently close to the speed of light 
should collapse to form a black hole. If the observer moves fast enough 
relative to a star then that star must appear to the observer as a black 
hole because of its increased mass observed by the observer. This would 
be paradoxical since we would expect things to appear very differently 
to an observer who is stationary relative to the star. So what has gone 
wrong? Either mass does not increase with velocity or black holes do not 
exist! Indeed, in general relativity black holes do exist and, accordingly, 
relativistic mass in general relativity is of no use at all. 

10.5 From Thomas Gyration to Thomas Precession 

Thomas gyration is the missing link between Einstein addition and ordinary 
vector addition. 

Einstein addition (10.3) forms the Einstein gyrogroup (R:, @). Hence, 
its gyrations gyr[u,v] : Rg --+ Rz are generated by Einstein addition ac- 
cording to the formula, Theorem 2.8(10), 

gyr[u, v]w = e(u@v)@(u@(v@w)) (10.6) 

u, v, WER:. The velocity gyr[u, v]w is said to be the velocity w gyrated by 
the gyration gyr[u,v] generated by the velocities u and v .  For u = v = 0 
we have 

gyr[O, O]w = w (10.7) 

so that the gyration gyr[O, 01 is trivial, being the identity map of R:. 
It is clear from (10.6) that gyrations measure the nonassociativity of 

Einstein addition. Since Einstein addition of parallel velocities (3.150) is 
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associative, gyrations generated by parallel velocities are trivial. Accord- 
ingly, one can show that 

gyr[u, VIW = w, ullv (10.8) 

for all WEIR:, whenever u and v are parallel in the ball R: of relativistic 
velocities. 

Owing to the breakdown of associativity in Einstein velocity addition, 
the self-map gyr[u, v] of the ball rW2 is, in general, non-trivial. It turns out 
to be an element of the group SO(3) of all 3 x 3  real orthogonal matrices 
with determinant 1. Indeed, the map gyr[u, v] can be written as a 3 x 3 
real orthogonal matrix with determinant 1, as shown in [Ungar (1988a)l. 
As such, the map gyr[u, v] represents a rotation of the Euclidean 3-space 
R3 about its origin. It preserves the inner product in the ball, 

gyr[u, v]a.gyr[u, v]b = a .b  (10.9) 

and, hence, it also preserves the norm in the ball, 

llgYr[u,vlall = llall (10.10) 

for all a, b, u, v E EX:, where . and 1 1  1 1  are the inner product and the norm 
that the ball R: inherits from its space R3. 

Furthermore, gyr[u, v] turns out to be an automorphism of the relativis- 
tic groupoid (R:, @) in the following sense. 

An automorphism gyr[u, v], u, VER:, of the groupoid (R:, @) is a bi- 
jective (one-to-one) self-map of EX: that preserves its binary operation @. 

Indeed, we have 

(gyr[u, v11-l = gyr[v, UI (10.11) 

where (gyr[u, v])-l is the inverse of gyr[u, v], so that gyr[u, v] is bijective; 
and 

gy rb ,  vI(a@b) = gyr[u, vIa@gyr[u, vlb (10.12) 

for all u, v, a, bER:, so that gyr[u, v] preserves the Einstein addition @ in 
the ball IR:. 

The automorphism gyr[u, v], u, v E R:, is called the Thomas gyration 
generated by u and v.  It is the mathematical abstraction of the relativistic 
effect known as Thomas precession [Jackson (1975)], as we will see soon. 

Remarkably, Thomas gyration “repairs” the breakdown of commuta- 
tivity and associativity in Einstein velocity addition, giving rise to their 
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following gyro-counterparts, 

u@v = gyr[u, v](v@u) Gyrocommutative Law 
Left Gyroassociative Law 

Right Gyroassociative Law 

u@(v@w) = (u@v)@gyr[u, v]w 

(u@v)@w = u@(v@gyr[v, u]w) 

(10.13) 

for all u, v, w E R:. The gyrocommutative and the gyroassociative laws 
of Einstein velocity addition share obvious analogies with the common 
commutative and associative laws of vector addition, allowing the classical 
picture of velocity addition to be restored. Accordingly, the gyrocommu- 
tative and the gyroassociative laws of Einstein velocity addition give rise 
to the mathematical group-like object, the gyrocommutative gyrogroup in 
Def. 2.6. 

Moreover, Thomas gyration possesses a rich structure, including the left 
and right loop property 

gyr[u@v, v] = gyr[u, v] 
gyr[u, v@u] = gyr[u, v] 

Left Loop Property 

Right Loop Property 
(10.14) 

for all u, vEW:. For the proof of the identities in (10.9) - (10.14) see Exercise 
(1) at  the end of the chapter. 

The prefix LLgyro” that stems from Thomas gyration is extensively used 
to emphasize analogies with classical terms as, for instance, gyrocom- 
mutative, gyroassociative binary operations in gyrogroups and gyrovec- 
tor spaces. Owing to the gyrocommutative law in (10.13), Thomas gy- 
ration is recognized as the familiar Thomas precession. The gyrocommu- 
tative law was already known to Silberstein in 1914 [Silberstein (1914)l 
in the following sense. The Thomas precession generated by u , v  E IW: 
is the unique rotation that takes v@u into u@v about an axis perpen- 
dicular to the plane of u and v through an angle < 7r in R3 [Mocanu 
(1992)], thus giving rise to the gyrocommutative law. Obviously, Sil- 
berstein did not use the terms “Thomas precession” and “gyrocommu- 
tative law”. These terms have been coined later, respectively, follow- 
ing Thomas’ 1926 paper [Thomas (1926)], and in 1991 [Ungar (1991); 
Ungar (1997)l. 

A description of the 3-space rotation, which since 1926 is named af- 
ter Thomas, is found in Silberstein’s 1914 book [Silberstein (1914)l. In 
1914 Thomas precession did not have a name, and Silberstein called it 
in his 1914 book a “certain space-rotation” [Silberstein (1914), p. 1691. 
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An early study of Thomas rotation, made by the famous mathematician 
Emile Borel in 1913, is described in his 1914 book [Borel (1914)] and, more 
recently, in [Stachel (1995)l. According to Belloni and Reina [Belloni and 
Reina (1986)], Sommerfeld’s route to Thomas precession dates back to 1909. 
However, prior to Thomas discovery the relativistic peculiar 3-space rota- 
tion had a most uncertain physical status [Walter (1999b), p. 1191. The 
only knowledge Thomas had in 1925 about the peculiar relativistic gyro- 
scopic precession, however, came from De Sitter’s formula describing the 
relativistic corrections for the motion of the moon, found in Eddington’s 
book [Eddington (1924)], which was just published at that time [Ungar 
(2001), Sec. 1, Chap. 11. 

The physical significance of the peculiar rotation in special relativity 
emerged in 1925 when Thomas relativistically re-computed the precessional 
frequency of the doublet separation in the fine structure of the atom, and 
thus rectified a missing factor of 1/2. This correction has come to be 
known as the Thomas half. Thomas’ discovery of the relativistic precession 
of the electron spin on Christmas 1925 thus led to the understanding of 
the significance of the relativistic effect which became known as Thomas 
precession. Llewellyn Hilleth Thomas died in Raleigh, NC, on April 20, 
1992. A paper [Chen and Ungar (2002a)l dedicated to the centenary of the 
birth of Llewellyn H. Thomas (1902- 1992) describes the Bloch gyrovector 
of Chap. 9. 

Once identified as gyr[u, v], it is clear from its definition in (10.6) that 
Thomas precession owes its existence solely to the nonassociativity of Ein- 
stein addition of Einsteinian velocities. Accordingly, Thomas precession has 
no classical counterpart since the addition of classical, Newtonian velocities 
is associative. 

It is widely believed that special relativistic effects are negligible when 
the velocities involved are much less than the vacuum speed of light c. 
Yet, Thomas precession effect in the orbital motion of spinning electrons 
in atoms is clearly observed in resulting spectral lines despite the speed 
of electrons in atoms being small compared with the speed of light. One 
may, therefore, ask whether it is possible to furnish a classical background 
to Thomas precession [MacKeown (1997)l. Hence, it is important to real- 
ize that Thomas precession stems from the nonassociativity of Einsteinian 
velocities, so that it has no echo in Newtonian velocities. 

In 1966, Ehlers, Rindler and Robinson [Ehlers, Rindler and Robinson 
(1966)l proposed a new formalism for dealing with the Lorentz group. Their 
formalism, however, did not find its way to the mainstream literature. 
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Therefore, thirty three years later, two of them suggested considering the 
"notorious Thomas precession formula" (in their words, p. 431 in [Rindler 
and Robinson (1999)l) as an indicator of the quality of a formalism for 
dealing with the Lorentz group. The idea of Rindler and Robinson to use 
the "notorious Thomas precession formula" as an indicator works fine in 
the analytic hyperbolic geometric viewpoint of special relativity, where the 
ugly duckling of special relativity, the "notorious Thomas precession for- 
mula", becomes the beautiful swan of analytic hyperbolic geometry. The 
resulting gyro-algebra of the Lorentz group will be presented in Sec. 10.15. 

10.6 The Relativistic Gyrovector Space 

If integer scalar multiplication n@v is defined in the Einstein gyrogroup 
(R:, 8) by the equation 

n@v = v@ . . . @v (n gyroadditions) (10.15) 

for any positive integer n and VEIL!; then it follows from Einstein addition 
law, (10.3), that 

(10.16) 

for any positive integer n and V E R ~ .  Suggestively, the scalar multiplication 
that Einstein addition admits in the relativistic velocity gyrogroup (R:, @) 
is defined by the equation, (6.234), 

where T is any real number, TER,  VEIL!;, v # 0 ,  and T@O = 0, and with 
which we use the notation V@T = T@V. 

Einstein scalar multiplication turns the Einstein gyrogroup (R2, @) of 
relativistically admissible velocities into a gyrovector space (R:, @, @) that 
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possesses the following properties. 

l@v = v 

( r l  + T , ) @ v  = T,@v@T,@v 

(T,T,)@v = T ~ @ ( T , @ V )  

Scalar Distributive Law 

Scalar Associative Law 

for all real numbers T ,  T ,  , T,  ER and admissible velocities VER:. 

possess a distributive law since, in general, 
Unlike vector spaces, the Einstein gyrovector space (R:, $, @) does not 

r@(u@v) # r@u@r@v (10.18) 

for T E R  and u,v~R:.  

locities with its gyrodistance function given by the equation 
Remarkably, the Einstein gyrovector space (R:, @, @) of Einsteinian ve- 

d&,v) = lluevll (10.19) 

u, VE@,  forms the setting for the Beltrami ball model of 3-dimensional hy- 
perbolic geometry just as the vector space (R3, +, .) of Newtonian velocities 
with its Euclidean distance function 

d+(u,v) = llu - VII (10.20) 

forms the setting for the standard model of 3-dimensional Euclidean geom- 
etry. 

The connection between Einstein velocity addition and the Beltrami 
ball model of 3-dimensional hyperbolic geometry, already noted by Fock 
[Fock (1964), p. 391, follows from the Einstein gyrodistance function (10.19) 
between two neighboring points in Rz, the square of which is given by the 
equation 

ds2 = llxe(x + dx)1I2 (10.21) 

The squared Einsteinian distance ds2 in (10.21) between a point x and 
its infinitesimally close neighboring point x + dx in R: turns out to be a 
Riemannian line element. The resulting Riemannian line element, presented 
in (7.55), is called the Beltrami-Riemannian lane element and is recognized 
as the Riemannian line element of the Beltrami ball model of hyperbolic 
geometry. 

The Euclidean rigid motions of the Euclidean space R3 are the transfor- 
mations of R3 that keep the Euclidean distance function (10.20) invariant. 
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These transformations, called isometries, are translations x --+ v + x, and 
rotations, x + Vx, where v,x€IW3 and V€S0(3 ) .  Similarly, The hyper- 
bolic rigid motions of the hyperbolic ball space IW: are the transformations 
of R: that keep the hyperbolic distance function (10.19) invariant. These 
isometries are left gyrotranslations x --+ vex, and rotations, x 4 Vx, 
where v,xEIWz and VeSO(3). 

10.7 Gyrogeodesics, Gyromidpoints and Gyrocentroids 

A point v in the Einstein gyrovector space (R:, 63, @), or the Einstein gy- 
rovector plane (R:,@,@) shown in Fig. 10.1, represents all the inertial 
frames C, with relativistically admissible velocity v relative to a rest frame 
CO. Accordingly, the relativistic velocity of frame C, relative to  frame C ,  
is euev, and the relativistic velocity of frame C, relative to frame C, 
is e v m .  Remarkably, these two Einsteinian reciprocal velocities are not 
reciprocal in the classical sense since they are related by the identity 

euev = e(uev) = egyr[u, ev](eveu) (10.22) 

that involves a Thomas precession. Identity (10.22) is obtained by em- 
ploying the gyroautomorphic inverse property, Def. 3.1 and Theorem 3.2, 
of Einstein addition, according to which e(aeb) = Qaeb, and the gyro- 
commutative law of Einstein addition. The classical counterpart of (10.22), 
-u + v = -(-v + u), is known as the principle of reciprocity. 

For any points u, V E R ~ ,  and the real parameter tER that may represent 
“time”, -00 < t < 00, the gyroline 

traces a geodesic line in the Beltrami ball model of hyperbolic geome- 
try. The gyrosegment uv, given by (10.23) with 0 5 t 5 1, is shown in 
Fig. 10.1.The gyroline (10.23) is the unique gyrogeodesic passing through 
the points u and v. It passes through the point u at “time” t = 0, and 
through the point v at  “time” t = 1. Geodesics in the Beltrami ball model 
of hyperbolic geometry are the analogue of straight lines in Euclidean geom- 
etry, representing paths that minimize arc lengths measured by the distance 
function (10.19). 

For t = 1/2  in (10.23) we have the hyperbolic midpoint, or the gyro- 



368 Analytic Hyperbolic Geometry 

I 

Fig. 10.1 The Einstein Gyrovector Plane. Points of the disc R~={vER2: llvll < c} 
represent two-dimensional relativistically admissible velocities v relative to some iner- 
tial rest frame with velocity 0. The latter, accordingly, is represented by the origin 
of the disc. While the disc origin is distinguished in the Euclidean geometry of the 
disc, it is indistinguishable in its hyperbolic geometry. The disc Wz is endowed with 
Einstein addition @ and scalar multiplication @, giving rise to the Einstein gyrovec- 
tor plane (R;, @,@I), that turns out in Section 7.5 to be the Beltrami disc model of 
two-dimensional hyperbolic geometry. The geodesic segment, or gyrosegment, uv join- 
ing the points u and v in the Einstein relativistic gyrovector plane (Rp, @, @) and the 

between u and v are shown. The expressions that gyromidpoint mu, = mu, 
generate the gyrosegment uv and its gyromidpoint mu, exhibit obvious analogies with 
their Euclidean counterparts. 

hyperbol ic  

midpoint, muv, 

muv = m ( e m V ) @ +  

Figure 10.1, satisfying, (6.86), 

muv = mvu 

(10.24) 

(10.25) 
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and, (6.87), 

de(u, muv) = de(v, muv) (10.26) 

The gyromidpoint muv can also be written as, (6.300), 

muv = 
YUU + YVV 

Yu + Yv 

and as, (6.91), 

(10.27) 

muv = a ~ ( u  EEI v) (10.28) 

so that in the Newtonian limit, c 4 00, the gyromidpoint in (10.24)- 
(10.28) reduces to its Euclidean counterpart, the midpoint (u + v)/2. 

10.8 The Midpoint and the Gyromidpoint - 
Newtonian and Einsteinian Mechanical Interpretation 

The relativistic mass is the key to unlocking the secret of an old problem 
in hyperbolic geometry, the determination of various hyperbolic centroids, 
called gyrocentroids, like the gyrocentroid of the hyperbolic triangle [Bot- 
tema (1958)l. 

Let us consider two particles with equal masses m moving with Newto- 
nian velocities u and v, u, v E It3. Their respective momenta are mu and 
mv so that their classical CM velocity is the point, Fig. 10.2, 

(10.29) 

in the Newtonian velocity space R3. 

Euclidean midpoint, Fig. 10.2, 
It turns out that the Newtonian CM velocity (10.29) coincides with the 

u + v  
2 

euclidean - - muv (10.30) 

of U , V E J R ~ .  The Euclidean midpoint (10.30) thus has the Newtonian classi- 
cal mechanical interpretation (10.29) as a classical center of mass [Hausner 
(1998); Berger (1987)] or, equivalently, a classical CM velocity, 

(10.31) 

By analogy with (10.29) and (10.30) let us consider two particles with 
equal rest masses m moving with Einsteinian velocities u, v E EX:. Their 

me~cl idean  - newtonian 
uv - cuv 
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Fig. 10.2 A particle with mass m is located at each of the three vertices u,v and w 
of triangle uvw in the Euclidean 3-space R3 of Newtonian velocities. The midpoints 
of the sides of triangle uvw are muvr muw and mvw. The centroid muvw of triangle 
uvw is equal to  the CM velocity of the three particles that are moving with Newtonian 
velocities u, v and w relative to some inertia1 rest frame. This mechanical interpretation 
of the Euclidean triangle centroid is well-known [Hausner (1998); Krantz (2003)l [Berger 
(1987), Fig. 3.4.10.1, p. 791. A straightforward extension of the interpretation to the 
relativistic regime, based on the concept of the relativistic mass, is shown in Fig. 10.3. 

respective momenta must be relativistically corrected so that they are, re- 
spectively, r n ~ ~ u  and myvv [Tsai (1986)l. Their CM velocity in the Ein- 
steinian velocity space IRz is, accordingly, the point 

(10.32) 
- YUU + YVV - 

Yu + Yv 
shown in Fig. 10.3. 

gyromidpoint (10.27), 
It turns out that the Einsteinian CM velocity (10.32) coincides with the 

mhyperbolic = Yu U + YVV 
uv 

Yu + Y V  
( 10.33) 
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Fig. 10.3 Putting to rest the relativistic mass misconceptions. The hyperbolic centroid, 
gyrocentroid, m ~ $ ~ b o L i c  - - muvw of a gyrotriangle uvw in the Einsteinian velocity 
gyrovector space (Rz, $, 8) coincides with the CM velocity of three particles with equal 
rest masses m situated at the vertices u, v, and w, of the triangle uvw, as shown in 
(10.37). The analogous Newtonian counterpart is obvious, Fig. 10.2, and is recovered in 
the Newtonian limit, c ---t 00. 

of u,v E R:, shown in Fig. 10.1. The gyromidpoint (10.33) thus has the 
Einsteinian relativistic mechanical interpretation (10.32) as a relativistic 
CM velocity, 

(10.34) mhyperbolic - Ceinsteinian 
uv - uv 

in full analogy with the Newtonian classical mechanical interpretation 
(10.29) of the Euclidean midpoint (10.30), presented in (10.31). 

The analogy (10.31) ++ (10.34) between the pairs (10.1) is shown in 
Figs. 10.2 and 10.3. I t  demonstrates that the relativistic mass possesses 
hyperbolic geometric, or gyrogeometric, significance along with its well- 
known physical significance. 

Figure 10.3 illustrates the hyperbolic/Einsteinian interpretation of 
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the gyrotriangle gyrocentroid in a way fully analogous to the Eu- 
clidean/Newtonian interpretation of the triangle centroid in Fig. 10.2. In 
Fig. 10.3 we extend the observations made in Fig. 10.1 from the gyromid- 
point muv of a gyrosegment uv, determined by its two endpoints u and v, 
to the gyrocentroid of a gyrotriangle uvw, determined by its three vertices 
u, v and w. 

The three vertices of the gyrotriangle uvw in Fig. 10.3 represent 
three particles with equal rest masses m moving with relativistic veloci- 
ties u, v, w EIW; relative to a rest frame Co. Relativistically corrected, the 
relativistic momenta of the three particles are, respectively, myuu, myvv, 
and m-yww, so that their relativistic CM velocity is 

einsteinian - mYu~ + myvv + myww - cuvw myu + my, + m-Yw 
(10.35) 

- YUU + 7"V + "Iww - 
/̂u + Tv + 7w 

This turns out, by Theorem 6.88, to be the gyrocentroid muvw = 
mhyperbolic 

uvw 1 

(10.36) 

of the gyrotriangle uvw, Fig. 10.3. 
The gyrosegment in gyrotriangle uvw, Fig. 10.3, joining a gyromid- 

point of a side with its opposite vertex is called a gyromedian. As in 
Euclidean geometry, the three gyrotriangle gyromedians are concurrent 
[Greenberg (1993)], the point of concurrency being the gyrotriangle gy- 
rocentroid. Figure 10.3 shows that, as expected, the three gyromedians of 
the gyrotriangle uvw are concurrent, giving rise to the gyrocentroid of the 
gyrotriangle uvw. 

The gyrotriangle gyrocentroid m:tTbolic, (10.36), of gyrotriangle uvw 
in the Einstein gyrovector space (I@, $, 8) is calculated by standard meth- 
ods of elementary linear algebra for determining line intersections, owing 
to the result that gyrolines in the Beltrami model are Euclidean straight 
lines. 

Following (10.35) and (10.36) we have 

( 10.37) 

Equation (10.37) extends the identity in (10.34) from a system of two 

hyperbolic - Ceinsteinian 
uvw - muvw 
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particles with equal rest masses and velocities u and v to a system of three 
particles with equal rest masses and velocities u, v and w. It demonstrates 
that the gyrotriangle gyrocentroid can be interpreted as a relativistic CM 
velocity of three moving particles with equal rest masses. 

The Euclidean analogue of (10.36) is clearly the Euclidean centroid 
[Hausner (1998); Krantz (2003)], 

euclidean - 
m u v w  - 

+ V + W 

3 
(10.38) 

of the Euclidean triangle uvw, also known as the triangle barycenter 
[Berger (1987), p. 791. 

Moreover, the Newtonian-classical analogue of the Einsteinian- 
relativistic CM velocity (10.35) is the Newtonian-classical CM velocity 
of three particles with equal masses, moving with Newtonian velocities 
u, v, W E R ~  relative to a rest frame c O ,  

newtonian = U + V + W 

3 CUVW (10.39) 

Hence, by (10.38) and (10.39), we have 

(10.40) euclidean = Cnewtonian 
m u v w  uvw 

thus obtaining the classical counterpart of (10.37). Identity (10.40) demon- 
strates that the Euclidean triangle centroid can be interpreted as a classical 
CM velocity. The analogy (10.40) - (10.37) extends the analogy (10.31) 
H (10.34) between the pairs in (10.1) from a system of two particles to a 
system of three particles. 

Further extension to four particles is shown in Figs. 10.4 and 10.5. In 
these figures we see four particles with equal rest masses m, represented 
by the points u, v, w, x of the Einstein gyrovector space (R:, @, @) of Ein- 
steinian velocities. The four particles, accordingly, have the respective rel- 
ativistic velocities u, v, w, and x. The relativistic CM velocity is given by 
the equation 

(10.41) 
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Fig. 10.4 The hyperbolic tetrahedron 
uvwx, called a gyrotetrahedron, is shown 
in the Einstein gyrovector space W: = 
(R:, @, @), which underlies the Beltrami 
ball model of hyperbolic geometry, as ex- 
plained in Sec. 7.5. The gyrotetrahedron 
uvwx is shown inside the c-ball W: of the 
Euclidean 3-space W3 where it lives. Its 
vertices are u, v, w, x E R:; and its faces 
are gyrotriangles. Gyromidpoints, gyrome 
dians, and gyrocentroids in the gyrotetrai 
hedron are shown in Fig. 10.5. 

Fig. 10.5 The gyromidpoints of the 6 
sides and the gyrocentroids of the four 
faces of the gyrotetrahedron in Fig. 10.4 
are shown. The gyroline joining a vertex 
of a gyrotetrahedron and the gyrocentroid 
of the opposite face is called a gyrotetra- 
hedron gyromedian. The four gyromedi- 
ans of the gyrotetrahedron uvwx, deter- 
mined by the four indicated gyrocentroids, 
are concurrent. The point of concurrency is 
the gyrotetrahedron gyrocentroid muvwx 
given by (10.41). 

and the hyperbolic centroid of the hyperbolic tetrahedron uvwx is 

mhyperbolic = Yu u + YVV + YWW + YXX 
Yu + Yv + ̂ /w + Yx uvwx 

so that, Fig. 10.5, 

hyperbolic - einsteinian 
m u v w x  - cuvwx 

(10.42) 

(10.43) 

Understanding the hyperbolic geometry that underlies (10.42) enables 
us to improve our understanding of the physics of the relativistic CM ve- 
locity (10.41). 

As an example illustrating the physical understanding that we gain from 
geometry, we note that it follows from the geometric significance of the 
hyperbolic triangle centroid that it remains covariant under the hyperbolic 
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rigid motions. Let us therefore left gyrotranslate the points in (10.42) by 
e y  ER: , obtaining 

eyemhyperbolic 
uvwx 

as explained in Figs. 6.16-6.17, pp. 204-206. 
Hence, by means of the equality (10.43) between hyperbolic triangle 

centroids, gyrocentroids, and the relativistic CM velocity we have from 
(10.44), 

so that (hyperbolic) geometric significance implies (relativistic) physical 
significance. 

Clearly, (10.41) gives the relativistic CM velocity as measured by an 
observer who is at rest relative to the rest frame CO and, similarly, (10.45) 
gives the relativistic CM velocity as seen by an observer who is at rest rel- 
ative to the inertial frame C,. The relativistic CM velocity, as a result, is 
observer covariant in the same way that the hyperbolic centroid, or gyro- 
centroid, of the hyperbolic tetrahedron, the gyrotetrahedron in Figs. 10.4 
and 10.5, is covariant under the hyperbolic rigid motions of the gyrote- 
trahedron. Contrasting the opinion in [Adler (1987), pp. 742-7431, the 
hyperbolic geometric interpretation of the relativistic CM velocity demon- 
strates that  Einstein’s relativistic mass is an asset rather than a liability. 
Hence, it will be no longer easy to dismiss Einstein’s relativistic mass as an 
artifact. Hyperbolic geometric interpretation of diverse physical phenom- 
ena are found in [Dubrovskii, Smorodinskii and Surkov (1984)]. 

10.9 The Einstein Gyroparallelogram 

An Einstein gyroparallelogram is a gyroparallelogram, Def. 6.40, in an Ein- 
stein gyrovector space. 
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Fig. 10.6 The Einstein gyroparallelogram. Let a, b, c be any three nongyrocollinear 
points in an Einstein gyrovector space (V,, @, @), V, being the s-ball of the real inner 
product space (V,+,.), and let d = (b c)0a. Then the four points a,b,c ,d are 
the vertices of the Einstein gyroparallelogram abdc, Def. 6.40, and, by Theorem 6.45, 
opposite sides are equal modulo gyrations. Shown are three expressions for the gyrocenter 
mabdc = mad = mbc of the Einstein gyroparallelogram abdc, which can be obtained 
by CM velocity considerations. 

Let a, b, c be any three nongyrocollinear points in an Einstein gyrovec- 
tor space (G, el @I), and let d = (b H c)ea. Then the four points a, b, c, d 
are the vertices of the Einstein gyroparallelogram abdc, Def. 6.40, with 
gyrocenter mabdc, Fig. 10.6. The two diagonals, ad and bc, of the gy- 
roparallelogram intersect at their gyromidpoints mad and mbc, Fig. 10.6, 

mad = ;@(a EE d) 

mbc = ;@(b EEI C) (10.46) 

mad = mbc = mabdc 

By CM velocity considerations similar to those shown in Fig. 10.3, the 
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(ea@b) E l l  (@am) = ea@d 3 
Fig. 10.7 The two diagonals ad and bc of a gyroparallelogram abdc intersect at the 
gyroparallelogram gyrocenter m = mabdc and divide the gyroparallelogram into the 
four gyrotriangles bcd, acd, abd and abc. The gyrocentroids of these gyrotriangles, 
which are, respectively, mabm, mbdm, mdcm and mcam, form a gyroparallelogram. 
Interestingly, the gyroparallelogram gyrocenter m is the midpoint of the two opposite 
gyrotriangle gyrocentroids mabm and mdcm (mbdm and mcam). 

gyrocenter mabcd of the Einstein gyroparallelogram abdc is given by each 
of the following three expressions, Fig. 10.6. 

(10.47) 

^/aa + ybb + ?cc + ydd 
?a + yb + yc + yd 

mabdc = 

The gyroparallelogram gyrocenter m = m&dc in Fig. 10.7 is (i) the 
gyromidpoint of the two opposite gyrotriangle gyrocentroids mabm and 
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Fig. 10.8 Thegyroparallelogram of the Fig. 10.9 Thegyroparallelogram of the 
previous figure, Fig. 10.7, before left gy- previous figure, Fig. 10.8, has been left gy- 
rotranslating it by ern to the origin of rotranslated in this figure so that its gyro- 
its Einstein gyrovector plane (R:, @, @) in center coincides with the origin of its Ein- 
Fig. 10.9. To the Euclidean eye the gy- stein gyrovector plane. As such, the gy- 
roparallelogram does not look like a Eu- roparallelogram now looks as a Euclidean 
clidean parallelogram. parallelogram. 

mdcm, and (ii) the gyromidpoint of the two opposite gyrotriangle gyrocen- 
troids mbdm and mcam as shown in Fig. 10.7. Hence, it follows from the 
Einstein gyromidpoint identity (10.27) that the gyroparallelogram gyrocen- 
ter and the four gyrotriangle gyrocentroids in Fig. 10.7 are related by the 
two equations 

(10.48) 

and 

As a result, the four gyrotriangle gyrocentroids, mabm, mbdm, mdcm 

and mcam, in Fig. 10.7 form a gyroparallelogram that shares its gyrocenter 
with the original gyroparallelogram abdc. 

To recognize graphically an Einstein gyroparallelogram with gyrocenter 
m in an Einstein gyrovector plane one may left gyrotranslate it by em. The 
resulting gyroparallelogram has gyrocenter m = 0. The left gyrotranslated 
gyroparallelogram then looks like a Euclidean parallelogram, as shown in 
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Figs. 10.8 and 10.9, where m = mabdc is given by (10.47), and 

a’ = emea 
b’ = 0m@b 
c’ = e m e c  

d’ = 8m@d 

(10.50) 

In the following theorem we will find that any vertex of an Einstein 
gyroparallelogram is a linear combination of the other three vertices, with 
coefficients that are expressed in terms of the gamma factors of the three 
vertices and their gyrodifferences. 

Theorem 10.1 Let a, b, c E V, be any three points of an  Einstein gy- 
rovector space (Vs, @, 8) of the s-ball of an  inner product space (V, +, .), 
and let abdc be their gyroparallelogram, Fag. 10.6. Then 

and 

(10.51) 

(10.52) 

( 10.53) 

Proof. By the gyroparallelogram condition, Def. 6.40, we have 

d = (b El c)8a (10.54) 

implying, by a right cancellation, 

a W d = b H c  (10.55) 

Identity (10.51) follows from (10.55) by (3.156). 
Solving (10.51) for d as a function of a,b,C, ya,yb,yc and yd, and 

employing the identity lld1I2 = (7: - l ) /y i  and similar ones for a, b, c, 
gives an equation for yd in terms of ya,yb,yc, a b ,  a.c and b.c. The 
inner product a.b can be expressed by (3.145) in terms of ya, yb and yaeb 
and similarly for ax and b.c. These allow one to express yd in terms of 
ya, yb,-yc, yaeb, yaeC and ybec, obtaining (10.53). Finally, (10.52) follows 
from (10.51) and (10.53). 
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One should note that Identities (10.52) and (10.53) of Theorem 10.1 can 
be viewed as the unique solution of (10.51) for the two dependent unknowns 
d and its gamma factor Yd. 

Identity (10.53) can be written as 

(10.56) 

Owing to the gyroparallelogram symmetry between the two pairs of oppo- 
site vertices, (10.56) implies its symmetric copy 

( 10.57) 

so that 

T a e b  + Ya0c Yaeb + Ybed = 

+ Ybec + Yaed 
(10.58) 

Theorem 10.2 Let a, b, c, d E V, be the four vertices of a gyroparallel- 
ogram abdc in an Einstein gyrovector space (V,,@,@) of the s-ball of an 
inner product space (V, +, .), Fig. 10.6. Then the two diagonal gyrolengths, 
IIea@dll and 11eb@clI of the gyroparallelogram are related to the gyropar- 
allelogram side gyrolengths by the identity 

J G \ l l + r o b m c  = Yea@b + Yeaac (10.59) 

Proof. The gyroparallelogram is a gyrogeometric object and its vertices 
are, accordingly, gyrocovariant. Hence, identities between the vertices of a 
gyroparallelogram, like (10.51) - (10.58), are gyrocovariant as well. Thus, 
in particular, the left gyrotranslation of Identity (10.53) by @a gives the 
following new identity. 

(Y(@a@a)e(@a@b) + Y(ea@a)e(ea@c))(Y8a@b + YBa@c) 
1 + Y(ea@b)e(ea@c) 

Yea@d = -Yea@a + 

implying 
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Fig. 10.10 The Einstein gyroparallelogram addition law of relativistically admissible 
velocities. Let A, B ,  C@.y be any three nongyrocollinear points of an Einstein gyrovec- 
tor space (Ry,@,@),  giving rise to the two gyrovectors u = 0 A @ B  and v = @A@C. 
Furthermore, let D be a point of the gyrovector space such that ABDC is a gyroparal- 
lelogram, that is, D = ( B  H C ) e A .  Then, Einstein coaddition of u and v, u H v = w, 
obeys the gyroparallelogram law, w = @A@D. Einstein coaddition, Ef3, thus gives rise to 
the gyroparallelogram addition law of Einsteinian velocities, which is commutative and 
fully analogous to the parallelogram addition law of Newtonian velocities. 

as desired. 
The first identity in (10.60) is obtained by a left gyrotranslation of 

Identity (10.53) by ea. The second identity in (10.60) is obtained by noting 
that = +yo = 1, and by employing the Gyrotranslation Theorem 3.13, 

0 noting that a gamma factor is invariant under gyrations. 

We may note that Identity (10.59) of Theorem 10.2 can be obtained from 
Identity (8.217) of Theorem 8.60 by translation from Mobius gyrovector 
spaces to Einstein gyrovector spaces; see an exercise in Sec. 8.24, p. 327. 
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10.10 The Relativistic Gyroparallelogram Law 

By the gyroparallelogram law, Theorem 6.42, in an Einstein gyrovector 
space (EX:, @, @) we have, Fig. 10.10, 

u m v = w  (10.62) 

where u, v, w E EX: are relativistically admissible velocities determined by 
the vertices of the parallelogram ABDC, Fig. 10.10, according to the equa- 
tions 

u = eA@B 
v = eA@C 
w = eA@D 

(10.63) 

Here u and v are two gyrovectors with a common tail A and respective 
heads B and C, forming the gyroparallelogram ABDC, Fig. 10.10. The 
gyrovector w with tail A and head D forms the diagonal eA@D of the 
gyroparallelogram. 

Similarly, the diagonal gyrovector eB@C of gyroparallelogram ABDC 
satisfies the identity 

( @ @ A )  H ( eB@D)  = eB@C (10.64) 

Since Einstein coaddition in (10.62) turns out to be the gyroparallelo- 
gram law of addition of two relativistically admissible velocities, it would be 
useful to rewrite it in a form that admits extension to k summands, k > 2. 
The extension, accordingly, should uncover the k-dimensional gyroparal- 
lelepiped law of addition of k relativistically admissible velocities. Following 
(3.156) we thus rewrite the gyroparallelogram addition law (10.62) as 

( 10.65) 

where we use the notation RE = EE! = EE2 to emphasize that Einstein coad- 
dition is a binary operation, that is, it is an operation between two gyrovec- 
tors. 

The extension of the gyroparallelogram addition law (10.65) from Ein- 
stein coaddition H 2  between two summands to higher ordered Einstein 
coadditions Wk, k > 2, between k summands in an Einstein gyrovector 
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space (RF, @, 8)  is given by the gyroparallelepiped addition law 

V k E R T ,  k = 2,3 ,4 ,  . . ., where & is the sum over all pairs ( i , j )  such that 

The integers M k  and N k  in (10.66) are uniquely determined by the 
compatibihty condition that 83k reduces to R k - 1 ,  for all k > 3, when one of 
its k summands vanishes. Thus, for instance, the compatibility condition 
for k = 3 is 

1 5  i < j I k. 

~1 H3 vz R 3  0 = ~ 1 8 3 2  ~2 ( 10.67) 

It follows from the compatibility condition that (i) the integer M k  is given 
by the equation 

M k = 2 - k  (10.68) 

and that (ii) the integer N k  is given by the recursive equation 

(10.69) 

k = 2 , 3 ,  . . .  

coaddition of order three, W3, is given by the equation 
As an example, it follows from (10.66) and (10.68)- (10.69) that Einstein 

10.11 The Parallelepiped 

We present the parallelepiped definition as a guide for the definition of the 
gyroparallelepiped that we will uncover in Sec. 10.13. 

Definition 10.3 (The Parallelepiped). Let  a,b,c,d E Rn be a n y  
f o u r  points of the Euclidean n-space R", n 2 3, such that  the  three vectors 
-a + b, -a + c and -a + d are linearly independent. T h e  points a, b, c, d 
and a', b', c', d' in Rn are the vertices of the parallelepiped abcda'b'c'd', 
Fag. 10.11, if 
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(a’) The point a’ is given by the equation 

-a+ a’ = (-a + b) + (-a 3. c) + (-a + d) (10.71) 

(known as the parallelepiped addition law); 
(b’) The point b’ is given by the equation 

-b + b’ = (-b + a) + (-b + a‘) (10.72) 

(that is, equivalently, aba’b’ is a parallelogram in Fig. 10.11, and 
(10.72) is a parallelogram addition in that parallelogram); 

(c’) The point c’ is given by the equation 

-c+ C’ = (-c + b) + (-c + b’) (10.73) 

(that is, equivalently, bc’b’c is a parallelogram in Fig. 10.11, and 
(10.73) is a parallelogram addition in that parallelogram); 

(d’) The point d’ is given by the equation 

-d + d’ = (-d + a) + (-d + a‘) (10.74) 

(that is, equivalently, ada‘d‘ is a parallelogram in Fig. 10.11, and 
(10.74) is a parallelogram addition in that parallelogram). 

W e  call the parallelograms aba‘b’, bc’b’c, ada’d’, etc., diagonal 
(as opposed to face) parallelograms of the parallelepiped abcda’b’c’d’ in 
Fig. 10.11. 

It is well-known that the parallelepiped possesses the following prop- 
erties (PD1) - (PDG). The eight vertices a, b, c, d, a’, b’, c’, d’ of a paral- 
lelepiped abcda’b’c’d’ in a Euclidean 3-space, Fig. 10.11, form 12 paral- 
lelograms. These are 

(PD1) the 6 diagonal-parallelograms of the parallelepiped: (i) aba’b‘, (ii) 

(PDz)  the 6 face-parallelograms of the parallelepiped: (i) abc’d, (ii) 

(PD3) Each vertex of the parallelepiped abcda’b’c’d’, Fig. 10.11, admits 

dc’d’c, (iii) aca’c’, (iv) db’d‘b, (v) ada’d’, (vi) bcb’c’; and 

a’b’cd’, (iii) bd’a’c’, (iv) b’dac, (v) a’b’dc’, (vi) abd’c. 
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d 

Fig. 10.11 The Euclidean parallelepiped abcda’b‘c’d’. Any three linearly independent 
vectors -a + b, -a + b, -a + d, that emanate from a common point a in the Euclidean 
3-space R3 form a parallelepiped by Definition 10.3. The parallelepiped gives rise to the 
parallelepiped (addition) law, (10.71). Faces of the parallelepiped are parallelograms. 
Hence, for instance, -a+ b’ = (-a+c) + (-a+d) by the parallelogram (addition) law. 
The parallelepiped also contains 6 diagonal parallelograms as, for instance, ada’d’. 
Each vertex of the parallelepiped has an opposite triangle in the parallelepiped the 
centroid of which lies on the segment that joins the vertex and its opposite one. Thus, 
for instance, the centroid Ca of the triangle bcd opposite to the vertex a lies on the 
diagonal segment aa’. The four diagonal segments are concurrent, the concurrency 
point, C, being the midpoint of each diagonal segment. The point C is called the center 
of the parallelepiped. 

a parallelepiped vector addition. These are, Fig. 10.11, 

-a + a’ = (-a + b) + (-a + c )  + (-a + d) 
-b + b’ = (-b + a) + (-b + c’) + (-b + d’) 
-C + c’ = ( -c  + a) + ( -c  + b’) + ( - c  + d’) 
-d + d’ = (-d + a) + (-d + b’) + (-d + C’)  

-a’ + a = (-a’ + b’) + (-a’ + c’) + (-a’ + d’) 
-b’ + b = (-b’ + a’) + (-b’ + C )  + (-b’ + d) 
-c’ + c = (-c’ + a’) + (-c’ + b) + (-c’ + d) 

-d‘ + d = (-d’ + a’) + (-d’ + b) + (4‘ + C )  

(10.75) 
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The first equation in (10.75) is valid by Identity (10.71) of Def. 10.3 
of the parallelepiped. The validity of all the equations in (10.75) 
is a significant result that expresses the symmetries of the paral- 
lelepiped addition law. 
The 4 diagonals aa’, bb‘, cc’ and dd’, Fig. 10.11, of the paral- 
lelepiped abcda’b’c’d’ are concurrent, the concurrency point being 
the midpoint of each of the diagonals. 
Let a be one of the parallelepiped vertices, and let (ca be 
the centroid of its opposite triangle bcd 
abcda’b’c’d’, Fig. 10.11. Then Ca is given 

b + c + d  
3 

(ca = 

which, equivalently, can be written as 

in the parallelepiped 
by the equation 

(10.76) 

Furthermore, Ca lies on the segment aa’ that connects the vertex 
a to its opposite vertex a’. In fact, it follows from (10.77) and the 
first equation in (10.75) that 

(10.78) -a+Ca = -(-a+a’) 

The other vertices of the parallelepiped possess centroids similar 
to that of vertex a in (10.76)-(10.78), as shown graphically in 
Fig. 10.11. 

1 
3 

The centroids associated with the parallelepiped vertices, mentioned in 
item (PD5) and shown in Fig. 10.11, are 

~c - a+b’+d’ 
c -  3 f 

(10.79) 

Pairs of opposite centroids lie on diagonals of their parallelepiped: (1) 
(ca and (ca, lie on the segment aa’; (2) c b  and (cb‘ lie on the segment 
bb’; (3) @, and Cct lie on the segment cc’; and (4) (cd and @d‘ lie on the 
segment dd’. 
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10.12 The Pre-Gyroparallelepiped 

Guided by Def. 10.3 of the parallelepiped in terms of parallelograms, and 
having the gyroparallelogram definition and properties in hand, Secs. 10.9 - 
10.10, we are now in a position to define the pre-gyroparallelepiped. The 
latter will, in turn, lead us to the definition of the gyroparallelepiped. 

Items (b’) - (d’) of Def. 10.3 of the parallelepiped involve parallelograms. 
Hence, they can readily be gyro-translated into gyrolanguage, as we did in 
Secs. 10.9-10.10, and as we do in Def. 10.4 below. 

In contrast, the gyro-translation into gyrolanguage of item (a’) of 
Def. 10.3 of the parallelepiped, which involves the parallelepiped addition 
law, is yet unknown. In order to uncover the gyro-translation of the paral- 
lelepiped addition law (10.71) into gyrolanguage we initially select the ver- 
tex a’ in item (a’) of Def. 10.3 arbitrarily, obtaining the definition of the pre- 
gyroparallelepiped. The following Def. 10.4 of the pre-gyroparallelepiped is, 
accordingly, analogous to Def. 10.3 of the parallelepiped with one exception. 
While items (b’), (c’), and (d’) of Def. 10.4 share obvious gyro-analogies 
with their respective counterparts in Def. 10.3, item (a’) is based on arbi- 
trariness. 

Definition 10.4 (The Pre-Gyroparallelepiped). Let a, b, c, d E R! 
be any four  points of the Einstein gyrovector space (Ry,@,@) of the ball 

of the Euclidean n-space R”, n 2 3, such that the three gyrovectors 
8a@b, ea@c and ea@d are linearly independent in R”. The points 
a, b, c, d and a‘, b’, c’, d’ in Ry are the vertices of the pre-gyroparallelepiped 
abcda’b’c’d’, Fig. 10.12, i f  

(a’) The point a’ is selected arbitrarily, so that 

eaea’ = An Arbitrary Po in t  in Ry (10.80) 

(b’) The point b’ is given by the equation 

@b@b’ = (eb@a) B2 (ebea’) (10.81) 

(that is, equivalently, aba’b’ is a gyroparallelogram in Fig. 10.12, 
and (10.81) is  a gyroparallelogram addition in that gyroparallelo- 

(c’) The point c’ is  given by the equation 
gram); 
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Fig. 10.12 The Einstein pre-gyroparallelepiped abcda‘b’c’d‘ is a first attempt to ex- 
tend the gyroparallelogram to a gyroparallelepiped. For any given four points, a, b, 
c, d, in the Einstein 3-gyrovector space (Rf,  $, @), an additional vertex, a’, is selected 
arbitrarily since the appropriate way to determine it is yet unknown. 
Three additional vertices of the pre-gyroparallelepiped abcda‘b’c’d’ are constructed 
such that aba‘b‘, bcb‘c‘, and ada’d’ are diagonal gyroparallelograms. Hence, the 
pre-gyroparallelepiped has 6 diagonal gyroparallelograms that share some diagonals, so 
that the 4 diagonal gyrosegments, aa’, bb’, cc’, and dd‘ are concurrent. The point of 
concurrency, C, coincides with the midpoint of each of the 4 diagonal gyrosegments. It 
is therefore called the gyrocenter of the pre-gyroparallelepiped. 
Each vertex of the pre-gyroparallelepiped has an opposite gyrotriangle in the pre- 
gyroparallelepiped the gyrocentroid of which is shown. Thus, for instance, Ca is the 
gyrocentroid of the gyrotriangle bcd that lies opposite to the vertex a. Note that, in 
general, the two opposite gyrocentroids Ca and cat (Cb and Cb’, Cc and Cct, Cd and 
C ~ J )  do not lie on their associated diagonal aa’ (bb’, cc’, dd‘, respectively). Could an 
appropriate determination of the arbitrary vertex a’ simultaneously force each of the 8 
gyrocentroids to lie on its associated diagonal? 

(that is, equivalently, bcb’c’ i s  a gyroparallelogram in Fig. 10.12, 
and (10.82) i s  a gyroparallelogram addition in that gyroparullelo- 
gram); 

(d’) The point d’ i s  given by the equation 

8ded‘ = (edea) E l 2  (edea’) (10.83) 

(that is, equivalently, ada’d’ is a gyroparallelogram in Fig. 10.12, 
and (10.83) i s  a gyroparallelogram addition in that gyroparallelo- 
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gram). 

Let a be one of the gyroparallelepiped vertices, and let Ca be the gy- 
rocentroid of its opposite gyrotriangle bcd in the pre-gyroparallelepiped 
abcda’b’c’d’, Fig. 10.12, in full analogy with (10.76). Then Ca is given by 
the equation 

(10.84) 

which, equivalently, can be written as 

Yea@b(BaBb) + Y@a@c(ea@c) + yea@d(Gaed) 8 a W a  = 
YeacBb -k yea@c + y@a@d 

Other vertices of the pre-gyroparallelogram possess centroids similar to 
that of vertex a in (10.84)-(10.85), as shown in Fig. 10.12. These eight 
gyrocentroids, analogous to (10.79), are listed in (10.93). 

Comparing Figs. 10.11 and 10.12 we see that a remarkable disanalogy 
emerges. In general, the opposite gyrocentroids Ca and Cat (Cb and Cb’, 
C, and CCl, (cd and @d’) do not lie on the gyrosegment aa’ (bb’, cc’, dd’, 
respectively) that joins opposite vertices of the pre-gyroparallelepiped. One 
may hope that the disanalogy stems solely from the arbitrariness in the 
selection of the vertex a, so that there exists a unique vertex a of the pre- 
gyroparallelepiped in Fig. 10.12 that simultaneously repairs the breakdown 
of analogy in the position of each of the eight gyrocentroids. This is indeed 
the case, as we will see in Sec. 10.13. 

10.13 The Gyroparallelepiped 

A unique candidate for the arbitrarily selected vertex a’ in item (a’) of 
Def. 10.4 of the pre-gyroparallelepiped in Fig. 10.12, which repairs the 
breakdown of analogy between Figs. 10.11 and 10.12, is already in hand. 

(1) In the same way that Einstein coaddition of order two, El32 in 
(10.65), gives rise in Sec. 10.9 to a gyroparallelogram addition law, 
Fig. 10.6, analogous to the parallelogram addition law, 

(2) we may expect that Einstein coaddition of order three, El33 in 
(10.70), gives rise to a gyroparallelepiped addition law analogous 
to the parallelepiped addition law, (10.71), in Fig. 10.11. 

(3) Figure 10.13 shows that this is indeed the case. 
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Figure 10.13 is generated by the same way that Fig. 10.12 is generated 
with one exception. In Fig. 10.12 the vertex a’ is selected arbitrarily, while 
in Fig. 10.13 the vertex a’ is determined by employing Einstein coaddition 
of order three along with other gyroanalogies; see (10.86) below. 

As a result, in Fig. 10.12 none of the gyrocentroids lies on its diagonal 
gyrosegment (for instance, the gyrocentroids @.a and @.a) do not lie on their 
diagonal gyrosegment aa’), in disanalogy with their Euclidean counterpart 
in Fig. 10.11. However, an appropriate determination of the vertex a’ in 
Fig. 10.13 simultaneously forces all the eight gyrocentroids in the figure to 
lie on their respective diagonal gyrosegments, as their Euclidean counter- 
parts do in Fig. 10.11. Such a remarkable simultaneous fit between all the 
eight gyrocentroids and their respective diagonal gyrosegments in Fig. 10.13 
cannot be fortuitous. Hence, we reach the conclusion that 

(1) in the same way that Einstein coaddition of order two gives rise 
to the gyro-analogue of the 2-dimensional Euclidean parallelogram 
addition law in Fig. 10.7 and in (10.81)-(10.83), 

(2) Einstein coaddition of order three gives rise to the gyro-analogue of 
the 3-dimensional Euclidean parallelepiped addition law in (10.86) 
below. 

Accordingly, we obtain the following Def. 10.5 of the gyroparallelepiped, 
shown in Fig. 10.13. Definition 10.5 is a copy of Def. 10.4 of the pre- 
gyroparallelepiped with one exception. The vertex a’ in the gyroparal- 
lelepiped definition 10.5 is not selected arbitrarily but, rather, it is deter- 
mined by Einstein coaddition of order three, H3. 

Definition 10.5 (The Gyroparallelepiped). Let a,b ,c ,d  E El!! be 
any  f o u r  points of the Einstein gyrovector space (Ry, @, @) of the ball R: 
of the Euclidean n-space Rn, n 2 3, such that the three gyrovectors eaeb,  
ea@c and Baed are linearly independent in Rn. The points a, b, c, d and 
a‘, b’, c’, d’ in El!! are the vertices of the gyroparallelepiped abcda’b’c’d’, 
Fig. 10.13, if 

(a’) The point a’ is  given by the equation 

Gaea‘ = (eaeb)  H3 (eaec)  W3 (eaed)  (10.86) 

called the 3-dimensional gyroparallelepiped addition law; 
(b’) The point b’ is  given by the equation 

ebeb’ = (ebea)  EI2 (ebea’) ( 10.87) 
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d’ 

Fig. 10.13 The Einstein Gyroparallelepiped abcda’b’c’d’. Any three gyrovectors 
@a$b, 8a@c, ea@d, that emanate from a common point a in the Einstein 3-gyrovector 
space (W3, $, €3) form a gyroparallelepiped by Def. 10.5. The gyroparallelepiped gives 
rise to the gyroparallelepiped (addition) law, (10.86). In general, faces of the gyropar- 
allelepiped are not gyroparallelograms, thus forming the only disanalogy with the (Eu- 
clidean) parallelepiped. Hence, for instance, the gyrovector @a$b’ of a face of the 
gyroparallelepiped is given by (10.94) rather than by a gyroparallelogram addition. But, 
in full analogy with the parallelepiped, the gyroparallelepiped contains 6 diagonal gy- 
roparallelograms as, for instance, ada’d’. 
Each vertex of the gyroparallelepiped has an opposite gyrotriangle in the gyroparal- 
lelepiped the gyrocentroid of which lies on the gyrosegment that joins the vertex and its 
opposite one. Thus, for instance, the gyrocentroid Ca of the gyrotriangle bcd opposite 
to the vertex a lies on the diagonal gyrosegment aa’. Similarly, the two opposite gy- 
rocentroids Ca and Cat (Cb and C ~ I  , C, and C,t , Cd and Cdt) lie on their associated 
diagonal aa‘ (bb’, cc’, dd’, respectively). 
The four diagonal gyrosegments are concurrent, the concurrency point, C, being the 
gyromidpoint of each diagonal gyrosegment. The point C is called the gyrocenter of the 
gyroparallelepiped. 

(that is, equivalently, aba’b’ is a gyroparallelogram in Fzg. 10.12, 
and (10.87) is a gyroparallelogram addition in that gyroparallelo- 

(c’) The point c’ is given by  the equation 
gram); 

ecm‘ = ( w e b )  m2 (8cfBb‘) (10.88) 

(that is, equivalently, bc’b’c is a gyroparallelogram in Fig. 10.12, 
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and (10.88) is a gyroparallelogram addition in that gyroparallelo- 

(d’) The point d‘ is given by  the equation 
gram); 

eded’ = (edea) HZ (edea’) (10.89) 

(that is, equivalently, ada‘d’ is a gyroparallelogram in Fig. 10,12, 
and (10.89) is a gyroparallelogram addition in that gyroparallelo- 
gram). 

The gyroparallelepiped possesses properties, (GDI ) - (G&), which are 
analogous to the parallelepiped properties, (PD1) - (P&),  with one excep- 
tion, (GP2). The eight vertices a, b, c, d, a’, b’, c’, d’ of a gyroparallelepiped 
abcda’b’c’d’ in a Euclidean 3-space, Fig. 10.11, form 6 gyroparallelograms. 
These are 

(GD1) the 6 diagonal-gyroparallelograms of the gyroparallelepiped: (i) 
aba’b’, (ii) dc’d’c, (iii) aca‘c’, (iv) db’d’b, (v) ada’d’, (vi) bcb’c’. 

(GDa) (A disanalogy) Contrasting the Parallelepiped faces, in general, 
each of the gyroparallelepiped faces: (i) abc’d, (ii) a’b’cd’, (iii) 
bd’a’c’, (iv) b’dac, (v) a’b’dc’, (vi) abd‘c, does not form a gy- 
r opar allelogr am. 

(GD3) Each vertex of the gyroparallelepiped abcda’b’c‘d’, Fig. 10.13, 
admits a gyroparallelepiped vector addition. These are 

eaea’ = (eaeb) H 3  (eaec) EEh (eaed) 
ebeb‘ = (ebea) H3 (ebec’) R3 (ebed’) 

ecec’ = (ecea) H3 (eceb’) H3 (eced’) 

8ded’ = (edea) H3 (@deb’) 833 (edec’) 
ea’ea = (ea’eb’) H3 (ea’ec’) ED3 (ea’ed’) 
eb’eb = (eb’ea’) H3 (eb’ec) El3 (eb’ed) 

ec’ec = (ec’ea’) 833 (ec’eb) El3 (ec’ed) 

@d‘@d = (ed’ea’) H3 (ed’eb) H3 (ed’@c) 

(10.90) 

The gyroparallelepiped identities in (10.90) share obvious analogies 
with the parallelepiped identities in (10.75). 
The first equation in (10.90) is valid by Identity (10.86) of Def. 10.5 
of the gyroparallelepiped. The validity of all the equations in 
(10.90) is a significant result that expresses the symmetries of the 
gyroparallelepiped addition law. 
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The 4 diagonals aa’, bb’, cc‘, and dd’ of the gyroparallelepiped 
abcda‘b’c’d’, Fig. 10.13, are concurrent, the concurrency point 
being the gyromidpoint of each of the diagonals. 
Let a be one of the gyroparallelepiped vertices, and let @a be the 
centroid of its opposite gyrotriangle bcd in the gyroparallelepiped 
abcda’b’c’d’, Fig. 10.13. Then C, is given by the equation 

(10.91) 

which, equivalently, can be written as 

Yea@b(eaeb) + Y@a@c(ea@c) + 7@a@d(eaed) 8 a W a  = 
YBa@b + Y@a@c + Yea@d 

( 10.92) 
as shown in Figs. 6.16-6.17. 
Furthermore, Ca lies on the segment aa’ that connects the vertex 
a to its opposite vertex a’. The other vertices of the gyroparal- 
lelepiped possess properties similar to that of vertex a in (10.91) - 
(10.92), as shown graphically in Fig. 10.13. 

gyrotriangle gyrocentroids associated with the gyroparallelepiped 
vertices, mentioned in item (GD5) and shown in Fig. 10.13, are 

in full analogy with (10.79). 
In the extension from the parallelepiped to the gyroparallelepiped only 

one property is lost. The 6 faces of a parallelepiped are parallelograms 
while, in general, the 6 faces of a gyroparallelepiped are not gyroparallelo- 
grams. This indicates that the importance of the gyroparallelepiped rests 
on the fact that (i) it contains 6 diagonal gyroparallelograms (but no face 
gyroparallelograms), and that (ii) it gives rise to a gyroparallelepiped ad- 
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dition law which is fully analogous to the common parallelepiped addition 
law. 

Since, in general, a face of a gyroparallelepiped is not a gyroparallelo- 
gram, face diagonals cannot be obtained from the gyroparallelogram law. 
Thus, for instance, the gyrovector ea@b’ is a diagonal of the face acb’d 
of the gyroparallelepiped abcda’b’c’d’ in Fig. 10.13. It is not given by a 
gyroparallelogram law but, rather, by the equation 

(10.94b) 

and 

In (10.94), the point b’ of the gyroparallelepiped in Fig. 10.13 is rep- 
resented relative to the point a, that is, the gyrovector ea@b’, as a linear 
combination of the three gyrovectors, eaeb ,  ea@c and eaed,  that gen- 
erate the gyroparallelepiped. Similar to the representation of the point b’ 
in (10.94), all other points of the gyroparallelepiped in Fig. 10.13 can be 
represented relative to the point a as a linear combination of the three 
gyrovectors that generate the gyroparallelepiped. 

10.14 The Relativistic Gyroparallelepiped Law 

Einstein velocity addition is neither commutative nor associative. There are 
attempts in the literature to repair the breakdown of both commutativity 
and associativity. 

Owing to its noncommutativity, Einstein velocity addition is such that 
“velocity parallelograms do not close” (in Sommerfeld’s words, quoted in 
Sec. 10.3). According to Scott Walter, in 1913 Emile Bore1 adopted a 
symmetric form for the addition of relativistic velocities: 
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[Emile] Borel fixed the ‘defective’ assertion that the ori- 
entation of the relative velocity of a point with respect to 
two inertial systems is noncommutative. . . . Noting with 
pleasure the Japanese mathematician Kimonsuke Ogura’s 
adoption of the term ‘kinematic space’ [coined by Borel] 
([Ogura (1913)]), Borel deplored the latter’s presentation 
of the law of velocity addition in its original, noncommuta- 
tive form. Apparently, Ogura had ‘not seen all the advan- 
tages’ of the symmetric form of the law adopted by Borel 
[Borel (1913), note 41. 

Scott Walter [Walter (1999b), pp. 117-1181 

Realizing that Einstein’s special theory of relativity is regulated by gy- 
rogeometry, the noncommutativity of Einstein velocity addition for which 
“velocity parallelograms do not close” poses no problem. In gyrogeometry 
Einstein addition, $, naturally comes with Einstein coaddition, B, which 
is commutative and for which “velocity gyroparallelograms do close”, as 
shown in Fig. 10.10. 

It should be emphasized here that coaddition was introduced into the 
theory of gyrogroups in Def. 2.7 in order to capture analogies with group 
theory. Yet, further useful properties of the coaddition get unexpectedly 
discovered in diverse situations, one of which reveals the relativistic gy- 
roparallelogram velocity addition law in hyperbolic geometry, Fig. 10.10, 
which is fully analogous to the classical parallelogram velocity addition law 
in Euclidean geometry. Thus, the breakdown of commutativity in Einstein 
addition, which remained stubbornly intractable for a century, has been put 
to rest by the natural emergence of Einstein gyroparallelogram addition law 
of gyrovectors. 

Some effects in quantum mechanics are regulated by hyperbolic ge- 
ometry as shown, for instance, in Chap. 9 and in [LBvay (2004a); 
LQvay (2004b)l. The resulting breakdown of associativity in some trans- 
lation operators of quantum mechanics is discussed by several authors; see, 
for instance, [Nesterov (2004)] and [Jackiw (1985)l. It is therefore interest- 
ing to realize that hyperbolic geometry offers a gyroparallelepiped addition 
law of hyperbolic translations, which is both associative and commutative 
in a sense that is fully analogous to the parallelepiped addition law of vec- 
tors. 

In three dimensions the relativistic gyroparallelepiped law of addition 
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of three relativistically admissible velocities is demonstrated in (10.86), and 
illustrated graphically in Fig. 10.13. It involves the Einstein coaddition of 
order three, H3, given by (10.70). Similarly, a commutative and associative 
addition of k relativistically admissible velocities or gyrovectors, k 2 2, 
is accomplished by employing the Einstein gyroparallelepiped law, which 
involves the Einstein coaddition of order k, H k ,  given by (10.66). 

10.15 The Lorentz Transformation and its Gyro-Algebra 

In 1904 Lorentz reduced the electromagnetic equations for a moving sys- 
tem to the form of those that hold for a system at rest, thus discovering 
the transformation group that was later named after him by Einstein. Re- 
placing Einstein’s three-vector formalism and its seemingly structureless 
Einstein velocity addition by a four-vector formalism and the group struc- 
ture of its Lorentz transformation, Minkowski has reformulated Einstein’s 
special theory of relativity. 

Starting with Einstein velocity addition as a fundamental, we will de- 
rive the Lorentz transformation group as a consequence. We will thus find 
that Einstein’s three-vector formalism, with Einstein velocity addition and 
its gyrogroup structure, provides insight to the Minkowskian four-vector 
formalism, with the Lorentz transformation and its group structure. We 
will see that the resulting gyro-algebra of the Lorentz group captures analo- 
gies that the Lorentz transformation shares with its Galilean counterpart. 
Furthermore, we will see that the resulting analogies unlock the mystery 
of Einstein’s relativistic mass, giving rise to the gyrobarycentric coordi- 
nates that are fully analogous to the barycentric coordinates that were first 
conceived by Mobius in 1827 [Mumford, Series and Wright (2002)l. 

Let ( t ,  x ) ~  E RLo x R3, where exponent t denotes transposition, be a 
spacetime event. A Lorentz transformation of spacetime coordinates is a 
coordinate transformation that leaves the norm, (4.55), 

(10.95) 

of a spacetime event ( t ,  x ) ~  invariant. 
A Lorentz transformation without rotation is known in the jargon as 

a boost. Let L(u) be a Lorentz boost parameterized by a relativistically 
admissible velocity UEIW:. Its application to spacetime coordinates (t,  x ) ~  = 



Special Relativity 397 

( t ,  vt)t is given by the equation, (4.60), 

leaving the spacetime norm (10.95) invariant, 

(10.97) 

The boost L(u) in (10.96) is a linear transformation of spacetime co- 
ordinates. Hence, it has a matrix representation L,(v), which is given by 
the equation [Mmller (1952)], 

Lrn(v) = 

7 v  c-2Yvv1 c- yv u2 c- yv u3 

yvv1 1 + c-2&.: c-2 * Y2 

yvu2 c-2 7 3 7 1 u 2  Y2 1+c-2&uzz 

(10.98) 

c-2 Y2 c-2 Y2 I YvU3 Y,+lUlU3 * 
Employing the matrix representation (10.98) of the Lorentz transfor- 

mation, the application of the Lorentz transformation in (10.96) can be 
written as 
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In the Newtonian limit of large vacuum speed of light, c -3 00, the 
Lorentz boost L(v), (10.98) - (10.99), reduces to the Galilei boost G(v), 
v = (211,212,V3)ER3, 

(10.100) 

where x = (XI, z2, x ~ ) ~ E R ~  and tERzo.  

boost, and is given by parameter composition according to the equation 
The composition of two Galilei boosts is equivalent to a single Galilei 

G(u)G(v) = G(u + V) (10.101) 

for all u , v E R ~ ,  as it is clear from (10.100). 
The composition of Lorentz boosts is more complicated than that of 

Galilei boosts since, in general, the composition of two Lorentz boosts is 
not a boost but, rather, a boost preceded (or followed) by the space rotation 
called Thomas precession. 

Let VESO(3)  be a space rotation, and let E(V)  be the space rotation 
of a spacetime event, extended from V by the equation, (4.25), 

(10.102) 

tER’O, x € R 3 .  Similarly, let Gyr[u, v] be the space gyration of a spacetime 
event, extended from gyr[u, v] by the equation, (4.27), 
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Then, the relativistic analogue of (10.101) is, (4.32), 

L(u)L(v) = L(u@v)Gyr[u, v] 

= Gyr[u, v]L(v@u) 
(10.104) 

Hence, the composition of two successive Lorentz boosts, L(v) followed 
by L(u), 

(1) is equivalent to a single boost, L(u@v), preceded by the Thomas 

(2) is equivalent to a single boost, L(v@u), followed by the same 
gyration generated by u and v; and equally well, it 

Thomas gyration generated by u and v. 

The Lorentz transformation L(v, V) of spacetime events (t, x )~ER>'xR~ 
is a boost preceded by a space rotation, 

(10.105) 

Hence, explicitly, the Lorentz transformation L(v, V) takes the form 

vER,?, VES0(3) ,  xER3, tERzO, as we see from (10.96). 
In the Newtonian limit of large vacuum speed of light, c -+ 00, the 

Lorentz transformation L(v, V) in (10.106) reduces to its Galilean counter- 
part G(v, V), 

(10.107) 

V E I W ~ ,  VES0(3), x€R3, tER. 

the identity element of S0(3) ,  is a Lorentz boost, 
Clearly, the Lorentz transformation L(v , I )  with no rotation, I being 

L(v , l )  = L(v) (10.108) 

for all VER,?, shown in (10.99). Similarly, for all v€R3 

G(v , l )  = G(v) (10.109) 

is a Galilei boost, shown in (10.100). 
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The composition of two Galilei transformations is given by parameters 
composition according to the equation 

G(u, U)G(V, V) = G(u + UV, UV) ( 10.1 lo) 

where u,vER3,  and U ,  VESO(n). 

by parameters composition according to the equation, (4.41), 
In full analogy, the composition of two Lorentz transformations is given 

L(u, U ) L ( v ,  V) = L(u@Uv, gyr[u, UvIUV) (10.11 1) 

where u, V E I W ~ ,  and U ,  VESO(3). 
The Galilei transformation composition law (10.110) is obvious, known 

in group theory as a product called a semidirect product. In contrast, the 
Lorentz transformation composition law (10.111) is a more general product, 
called a gyrosemidirect product, (4.36). Its usefulness stems from the analo- 
gies that it shares with its Galilean counterpart (10.110). The standard 
semidirect product of group theory is a special case of the gyrosemidirect 
product of gyrogroup theory corresponding to the special case when the 
associated gyrogroup is a group. Interestingly, Isaacs asserts in his book 
[Isaacs (1994), p. 831 that the semidirect product is “relevant only to group 
theory”. Here we see, however, that it is relevant to gyrogroup theory as 
well and, in particular, it is important in understanding the Lorentz group 
of special relativity and the analogies it shares with the Galilean group. 

Owing to the analogies that the Galilei and the Lorentz transforma- 
tion composition law share in (10.110)-(lO.lll), one can extend intu- 
itive understanding of the Galilei transformation to intuitive understand- 
ing of the Lorentz transformation. The discovery of the Lorentz trans- 
formation composition law (10.111) fills a gap at a fundamental level 
in the development of the basics of special relativity. There are in the 
literature various attempts to uncover the Lorentz transformation com- 
position law, obtaining results that share no obvious analogies with the 
Galilei transformation composition law; see, for instance, [Halpern (1968), 
Chap. 1. Appendix 31 and [Fedorov (1962); Santander (1982); van Wyk 
(1984); Ungar (1988a); Mocanu (1993); Ferraro and Thibeault (1999); 
Gough (2000); Lucinda (2001); Vigoureux (2001); Coll and Martinez (2002); 
Kennedy (2002)]. 

The Lorentz transformations (10.106) form a subgroup of the so called 
full Lorentz group. This subgroup is known as the homogeneous, proper, 
orthochronous Lorentz group SO(3, l ) .  It is: 
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(1) homogeneous, since each of its elements is a Lorentz transformation 
that takes the origin of spacetime coordinates into an origin of 
spacetime coordinates; it is 

(2) proper, since each of its elements is a Lorentz transformation that is 
continuously connected to the identity transformation of spacetime; 
and it is 

( 3 )  orthochronous, since each of its elements is a Lorentz transforma- 
tion that preserves the sign of time, that is, it takes positive (neg- 
ative) time into positive (negative) time. 

Identity (10.111) is thus the group operation of the homogeneous, proper, 
orthochronous Lorentz group SO(3, l ) .  

The velocity-orientation representation L(v, V )  of the homogeneous, 
proper, orthochronous Lorentz transformation group in terms of its two 
parameters, the relative velocity parameter VER: and the relative orienta- 
tion parameter VcSO(3) is not new. It was already used by Silberstein in 
his 1914 book [Silberstein (1914), p. 1681 along with the Lorentz transfor- 
mation composition law 

L(u, U)L(v, V )  = L(w, W )  (10.112) 

However, unlike ( l O . l l l ) ,  Silberstein did not express explicitly the com- 
posite pair (w, W )  in terms of its generating pairs (u, V) and (v, V ) .  Hence, 
the Lorentz transformation composition law (10.112) that Silberstein used 
in the early days of special relativity is almost invariably absent in mod- 
ern texts. Most modern explorers of relativity physics abandon the 1914 
Lorentz transformation composition law (10.112), realizing that its study is 
severely restricted by its complexity, as one can see from the attempt in [Ri- 
vas, Valle and Aguirregabiria (1986)l. The complexity, however, effortlessly 
fades away in (10.111) by the use of gyrogroup theoretic techniques. 

The classical way for dealing with the problem of the composition of 
two successive Lorentz transformations, which is quiet different from that of 
Silberstein, is well described by Sard [Sard (1970), Chap. 51 and by Halpern 
[Halpern (1968), Chap. 11. It involves Lorentz matrices (or tensors) that 
tell very little about the two underlying physically significant observables 
involved, that is, the relative velocities and the relative orientations between 
inertial frames, and their composition laws. 

Recently, the need to improve our understanding of the Lorentz trans- 
formation composition led Coll and Fernando to present the composition 
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in terms of Lorentz transformation generators, employing the so called 
Baker-Campbell-Hausdorff formula of the theory of Lie algebras [Coll and 
Martinez (2002)]. 

Available methods for the study the Lorentz transformation composi- 
tion law analytically are thus complicated and far beyond the reach of those 
who need it for practical use. In contrast, the gyro-formalism enables the 
Lorentz transformation composition law, (lO.lll),  to be presented in a sim- 
ple way that provides vivid visual analogies with its well familiar Galilean 
counterpart, (10.110). 

10.16 Galilei and Lorentz Transformation Links 

To see another remarkable analogy that the velocity-orientation represen- 
tation of the Lorentz transformation shares with its Galilean counterpart, 
let 

and (:;I) 
(10.113) 

be two Galilean spacetime events, u, v E EX3, and t ,  t’ E R, with equal time 
components, 

t = t’ (1 0.114) 

Then, the unique Galilei transformation without rotation (boost) that links 
the two spacetime events in (10.113) - (10.114) has the velocity parameter 
v - u, satisfying 

( 10.115) 

as one can readily see from (10.100). We call (10.115) a Galilei link. 
In the analogous relativistic link, the Galilean negative velocity addition, 

-, in (10.115) becomes the Einstein negative coaddition, 8, in (3.156), as 
we will see in (10.118) below. In full analogy with (10.113)-(10.115), let 

( 10.11 6) 

be two relativistic spacetime events, u, v E R:, and t ,  t’ E R’O, with equal 
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spacetime norms, 

t' p F -  1-- - t  J"u' l-- 
C2 C2 

(10.11 7) 

Then, the unique Lorentz transformation without rotation (boost) that 
links the two spacetime events in (10.116) - (10.117) has the velocity pa- 
rameter v E u, satisfying, [Ungar (2001), pp. 343-3481, 

(10.118) 

We call (10.118) a Lorentz link. The analogies that the Lorentz link 
(10.118) shares with the Galilean link (10.115) are obvious. Remarkably, 
the analogies that the Lorentz and the Galilei links share are uncovered 
in terms of Einstein coaddition rather than Einstein addition. This ob- 
servation demonstrates that in order to capture analogies that Einsteinian 
velocities share with Newtonian velocities the two mutually dual Einstein 
additions, @ and B, must be invoked. 

Furthermore, the most general Galilei transformation that links the si- 
multaneous spacetime events in (10.113) - (10.114) is G(v - Ru, R), satis- 
fying 

(10.119) 

for all u, v€Iw3, and t ,  t 'EIR,  where RcSO(3)  is a free rotation parameter. 
Identity (10.119) reduces to (10.115) when the rotation R is trivial, that is, 
when R reduces to the identity map I. 

In full analogy, the most general homogeneous, proper, orthochronous 
Lorentz transformation that links the equinorm spacetime events in (10.116) 
- (10.117) is L(v E Ru, R) satisfying [Ungar (2001)], 

(10.120) 

for all u, VEW;, and t ,  t ' E I " ' ,  where R€S0(3)  is a free rotation parameter. 
Historically, the problem of determining Lorentz links between given 

spacetime events was only partially solved by several explorers [van Wyk 
(1986)l. Recently the problem was also solved by Urbantke [Urbantke 
(2003)l by studying Lorentz boosts from a geometrical viewpoint, express- 
ing boosts in terms of line reflections. 
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The use of the gyro-algebra of Lorentz transformation as a tool in the 
study of the shape of moving objects is presented in [Ungar (2001), Ch. 111 
where, in particular, the well-known Doppler effect is recovered from the 
shape of moving sinusoidal waves. 

10.17 (tl:tz)-Gyromidpoints as CM Velocities 

Our study of the relativistic CM velocity began in Sec. 10.7 with the study 
of the Einstein gyromidpoint, Fig. 10.1, and gyrocentroid, Figs. 10.3 and 
10.5. The Einstein gyromidpoint and gyrocentroid enable us to uncover 
the gyrogeometric interpretation of relativistic CM velocities of systems of 
moving particles with equal relativistic rest masses. In order to extend our 
study to the relativistic CM velocities of systems of moving particles with 
relativistic rest masses that need not be equal we explore the generalized 
gyromidpoint, already studied in Secs. 4.10 and 4.11 of Chap. 4, in the 
context of the relativistic CM velocity. 

Let Iwz = (I@, @, 8) be an Einstein gyrovector space, and let VER: and 
t The pair ( t ,  vt)t represents a spacetime event with time t and space 
x = vt. The Lorentz boost L(u), uEIW2, of this event is given by (10.96) 
which, by means of Einstein addition (10.3) and the gamma identity (10.4), 
can be written in the form 

Hence, in particular, for t = ̂I, we have the elegant identity 

(10.121) 

(10.122) 

that expresses the application of the Lorentz boost parameterized by u 
to a unimodular spacetime event, (4.54), (4.64), parameterized by v as a 
left gyrotranslation u@v of v by u, for any u, v E IRE. The unimodular 
spacetime events are the four-velocities of Minkowskian relativity, Lorentz 
transformed by an Einstein velocity addition. Einstein velocity addition is, 
thus, a century-old idea whose time has come back. Following the discovery 
of the gyrovector space structure to which Einstein velocity addition gives 
rise, and unleashing the power of its hyperbolic geometry [Ungar (2005)], 
new analogies with classical results emerge. 
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The Lorentz boost L(u)  is linear, (4.63), as we see from (10.96). To 
exploit the linearity of the Lorentz boost let us consider the linear combi- 
nation of two unimodular spacetime events 

(1 0.123) 

ti, t z  2 0, al, a 2  E R:, where t l z  2 0 and a12 C Iw: are to be determined in 
(10.124) and (10.125) below. 

Comparing ratios between lower and upper entries in (10.123) we have 

( 10.124) 

so that, by convexity, alzcR: as desired. 

a1 and a 2  in R:. This term will be justified by Identity (10.136) below. 
The point a12 = a12(alr a2; t l ,  t z )  is called the (t1:tz)-gyromidpoint of 

Comparing upper entries in (10.123) we have 

so that t l z  2 0, as desired. 
The elegant correspondence (10.122) between the Lorentz boost L(u) 

and Einstein addition @ is significant. Unlike Einstein addition, the Lorentz 
boost is linear. The linearity of the Lorentz boost and its correspondence 
with Einstein addition enables us to uncover important results about gy- 
rocovariance of gyrogeometric objects with respect left gyrotranslations, 
culminated in the creation of gyrobarycentric coordinates. 

Applying the Lorentz boost L(x), XER:, to (10.123) in two different 
ways, important results follow from (10.122) and the linearity of the Lorentz 
boost. 
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Thus, on the one hand 

( 10.126) 

and on the other hand 

Comparing ratios between lower and upper entries of (10.126) and 
(10.127) we have 

(10.128) 

so that by (10.124) and (10.128), 

Identity (10.129) demonstrates that the structure of the ( t1 : t z ) -  
gyromidpoint a12 of a1 and a2 as a function of points a1 and a2 is not 
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distorted by left gyrotranslations. Similarly, it is not distorted by rotations 
in the sense that if RESO(3) represents a rotation of rW; then 

R a d a l ,  a 2 ;  t l ,  t 2 )  = a d & ,  &; t l ,  t 2 )  (10.130) 

It follows from Identities (10.129) and (10.130) that the ( t1 : t z ) -  

gyromidpoint a 1 2  E IW: possesses, as a function of the points a], a 2  E R:, 
gyrogeometric significance. It is gyrocovariant, being covariant with re- 
spect to the gyrovector space motions of the Einstein gyrovector space 
(R:, $, 18). The associated relativistic mechanics significance of the ( t l : t 2 ) -  

gyromidpoint a 1 2  as the relativistic CM velocity will be uncovered in 
(10.134) below. 

Comparing the top entries of (10.126) and (10.127) we have 

But, we also have from (10.125) 

(10.131) 

(10.132) 

implying that the nonnegative scalar field t 1 2  = t 1 2 ( a l , a 2 ; t l , t 2 )  in 
(10.131)- (10.132) is invariant under left gyrotranslations of a1 and a 2 .  

Clearly, it is also invariant under rotations R of a1 and a 2  so that, 
being invariant under the group of motions of the Einstein gyrovector 
space (I@, @, @), it possesses gyrogeometric significance. As such, we call 
t12  = t l a ( a 1 ,  a 2 ;  t l ,  t 2 )  a gyrogeometric scalar field. 

Substituting x = @ a 1 2  in (10.131) we have 

t l 2  = t l Y e a l z B a 1  + t 2 ~ e a l z ~ a z  (10.133) 

revealing the physical interpretation of the gyrogeometric scalar field t l 2 .  

It represents the joint relativistic mass of two particles with rest masses 
tl and t 2 ,  relativistically corrected in the (tl:tz)-gyromidpoint frame Calz . 
The CM inertial frame C,,, is represented in Fig. 10.14 by the CM velocity 
point a 1 2 .  

Substituting x = @ a 1 2  in (10.128) we obtain the identity 

t ~ ~ e a ~ ~ e a ~  ( @ a 1 2 @ a l )  + t 2 ~ e ~ ~ ~ a ~ ~  ( e a 1 2 @ a 2 )  = O ( 10.134) 

revealing that Ca,, is the vanishing momentum inertial frame. As in clas- 
sical mechanics, the frame Calz is called the relativistic CM frame since 
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Fig. 10.14 The Relativistic Law of the Lever. The Einstein (tl :tz)-gyromidpoint 
a12  = alz(a1, az; t l ,  t z )  in the Einstein gyrovector space (Wq, @, @) is the point of the 
gyrosegment alaz with gyrobarycentric coordinates ( t l : t z )  relative to the set (al, a z }  
in R:. When t l  (t2) varies from 0 to 1, the (t1:tz)-gyromidpoint a12  slides along the gy- 
rosegment 8 1 8 2  from a 2  to a1 (from a1 to a2). The gyromidpoint a12  is the barycenter 
in velocity space of the masses t l  and t z  with respective velocities a1 and 8 2 .  

the total momentum in that frame, (10.134), vanishes. Accordingly, the 
point a 1 2  in Fig. 10.14 represents the CM velocity of two particles with rest 
masses tl and t 2 ,  and velocities a 1  and a 2  relative to a rest frame &. 

We may note that (10.134) can be written, equivalently, as 

(10.135) 

(10.137) 

The classical analogue of (10.137) is well-known [Coxeter (1961), 

Taking norms of both sides of (10.135) we have

so that
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Fig. 13.7a, p. 2171. Owing to its property (10.137), the relativistic CM 
velocity a12, given by (10.124), is called the (tl:t2)-gyromidpoint of al and 
a 2  in R:. Property (10.136) of the (tl:tz)-gyromidpoint means that the ra- 
tio between the “proper speed” Yealzea2 Ilealz@a2ll of frame Ca, relative 
to the CM frame Ca,, and the “proper speed” Yealzeal IIealzeal 1 1  of frame 
C,, relative to the CM frame C,,, is tl:t2, as shown in Fig. 10.14. Proper 
speed is the magnitude, or norm, of a proper velocity. Proper velocities in 
Einsteinian special relativity and their proper Lorentz transformation law 
will be studied in Sec. 10.24. 

Rewriting (10.132) as 

t 1 2 ~ a 1 2  = tlYa, + t 2 7 a z  (10.138) 

we obtain the two identities (10.137)- (10.138) that form the relativistic law 
of the lever, illustrated in Fig. 10.14. It is fully analogous to the classical 
law of the lever, to which it reduces in the Newtonian limit c + 00. 

The origin 0 of an Einstein gyrovector space R: = (EX:, $, @I) represents 
the vanishing velocity of a rest frame CO. Two moving objects with rest 
masses tl ,  t 2  > 0 and respective velocities all a 2 ~ I W z  relative to CO, as well 
as their CM velocity a 1 2 ,  are shown in Fig. 10.14 for EX;. The relativistically 
corrected masses in CO are tly,, and t27=, so that the total relativistic mass 
relative to CO of the two objects in Fig. 10.14 is tly,, + t27,,. This, by 
(10.138), is equal to tlyyalz, that is, the relativistically corrected mass of 
an object with rest mass t l 2  moving with the CM velocity a12 relative to 

The (tl:t2)-gyromidpoint is homogeneous in the sense that it depends on 
the ratio tl:t2 of the masses tl and t 2 ,  as we see from (10.124). Since it is the 
ratio tl:t2 that is of interest, we call (tl:t2) the homogeneous gyrobarycentric 
coordinates of a12 relative to the set A = {al,a2}, Fig. 10.14. Under 
the normalization condition tl + t2 = 1, the homogeneous gyrobarycentric 
coordinates (tl:tZ) of a12 relative to the set A are called gyrobarycentric 
coordinates. Their classical counterpart, known as barycentric coordinates 
[Yiu (2000)] (also known as trilinear coordinates, [Weisstein (2003)]), were 
first conceived by Mobius in 1827 [Mumford, Series and Wright (2002)], 
where various aspects of hyperbolic geometry are attractively presented. 

When t = tl = t 2  the (tl:t2)-gyromidpoint of al and a 2  reduces to the 
gyromidpoint mala,, (10.33), as we see from (10.124) and (10.27), 

CO. 

(10.139) 
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ml = 116 
m2 = 113 
m3 = 1/2  

Fig. 10.15 The Hyperbolic Theorem of 
Ceva. When the normalized relativistic 
masses ml , mz, m 3  at relativistic velocity 
points al, 8 2 ,  a 3  in an Einstein gyrovector 
plane are positive, their barycenter, which 
in velocity space is their CM velocity, is 
represented by the point 8123 that lies in- 
side gyrotriangle a l a z a 3 .  

m3 = -1/6 

Fig. 10.16 The Hyperbolic Theorem of 
Ceva. When the normalized “relativistic 
masses” ml, mz, m3 at relativistic velocity 
points al, 8 2 ,  a 3  in an Einstein gyrovector 
plane are not all positive, their barycenter, 
which in velocity space is their CM veloc- 
ity, is represented by the point a123 that 
lies outside of gyrotriangle a l a z a g .  

10.18 The Hyperbolic Theorems of Ceva and Menelaus 

As we see from Fig. 10.14, if a12 is a point on gyrosegment ala2, different 
from a1 and a2 in an Einstein gyrovector space (V, $, @), there are positive 
“relativistic masses” ml and m2 (the tl and t2 in Fig. 10.14) such that, 
(10.124), 

and, (10.137), 

(10.141) _ -  ml YeazBalZ Ilea2@a1211 

m2 YealBalz IIeal@al2ll 

The masses can be normalized by the condition ml +m2 = 1. If normalized, 
the masses ml and m2 are determined uniquely by the points al, a 2  and 
a12. 

- 

Interestingly, 

(10.142) 
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as we see from (10.138) and (10.133) with t replaced by m. Hence, (10.142) 
can be written as 

(10.143) 

where the mass m12 in (10.143) is defined by the equation 

m12 = mlYealBa12 + m2Yeaz~a12 ( 10.144) 

Clearly, the mass m12 is the sum of the two relativistic masses ml and m2 

relativistically corrected relative to  their CM velocity frame Ca,, . 
Following (10,143)-(10.144), Identities (10.140) and (10.142) can be 

written, respectively, in the symmetric form 

m 1 2 ~ ~ ~ ~ a ~ ~  = miYalal + m2yaza2 (10.145) 

and 

m12Yalz = mlYal + m2Ya2 (10.146) 

thus revealing their relativistic significance as relativistically corrected 
masses and their relativistic momenta. 

The Relativistic Mass Identities (10.142) - (10.146) possess hyperbolic 
geometric significance as well. Identities (10.140) - (10.141) will prove useful 
in the proof of the Hyperbolic Theorem of Ceva 10.6, and the Relativis- 
tic Mass Identities (10.142)-(10.145) will prove useful in the proof of the 
Hyperbolic Theorem of Menelaus 10.7. 

If “masses” are allowed to be negative then Identity (10.141) must be 
modified (i) either by imposing an absolute value sign on ml/m2, 

Yeazeal2 Ilea2@a1211 (10.147) 121 = Yealealz ~ ~ e a l ~ a l 2 ~ ~  

(ii) or by incorporating the ambiguous sign f, 

_ -  m1 - *Yeazealz  IIea2@a12 II ( 10.148) 

The point a12 in (10.147)-(10.148) is different from a1 and a2. The am- 
biguous sign in (10.148) is “+” if a12 lies between a1 and a2, and is “-” 

otherwise. 

Theorem 10.6 (The Hyperbolic Theorem of Ceva, in Einstein 
Gyrovector Spaces). Let al, a 2  and a3 be three non-gyrocollinear points 

m2 Yealeal2 lIeal@al2ll 



412 Analytic Hyperbolic Geometry 

in an  Einstein gyrovector space (V, el @I). Furthermore, let a123 be a point 
in their gyroplane (that is, the intersection of the plane of a l ,  a2 and a3 

in V and the ball V,), which is off the gyrolines 511512, a2a3 and 8381. If 
818123 meets a283 at a23, etc., as in Figs. 10.15-10.16, then 

= 1  

(10.149) 

Tealealz llea1@a12ll ~eazea23 lIea2ea2311 ~ea3ea l3  IIea3ea13II 

Teazealz Ilea2@al211 ~ea3aaz3 llea3ea23Il Yealea13 lleal@a13 It 

Proof. 
be normalized masses, ml + m2 + m3 = 1, such that 

Let a l ,  a 2 ,  a3 EV, be non-gyrocollinear, and let ml,  m2 and m3 

for a given point a123 in the gyroplane of a l l  a 2 ,  a3, which lies inside 
gyrotriangle a1a2a3 (the reader may prove that ml,  m2 and m3 exist and 
are positive and unique). 

Let us define a23 by the equation 

(10.151) 

Then, (i) a23 lies on 8 2 8 3  and (ii) a123 lies on 815123 by (10.150)-(10.151). 
Hence, (10.151) defines a23 correctly, Figs. 10.15- 10.16, and by (10.151) 
we have for a23 

m2Tazaz + m3Ya3a3 
a23 = 

m2Yaz + m3Ya3 

(1 0.152) 

as we see from (10.140)-(10.141). 
Similarly, for a12 we have 

and for a13 we have 

(10.154) 

Finally, by multiplying (10.152), (10.153), (10.154) we get the result 
(10.149) (in full analogy with the classical result; see [Hausner (1998), 
pp. 91-92]). 
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m3 = -2.5 / 

Fig. 10.17 The Hyperbolic Theorem of Menelaus by the Einstein relativistic mass. 

With appropriate care one may remove the condition that point a123 

must lie inside gyrotriangle a1a2a3, allowing “negative masses”, as shown 
in Fig. 10.16, where point a13 lies on the gyroplane of points a1,a2,a3, 

outside of gyrotriangle a1 ~1283. 

Theorem 10.7 (The Hyperbolic Theorem of Menelaus, in Ein- 
stein Gyrovector Spaces). Let a], a2 and a3 be three non-gyrocollinear 
points in an  Einstein gyrovector space (V,@,@). If a gyroline meets the 
sides of gyrotriangle a1a2a3 at points a12,  a13, a23, as in Fig. 10.17, then 

Proof. Following (10.145) and Fig. 10.17 we write 

rn23yaz3a23 = m27aza2 + m37a3a3 ( 10.157) 

for some real numbers ml, m2, m3, normalized by the conditions mi +ma = 
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m2 + m3 = 1, where 

(10.158) 

Eliminating a2 between (10.156) and (10.157) we obtain 

mimizyalZaiz - m2m23’YaZ3a23 = mlm2~alal - m2m3Ya3a3 (10.159) 

In accordance with (10.140) and (10.159) we define a13, Figs. 10.15- 
10.16, by the equation 

(mimzYa, - V W W Y ~ ~ ) ~ ~ ~  = m i m z ~ ~ , a i  - m2m3Ya3a3 (10.160) 

so that by (10.160) and (10.159), 

(10.161) 

The coefficient of a13 in (10.160) and (10.161) is not zero, otherwise 
(10.161) would show that 8 1 8 3  and 812~123 are parallel. Hence, a13 is the 
unique point lying on both ala3 and a12a23, as shown in Figs. 10.15- 10.16. 

(ml~ZYal - m2m3’Ya3)a13 = mlm2Ya1al - m2m3Ya3a3 

= m1ml2~~, ,a12  - m 2 m 2 3 ~ ~ ~ ~ a 2 3  

Following (10.140) and (10.147), (10.156) implies 

( 10.162) YealBalz II e a l  @a12 II 
YeaZBalz IIeazea12Il I ml I m2 - -  - 

Similarly, (10.157) implies 

and (10.160) implies 

(10.163) 

(10.164) 

Finally, by multiplying (10.162), (10.163), (10.164) we get the result 
( 10.1 5 5). 0 

With appropriate care one can remove the absolute value signs in 
(10.162)-(10.164) by employing (10.148) instead of (10.147). The right- 
hand side of (10.155) will then become -1 instead of 1, thus restoring the 
classical case. 

Einstein’s interest in the (Euclidean) Theorem of Menelaus is described 
in [Luchins and Luchins (1990)l. Unfortunately, he did not know that his 
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relativistic mass can capture remarkable analogies between Euclidean and 
hyperbolic geometry that include the Hyperbolic Theorem of Menelaus as 
a special case. A most important goal of analytic hyperbolic geometry is, 
indeed, to extend Einstein’s unfinished symphony. 

10.19 Relativistic Two-Particle Systems 

Let S be a system of two particles, pl and pa, with respective rest masses 
ml and m2. The particles move relativistically with velocities al and a2, 

respectively, relative to a rest frame CO, al,aZElR:, Fig. 10.18. The rela- 
tivistic momenta of the particles relative to CO are miyalai and m2yaza2. 
The relativistic momentum of the system S relative to CO is the sum of the 
momenta of its particles, that is, 

mlYalal + m2Yaza2 (10.165) 

The CM velocity a12 of S is, by (10.124) and similar to (10.32), 

(10.166) 

al2~iR:. The CM frame relativistic mass relative to the CM frame Calz is, 
(10.138)) 

and, (10.137), 

(10.167) 

(10.168) 

Both (10.166) and (10.167) are covariant. Hence, they satisfy the iden- 
tities 

and 

for all XER:, as we see from (10.128) and (10.131). Identities (10.169) and 
(10.170) demonstrate that both a12 and m12 are independent of the choice 
of origin for their Einstein gyrovector space (R:, @3) @). 
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Relativistic Two -Particle Systems 
, in Einstein gyrovecto r spaces 

“X 

v1 = ea12Bal 

vz = e a l p ~ a 2  

v = e v l c w  

m1ynl al+mzY,, a2 

mlr,,+mzy,, a12 = 

Fig. 10.18 A relativistic two-particle system consisting of two particles with rest masses 
ml and m2 moving with respective velocities a1 and a2 relative to an inertial rest frame 
Co is shown in an Einstein gyrovector plane (Rz, @, @). The velocity relative to CO of 
the relativistic center of momentum (CM) frame of the two-particle system is 812, and 
the velocities of the particles with masses ml and m2 relative to the CM frame Calz are, 
respectively, v1 and v2. The mass m12 of a fictitious particle at rest relative to the CM 
frame Calz is equal to the sum of the masses ml and m2, each of which is relativistically 
corrected in the CM frame Calz .  

The three masses of the two particles and their system S, relativistically 
corrected relative to the rest frame Co are, respectively, m1Yal, m27,, and 
m127a12 as we see from (10.167). The resulting three rest masses, ml, m2 

and m12, are shown in Fig. 10.18 along with their respective velocities, al, 
a 2  and a12, relative to CO. 

Particle pl, with rest mass ml in the frame C,, , moves with velocity a1 
relative to CO, and velocity v1 = 8a12@al relative to the CM frame C,,,, 
as shown in Fig. 10.18. Hence, its mass in the CM frame is 

(10.171) 

Similarly, particle pp, with rest mass m2 in the frame C,,, moves with 
velocity a 2  relative to CO, and velocity v2 = ealzBa2 relative to the CM 
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frame Calz, as shown in Fig. 10.18. Hence, its mass in the CM frame is 

(10.172) 

To understand the meaning of the rest mass m12 in (10.167) we substi- 
tute x = a12 in (10.170), obtaining 

I t  follows from (10.171)-(10.173) that m12 is the sum of the masses ml 

and ma, each of which is relativistically corrected in the CM frame Ca12. 

As such m12 is the rest mass of the system S in the CM frame. 
The three substitutions, x = all  x = a 2 ,  and x = a12, in (10.169) give, 

respectively, the following three identities 

(10.174) 

(10.175) 

and 

0 = mlYealzeal (ea12ea1) + m 2 ~ e a ~ ~ e a z  ( e a 1 2 e a ~ )  (10.176) 

Identity (10.176) demonstrates that the CM frame C,,, is the vanishing 
momentum frame. 

Let us introduce the notation suggested by Fig. 10.18, 

(10.177) 

I t  follows from (10.177), the gyroautomorphic inverse property, and the 
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gyrotranslat ion theorem 3.13 that 

( 10.178) 

Hence, by gyroautomorphism inversion, we have 

eal @ a 2  = gyr[al, ea121v (10.179) 

.The velocity points al, a 2  and a12 are gyrocollinear in their gyrovector 
space, Fig. 10.18. Hence, by the gyration transitive law, Theorem 6.29, we 
have 

gyr[az, eal]gyr[al ,  @a121 = gyr[a2, @a121 (10.180) 

It follows from (10.179), by gyrocommutativity, the gyroautomorphic 
inverse property, and (10.180), that 

ea2ea1 = gyr[ea2, alI(alea2) 

= egyr[az, ea121v 

We thus uncover from (10.179) and (10.181) the two related identities 

(10.182) 

By the gyrocommutative law and the gyroautomorphic inverse property 
we have 

ealea12 = 
- - 

and similarly, 

8azea12 = 

(10.183) 

Substituting the notation (10.177) in (10.168) we have 

(10.185) 
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Substituting the notation (10.177) in (10.174) - (10.176), noting 
(10.177) - (10.184), we obtain respectively the following three equations 

(10.186) 

and 

0 = ~ I Y ~ ~ V I  + m 2 ' ~ , ~ ~ 2  ( 10.188) 

The equal gyroautomorphisms on both extreme sides of each of (10.186) 
and (10.187) can be dropped, obtaining from (10.186)- (10.188) the follow- 
ing system of three equations 

may, 
ml f mzy, 

m1yv (10.189) 
mly, + m2 

v1 = e 

v2 = 

mlyv,vl = em2yV,v2 

The third equation in (10.177) and the first two equations in (10.189) 
imply 

( 10.190) 

for all t E R'O. Interestingly, Identity (10.190) generalizes the last identity 
in (6.269), which corresponds to t = 1. 

The system of three equations (10.189) describes the internal struc- 
ture of a relativistic two-particle system in terms of the relative velocity v 
between the two particles and their velocities v1 and v2 relative to their 
CM frame C,,,, Fig. 10.18. The system (10.189) is gyrocovariant, that is, 
it is covariant under rotations r E SO(3) and left gyrotranslations of R:. 
Furthermore, it is fully analogous to its Newtonian counterpart [Hestenes 
(1999), pp. 230-2311, to which it reduces in the Newtonian limit c -+ 00. 
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In the Newtonian limit, c + 00, the system (10.189) reduces to the 
system of three equations 

(10.191) 

where the third equation follows immediately from the first two equations. 
The first two equations in (10.191) can be found, for instance, in [Hestenes 
(1999), Eqs. 611a-611b, p. 2311. 

Substituting the first two equations of (10.191) in the third we obtain 
the trivial identity 

(10.192) 

The relativistic counterpart (10.189) of (10.191), however, gives rise to  
an unexpected, nontrivial identity. Substituting the first two equations of 
(10.189) in the third we obtain the relativistic counterpart of (10.192), 

which reduces to (10.192) in the Newtonian limit c 4 00, when the various 
gamma factors reduce to 1. Identity (10.193) uncovers the elegant identity 

which, unlike (10.192), is not trivial. Identity (10.194) is valid for any 
ml, m2 E R'O, with v1, v2, v linked to each other by the third equation in 
(10.177) and by (10.188). 

Identity (10.194) implies, for instance, that if ml = m2 then 3;, = 3;,. 
Indeed, it is clear from Fig. 10.18 that if ml = m2 then v1 = - v p  so that 
7v1 - - Tv2 as expected. Contrasting the interesting, unexpected identity 
in (10.194) and (10.193) with its trivial classical mechanics counterpart 
(10.192), the rich structure of gyrogeometry and its application in relativis- 
tic mechanics is demonstrated once again. 
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10.20 The Covariant Relativistic Center of Momentum 
(CM) Velocity 

Definition 10.8 (CM Velocities And Gyrobarycentric Coordi- 
nates). Let S be an  isolated system of n noninteracting material particles 
the k - th  particle of which has rest mass m k  > 0 and velocity Vk ER: relative 
to a rest frame CO, k = 1 , .  . . , n. 

(1) The relativistic CM velocity of the system s is, (4.85), 

(10.195) 

relative to the rest frame CO, and 
(2) the CMframe  rest mass is, (4.94), 

EL==, m k 7 v k  (10.196) m =  
..I 

rvo 

Furthermore, 

velocity vo with respect to the set 
(3) the homogeneous gyroba rycentric coordinates of the relativistic CM 

are 

(ml :mz : . . . :mn) 

These homogeneous g yrobarycen tric coordinates become gyro- 
barycentric coordinates when they are normalized by the condition 

n 

C m k = 1  (10.197) 
k=l 

(4) The relativistic CM velocity vo in an Einstein gyrovector space 
(I@, @, @) is called the 

(ml : m2 : . . . : mn)-gyromidpoint 

of the set A = {vl, v2,. . . ,vn} in the Einstein gyrovector space 
(R:, $ 7  8). 
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The relativistic CM velocity VO, (10.195), is well-known. It can be found, 
for instance, in [Rindler (1982), Eq. 30.2, p. 881, where Rindler remarks that 
the relativistic CM velocity definition can be justified in terms of a space 
diagram such as [Rindler (1982), Fig. 13, p. 611. Paradoxically, "In rela- 
tivity, in contrast to Newtonian mechanics, the centre of mass of a system 
is not uniquely determined" [Rindler (1982), p. 891, as Rindler explains by 
example. We will now justify Def. 10.8 by gyrocovariance considerations. 

Let ( T ~ ~ , T ~ ~ v ~ ) ~ ,  V k  E R:, IC = 1, .  . . , n, be n unimodular spacetime 
events, that is n four-velocities, and let 

(10.198) 

mk 2 0, be a generic linear combination of these spacetime events, where 
m 2 0 and voER: are to be determined in (10.199) and (10.206) below. 

Comparing ratios between lower and upper entries in (10.198) we have 

so that vo lies in the convex hull of the set of the points V k  of R:, k = 
1, .  . . , n, in R3. The convex hull of a set of points in an Einstein gyrovector 
space (where gyrosegments are Euclidean segments) is the smallest convex 
set in R3 that includes the points. In a two-dimensional Einstein gyrovector 
space (Rz, @, 8) it is a convex gyropolygon. Hence, vg EIR: as desired. 

Applying the Lorentz boost L(x) ,  X E R : ,  to (10.198) in two different 
ways, it follows from (10.122) and from the linearity of the Lorentz boost 
that, on the one hand 

(10.200) 
n 

k=l  
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and on the other hand, 

(10.201) 

Comparing ratios between lower and upper entries of (10.200) and 
(10.201) we have 

so that, by (10.199) and (10.202), 

x@vo(vl,. . . , v,; ml, . . . , m,) 
= vo(x@vl, .  . . , xev,; ml, . . . , m,) 

(10.202) 

(10.203) 

Identity (10.203) demonstrates that the structure of vo as a function of 
points v k  E @, k = 1,. . . , n, is preserved by a left gyrotranslation of the 
points by any xdR2. 

Similarly, the structure is preserved by rotations in the sense that if 
T E S O ( ~ )  represents a rotation of Iwz then 

Tvo(v1,. . . , v,; ml , .  . . , m,) 
= vo(Tvl,. . . , TV,; ml, . . . , m,) 

(10.204) 

Hence the point vo E rW2 is gyrocovariant, being covariant under the hy- 
perbolic rigid motions of its generating points in the Einstein gyrovec- 
tor space (It:, @, m). It possesses, as a function of its generating points 
v1,. . . ,vnER2, gyrogeometric significance. Following Def. 3.23, and in ac- 
cordance with the vision of Felix Klein in his Erlangen Program [Mumford, 
Series and Wright (2002)], vo is a gyrogeometric object. 

Comparing the top entries of (10.200) and (10.201) we have 

mkTx@vk m =  

But, we also have from (10.198) 

YX@VO 

(10.205) 

mkTVk m =  
TVO 

(10.206) 
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implying that the positive scalar, (4.95), 

m = m ( v 1 , .  . . , v,; ml, . . . , mn) 
= m ( x e v 1 , .  . . , XBV,; mi, .  . . , mn) 

(10.207) 

in (10.205) and (10.206) is invariant under any left gyrotranslation of the 
points V k E R : ,  Ic = 1,. . . , n. Clearly, it is also invariant under any rotation 
of its generating points v k .  Being invariant under the rigid motions of 
the Einstein gyrovector space (R:, $, @), the gyrovector space scalar m 
possesses gyrogeometric significance. It forms a scalar field for any n-tuples 
(rnl , . . . , mn) of rest masses. 

To determine the CM velocity of the system S, that  is, the velocity of a 
frame where the total momentum of the system S vanishes, we substitute 
x = ev0 in (10.202) obtaining 

n 

m k T e v o @ v k ( @ V O @ V k )  = 0 (10.208) 
k=l 

The resulting identity (10.208) demonstrates that  the relativistic momen- 
tum vanishes in the CM frame C,, thus justifying the definition of the 
CM velocity vo in (10.195). The point vo E R:, therefore, represents the 
covariant CM velocity of the system S. 

Substituting x = ev0 in (10.205) we have 

n 

= m k T e v o @ v k  (10.209) 

revealing the relativistic interpretation of the gyrogeometric scalar field m. 
It represents the CM frame rest mass of the system S .  I t  is the sum of the 
relativistically corrected masses r n k ~ ~ ~ , @ , ~ ,  k = 1, . . . , n, relative to the 
CM frame E,,. This justifies the definition in (10.196) of the CM frame 
rest mass. 

k=l 

10.21 Barycentric Coordinates 

In 1827 Mobius published a book whose title, Der Barycentrische Calcul, 
translates as The Barycentric Calculus. The word barycentric means center 
of gravity, but the book is entirely geometrical and, hence, called by Jeremy 
Gray [Gray (1993)], Mobius’s Geometrical Mechanics. The 1827 Mobius 
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book is best remembered for introducing a new system of coordinates, the 
barycen tric coordinates. 

The Mobius idea, for a triangle as an illustrative example, is to attach 
masses, ma, mb, m,, respectively, to three non-collinear points, a, b, c, 
in the Euclidean plane R2, and consider their center of mass CM, called 
barycenter, given by the equation 

maa + mbb + m,c 
ma + mb + m, 

C M  = (10.210) 

Following Hocking and Young [Hocking and Young (1988), pp. 195- 
2001, a set of h + 1 vectors {q, al ,  . . . , ah} in Rn is pointwise independent 
if the h vectors -a0 + a k ,  Ic = 1,. . . , h, are linearly independent. 

Let A = { ao, a1 , . . . , ah} be a pointwise independent set of h + 1 vectors 
in Rn. Then, the real numbers mo, ml, . . . , mh normalized by the condition 

h 

C m k = 1  
k=O 

(10.211) 

are the barycentric coordinates of a vector a E Rn with respect to A if 

( 10.2 12) 

It is easy to show that the barycentric coordinates are independent of 
the choice of the origin of their vector space, that is, 

( 10.2 13) 

for all x E Rn. The analogy that (10.213) shares with (10.202) is remark- 
able. 

When the normalization condition (10.211) is relaxed to the weaker 
condition 

h 

( 10.2 14) 
k=O 

the barycentric coordinates become the so called homogeneous barycentric 
coordinates. They are homogeneous in the sense that the homogeneous 
barycentric coordinates (mo, ml, . . . , mh) of a in (10.212) are equivalent to 
the homogeneous barycentric coordinates (Xmo, Xml, . . . , Xmh) for any X # 
0. Since in homogeneous barycentric coordinates only ratios of coordinates 
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are relevant, the homogeneous barycentric coordinates (mo, ml, . . . , mh) 

are also written as (rn0:rnl: . . . :rnh).  

The set of all points in Rn for which the barycentric coordinates with 
respect to A are all positive form an open convex subset of Rn, called the 
open h-szmplex with the h + 1 vertices %, al, . . . , ah. Following Hocking 
and Young [Hocking and Young (1988), p. 1991, the h-simplex with vertices 
%,a1 , . . . ,  ah is denoted by the symbol (%,a1 ,..., ah). If the positive 
number mk is viewed as the mass of a massive object situated at the point 
ak, 0 5 Ic 5 h, the point a in (10.212) turns out to be the center of mass of 
the h + 1 masses mk, 0 5 k 5 h. If, furthermore, all the masses are equal, 
the center of mass turns out to be the centroid of the h-simplex. Three 
illustrative examples follow. 

The 2-simplex (u,v) in R3 is the Euclidean segment uv with end- 
points u and v and midpoint, Fig. 10.2, 

u + v  
2 m u v  = (10.215) 

The barycentric coordinates of the endpoints u and v of the seg- 
ment uv with respect to A = {u,v} are, respectively, ( 1 , O )  and 
(0 , l )  and the barycentric coordinates of the midpoint muv of the 
segment are (1/2,1/2). 
The 3-simplex (u, v, w) in R3 is the Euclidean triangle uvw with 
vertices u, v and w and its centroid is the point 

u + v + w  
3 @"VW = ( 10.2 16) 

inside triangle uvw shown in Fig. 10.2. The barycentric coordi- 
nates of the vertices u, v and w of triangle uvw with respect 
to A = {u,v,w} are, respectively, ( l , O , O ) ,  ( O , l , O )  and (O,O,  1) 
and the barycentric coordinates of the centroid of the triangle are 

The 4-simplex (u, v,  w, p) in R3 is a Euclidean tetrahedron uvwp 
with vertices u, v, w and p, and centroid at the point 

(1/3,1/3,1/3). 

u + v + w + p  
4 @uvwp = (10.217) 

of the tetrahedron. The barycentric coordinates of the vertices u, v, 
w and p of the tetrahedron with respect to the set A = {u, v, w, p} 
are, respectively, (1,0,0,0), (0, 1 ,0 ,0) ,  (O,O, 1,0) and ( O , O ,  0 , l ) .  As 
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we see from (10.217), the barycentric coordinates of the centroid 
of the tetrahedron are (1/4,1/4,1/4,1/4). 

10.22 Einsteinian Gyrobarycentric Coordinates 

The concept of barycentric coordinates, studied in Sec. 10.21, can readily 
be extended to its gyro-counterpart in Einstein gyrovector spaces. 

As we see from Def. 10.8, the gyromidpoint mu,v in Fig. 10.1 is the (1: 
1)-gyromidpoint of the set {u, v} or, equivalently, the (1 : 1 : 0)-gyromidpoint 
of the set {u, v,  w} in the Einstein gyrovector space (@, @, 8). Its gyro- 
barycentric coordinates with respect to the set {u, v} in lR2 are, therefore, 
(1/2 : 1/2), and its gyrobarycentric coordinates with respect to the set 
{u ,v ,w}  in IK: are (1/2:1/2:0). 

The centroid of the Euclidean triangle uvw in Fig. 10.2 is the Euclidean 
(1 : 1 : 1)-midpoint of the triangle. Its barycentric coordinates with respect 
to the set {u, v,  w} in R3 are, therefore, (1/3: 1/3: 1/3). 

The gyrocentroid of the gyrotriangle uvw in Fig. 10.3 is the (1 : 1 : 
1)-gyromidpoint of the gyrotriangle. Its gyrobarycentric coordinates with 
respect to the set {u,v,w} in R: are, therefore, (1/3:1/3:1/3). 

Finally, the (ml : m2 : m3)-gyromidpoint of the gyrotriangle v1v2v3 in 
Fig. 10.19 has gyrobarycentric coordinates (ml/m : m2/m : m3/m) with 
respect to the set {v1,v2,v3} in Rz, where ml,mz,ms 2 0, and m = 

m1-t m2 + m3. 

The various gyromidpoints and their homogeneous gyrobarycentric co- 
ordinates in Fig. 10.19 are listed below. 

By Def. 10.8, the generalized (ml : m2)-gyromidpoint 

( 10.2 18) 

has homogeneous gyrobarycentric coordinates (ml : m2) with respect to 
the set {vl, va} or, equivalently, homogeneous gyrobarycentric coordinates 
(ml : m2 : 0) with respect to the set {v1,v2,v3}. It represents the CM 
velocity of the system of two particles with rest masses ml and m2, moving 
with respective relativistically admissible velocities v1 and v2 relative to a 
rest frame Co. The (ml : ms)-gyromidpoint and (m2 : m3)-gyromidpoint in 
Fig. 10.19 are similar. 

Under the normalization condition ml + m2 = 1 we have some sim- 
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t ,  m(vl, v2; ml,  m2) 

: m3)-gyromidpoint, rn(v1, v2, v3; ml, m2, m3) 
romidpoint, m(v2, v3; m2, m3) 

1 : ms)-gyromidpoznt, m(vl, v3; ml, m3) 

Fig. 10.19 Generalized Gyromidpoints and Gyrobarycentric Coordinates in the Einstein 
gyrovector plane (Rz, @, €4). Three particles with rest masses mlrm2,m3 2 0 that move 
with respective velocities vl ,  vz, v3 relative to a rest frame CO are shown together with 
various generalized gyromidpoints and their homogeneous gyrobarycentric coordinates. 
The generalized gyromidpoints represent relativistic CM velocities. 

plification. The (ml : ma)-gyromidpoint (10.218) with homogeneous gyro- 
barycentric coordinates (ml : m2), ml, m2 E Rro,  with respect to the set 
(v1, v2) becomes the (ml : 1 - ml)-gyromidpoint 

m = m ( v l , v z ; m l , l - m l )  ( 10.2 19) 

with gyrobarycentric coordinates ml, 1 - m2 E R r o  with respect to the 
set (v1, vz}. When the gyrobarycentric coordinate ml in (10.219) moves 
along the closed unit interval [0,1], its corresponding gyromidpoint (10.219) 
moves along the gyrosegment v1v2 from v1 to v2, Fig. 10.19. The gyro- 
midpoint (10.219) coincides, respectively, with v1, with mvlvz, (10.24) - 
(10.28), and with v2 when ml = 0, ml = a, and when ml = 1. Hence, 
the gyrobarycentric coordinate ml acts as a coordinate for points on the 
gyrosegment v1 v2. 

To enable the gyrobarycentric coordinate ml in (10.219) to act as a co- 
ordinate for points on the whole gyroline containing the gyrosegment vlv2 
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we allow ml to take on negative values, ml  E IR, subject to the condition 
I lm(vl ,v~;ml,  1 - m1)ll < c in (10.219). Of course, the interpretation as 
relativistic masses is lost for negative gyrobarycentric coordinates. 

The generalized (ml :m2 :m3)-gyromidpoint in Fig. 10.19, 

has homogeneous gyrobarycentric coordinates (ml : m2 : m3) with 
the set (v1 , v2, v3) in an Einstein gyrovector space (IR;, el 8).  It represents 

(10.220) 

respect to 

the CM velocity of the system of three particles with masses ml ,  m2 and 
m3, moving with respective relativistically admissible velocities v1 , v2 and 
v3 relative to a rest frame Co. 

Analogously to (10.213), the generalized (ml : m2 : ma)-gyromidpoint 
(10.220) satisfies the identity 

exem(v1, v2, ~ 3 ;  ml,  m2, m3) 
= m(@x@vl, 0 ~ @ ~ 2 , 0 ~ @ ~ 3 ; m l , r n 2 , r n g )  

- - mlTeX$vl (exevl) + m2yexcp,z ( ~ X ~ V Z )  + m 3 ~ e x e v ~  (Q~xBv3) 
mlYexevl + m2YexevZ + m3Yexev3 

(10.221) 

as we see from (10.202). Hence, like in (10.213), the generalized (ml :m2 : 
m3)-gyromidpoint in (10.220) is independent of the choice of its gyrovector 
space origin. 

The gyroline connecting a generalized gyromidpoint of two vertices with 
the opposite vertex of a gyrotriangle is called a generalized gyromedian. In 
particular, the (ml :m2 : 0)-gyromedian of gyrotriangle v1v2v3 in Fig. 10.19 
is the gyrosegment connecting the (ml : m2 : 0)-gyromidpoint of gyrotriangle 
v1v2v3 with its opposite vertex v3. The (ml : m2 : 0)-gyromidpoint of 
gyrotriangle ~ 1 ~ 2 ~ 3 ,  in turn, coincides with the (ml : mz)-gyromidpoint of 
gyrosegment v1 v2. 

Interestingly, the three generalized gyromedians of gyrotriangle V ~ V Z

that is, the (i) (ml : m2 : 0)-gyromedian, the (ii) (ml : 0 : ma)-gyromedian, 
and the (iii) (0 : m2 : ms)-gyromedian, are concurrent, the point of con- 
currency being the gyrotriangle (ml : m2 : m3)-gyromedian as shown in 
Fig. 10.19. 

The concurrency of the three gyrotriangle generalized gyromedians in 
Fig. 10.19 is not accidental. In its most general form it ensures that in 
calculating the relativistic CM velocity and mass of a system frame of non- 
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interacting particles, one can replace any subsystem of particles by a single 
fictitious frame that possesses the CM velocity and mass of the subsystem 
frame. 

An interesting example of gyrobarycentric coordinates that arise natu- 
rally in gyroparallelograms is presented in the following theorem. 

Theorem 10.9 The Einstein homogeneous gyrobarycentric coordinates 
of a vertex d of gyroparallelogram abdc, Fig. 10.6, with respect to the set 
{a, b, c} of the remaining vertices are 

( l +  Ybec : -7aeb - Yaec : -7aeb - Yaec) (10.222) 

Proof. The proof follows immediately from Identity (10.52) of Theorem 
10.1, p. 379, and from Def. 10.8, p. 421, of Einstein homogeneous gyro- 
barycentric coordinates. 0 

10.23 Gyrobarycentric Coordinates for the Universe 

The geometry of the universe is non-Euclidean [Penrose (1978)l. Accord- 
ingly, coordinates for the universe must be non-Euclidean. Since gyroscopic 
precessions are sensitive to spacetime geometry, gyroscopes in space are 
used to test the geometry of the universe. 

Gravity Probe B is a NASA-Stanford University project led by C.W. 
Francis Everitt aimed at the measurement of the gyroscopic precession 
of gyroscopes of unprecedented accuracy in Earth orbit in order to test 
Einstein’s general theory of relativity. NASA’s Gravity Probe B (GP-B) 
[Everitt, Fairbank and Schiff (1969); Taub (1997)], initiated by William 
M. Fairbank (1917-1989) [Fairbank (1989)], is a drag-free satellite carrying 
gyroscopes around Earth program. 

On April 20, 2004, the Gravity Probe B spacecraft was launched from 
Vandenberg Air Force Base in South-central California. The ultra-precise 
science telescope in the spacecraft must be locked onto the Gravity Probe 
B guide star, IM Pegasi, for fine attitude control. The need, and the efforts 
made, to measure the motion of the guide star, IM Pegasi, relative to 
quasars in the distant universe, are described in the following citation that 
appeared soon after the launch. 

IM PEGASI (HR 8703) is the guide star for the Gravity 
Probe B Mission. The motions or precessions of the gy- 
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Fig. 10.20 Gyrobarycentric Coordinates for Relative Velocities in the Universe. Select- 
ing a rest frame, the velocities Q k ,  k = 1,2,3,4, of four distant quasars relative to the 
rest frame form the four vertices of a gyrotetrahedron in the Einstein gyrovector space 
(Wz, @, 8) of all relativistically admissible velocities. The gyrobarycentric coordinates 
of the GP-B guide star, IM PEGASI, or any object in the universe, can be calculated 
covariantly relative to the gyrotetrahedron QlQzQ3Q4. 

roscopes are measured with respect to this star. The star 
is, however, not stationary in the universe but moves with 
other stars around the galactic center. This motion needs 
to be known in order to correct the precession measure- 
ments of the gyroscopes. The motion is measured relative 
to quasars in the distant universe. To measure this motion 
we use radio astronomical technique of very-long-baseline 
interferometry (VLBI) which is at present the most accu- 



432 Analytic Hyperbolic Geometry 

rate technique to measure such motions. 
The Harvard-Smithsonian Center for Astrophysical and 

York University, with contributions from the Observatoire 
de Paris, have been determining the motion of the star 
from observations spanning more than a decade. This will 
be the most accurate motion determination of a star ever 
made (http: / /www .yorku.ca/bartel/guidestar 1). 

The need to  accurately measure the velocity of a guide star relative to 
quasars in the universe indicates the need to introduce coordinates for all 
velocities in the universe. Cartesian coordinates work well for Newtonian 
velocities and their Euclidean geometry. However, they are not suitable for 
the hyperbolic geometry of Einsteinian velocities. Similarly, barycentric co- 
ordinates are well suited for vector spaces since they are origin independent 
(10.213). For gyrovector spaces, however, the notion of gyrobarycentric co- 
ordinates is the shoe that fits the foot. In the same way that barycentric 
coordinates are vector space origin independent, (10.213), gyrobarycentric 
coordinates are gyrovector space origin independent, (10.221). 

In order to introduce gyrobarycentric coordinates for all relativistically 
admissible relative velocities in the universe one may select a rest frame, 
and four distant quasars with known velocities relative to the rest frame. 
The four quasar velocities relative to the rest frame, Q1, Q2, Q3, Q4, 

form the four vertices of a gyrotetrahedron in the Einstein gyrovector space 
(Rz, @, 8) of all relativistically admissible relative velocities in the universe, 
Fig. 10.20. Relative to the quasar velocity gyrotetrahedron Q 1 Q z Q 3 Q 4  in 
Fig. 10.20 one can calculate covariantly the gyrobarycentric coordinates of 
the relative velocity of any object in the universe. 

10.24 The Proper Velocity Lorentz Group 

Coordinate time, or observer’s time, is the time t of a moving object mea- 
sured by an observer at rest. Accordingly, special relativity theory is for- 
mulated in terms of coordinate time. Contrasting coordinate time, Proper 
time, or traveler’s time, is the time T of a moving object measured by a CO- 

moving observer. Proper time is useful, for instance, in the understanding 
of the twin paradox [Hlavat? (1960)], and the mean life time of unstable 
moving particles like muons. 

The mean lifetime of muons between creation, in the upper atmosphere, 
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and disintegration is 2 . 2 ~ s  (proper lifetime) measured by their proper time. 
This proper time of the moving muon, measured by the muon own clock, is 
several orders of magnitude shorter than the time the muon is seen traveling 
through the atmosphere by Earth observers. Of course, there is no need 
to attach a co-moving observer to the moving muon. Observers a t  rest 
measure the coordinate mean lifetime of the moving muon that, owing to 
time dilation, is observer dependent. Each observer, however, can translate 
his measure of the muon coordinate mean lifetime into the muon proper 
mean lifetime, which is an intrinsic property of the muon and hence observer 
independent [Frisch and Smith (1963)]. 

The need to reformulate relativity physics in terms of proper time in- 
stead of coordinate time arises from time to time [Yamaleev and Osorio 
(2001); Montanus (1999); Hall and Anderson (1995)l. Since 1993 T.L. Gill, 
J. Lindesay, and W.W. Zachary have been emphasizing the need by devel- 
oping a proper time formulation and studying its consequences in order to 
gain new insights [Lindesay and Gill (2004)l. 

Gill and Zachary inform in [Gill and Zachary (1997)l that their proper 
time formulation is related to the work of M. Wegener in [Wegener (1995)], 
who showed that the use of the proper time allows the construction of 
Galilean transformations from Lorentz transformations. Indeed, Wegener 
claims in [Wegener (1995)] that “proper time being invariant, the transfor- 
mations of coordinates must be Galilean.” Wegener, accordingly, proposes 
“a classical alternative to special relativity” which is experimentally slightly 
different from Einstein’s special relativity. 

Previous attempts to uncover the proper time formulation of special rel- 
ativity result in pseudo Lorentz transformations that, experimentally, are 
not equivalent to  the standard ones. In contrast, special relativity gyro- 
formalism suggests a most natural proper time formulation that remains 
gyrogeometrically and, hence, experimentally equivalent to Einstein’s for- 
mulation of special relativity. The passage to the proper-time Lorentz trans- 
formation group by gyroformalism considerations is natural and unique, 
leaving no room for ambiguities. Geometrically, this is merely the passage 
from one model to  another model of the same hyperbolic geometry of Bolyai 
and Lobachevsky, which underlies special relativity. 

A detailed presentation of the proper time is found in [Woodhouse 
(2003), Sec. 6.21. The coordinate time t and the proper time T of a uni- 
formly moving object with relative coordinate velocity v E IW; are related 
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by the equation 

t = TVr  (10.223) 

Accordingly, the relative coordinate velocities v E IEgz and proper velocities 
w E R3 of an object measured by its coordinate time and proper time, 
respectively, are related by the equations 

w = ̂ Ivv E R3 
v = pww E rw: 

where ?; is the gamma factor (3.129), 

1 /-7y l-- 

and Pw is the beta factor (3.159), 

(10.224) 

(10.225) 

(10.226) 

Let 4 : R3 -+ R2 be the bijective map that (10.224) suggests, 

f#)w = pww = v (10.227) 

with inverse 4-l : R2 4 R3, 
4 - h  = ̂ Ivv = w (10.228) 

Then Einstein addition in IR2 induces the binary operation @, in R3, 

Wl@W2 = 4-1(f#)w1w5w2) (10.229) 

w1, w2 E R3, thus uncovering the proper velocity composition law in R3 
in terms of PV addition 6.  Using software for symbolic manipulation, it 
can be shown that the binary operation But (10.229), in R3 is given by the 
equation 

u % v = u + V +  -- Pu u.v +"a). { 1+Pu c2 Pv 

where ,Bv is the beta factor, satisfying the beta identity 

(10.230) 

(10.231) 
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for all u, V E I W ~ .  

It follows from (10.229) that 

and, similarly, 

Y v l ~ v z ( v 1 % v 2 )  = YVlV1@lJYV,V2 (10.233) 

for all V I ,  v ~ E R :  and w 1 ,  w z e R 3 .  

Owing to the isomorphism $, the groupoid (R3, @,,) forms a gyrocom- 
mutative gyrogroup of proper velocities, isomorphic to Einstein gyrogroup 
(Rz, @=) of coordinate velocities. The proper velocity gyrogroup (R3, @lJ) 
turns out to be the PV gyrogroup studied in Sec. 3.8, p. 82. Having the 
proper velocity gyrogroup in hand, we are now in a position to realize the 
abstract Lorentz transformation group by a proper velocity Lorentz group. 

To uncover the proper velocity Lorentz group from the abstract Lorentz 
group 

(1) we realize the abstract gyrocommutative gyrogroup (G, @) by the 
proper velocity gyrogroup (R3, @,,), where PV addition (that is, 
the proper velocity addition) @,, in the Euclidean 3-space R3 is 
given by (10.230). Furthermore, 

(2) we realize the abstract spacetime gyronorm (4.8), p. 91, by the 
positive valued proper time r 

II (3 I1 = 
(10.234) 

v E R3, T > 0, since we seek a proper velocity Lorentz transforma- 
tion that keeps the proper time invariant. Selecting any different 
norm would break the convention made in step (1) to replace co- 
ordinate time by proper time. 
Rewriting (10.234) in space, rather than velocity, representation 
(4.48), p. 104, it takes the form 

II (9 I1 = 

where x = V T E R ~ ,  T > 0. 

(10.235) 
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Comparing (10.234) with (4.8), p. 91, we see that our choice of the 
spacetime norm (10.234) determines the gyrofactor 

for all vER3. The resulting trivial gyrofactor is legitimate since it, 
trivially, satisfies the conditions in Def. 4.1. 

(i) Realizing the gyrocommutative gyrogroup binary operation @ by 
the proper velocity addition @ in step (l), and 

(ii) selecting a spacetime norm that realizes the abstract gyrofactor 
p(v),  VEG, by the concrete, legitimate gyrofactor p(v) = 1,v€IW3, 
in step (2), 

we can now realize the boost application to spacetime, (4.15), p. 92, ob- 
taining 

Bp(U) (:> = (u;v) (10.237) 

Translating (10.237) from velocity to space representation (4.48), p. 104, 
of spacetime, and noting x = vr, we have 

= (2 )  
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thus obtaining the proper velocity Lorentz boost of special relativity, which 
takes spacetime coordinates (7, x ) ~  into spacetime coordinates (TI ,  x')~. Un- 
like the standard, coordinate-time Lorentz boost, (10.96), the proper ve- 
locity Lorentz boost, (10.238), is nonlinear. 

In order to extend the proper velocity Lorentz boost to the proper ve- 
locity Lorentz transformation we note that the group SO(3) of all rotations 
of the Euclidean 3-space R3 about its origin forms a subgroup of the auto- 
morphism group Aut(R3, eU) that contains all the gyroautomorphisms of 
the proper velocity gyrogroup Aut(R3, eU). We, accordingly, realize the ab- 
stract automorphism subgroup Auto(G, @) by Auto(R3, q)  = SO(3). This 
realization of the abstract Lorentz boost and the abstract automorphism 
subgroup of the abstract Lorentz group gives the proper velocity Lorentz 
group which, in space representation, takes the form 

= ((u;uv)T) 

(10.239) 

u, x€R3,  UcSO(3) ,  r > 0. 
Finally, being a realization of the abstract Lorentz transformation 

(4.39), p. 102, the proper velocity Lorentz transformation (10.239) pos- 
sesses the group composition law (4.41), p. 102, 

Lp(u, U)Lp(v, V )  = L,(u@Uv, Gyr[u, UvIUV) (10.240) 

for all u, v€R3 and U, v ~ s O ( 3 ) .  
This composition law represents the proper velocity Lorentz group as the 

gyrosemidirect product of (i) a gyrogroup of boosts B, (v), v E R3, isomor- 
phic to the proper velocity gyrogroup (R3, @ ) of relativistically admissible 
proper velocities, and (ii) the group SO(3). 
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10.25 Demystifying the Proper Velocity Lorentz Group 

Demystifying the proper velocity Lorentz group by an ad hoc approach, 
rather than the natural, gyroformalism approach in Sec. 10.24, we find in 
an obvious way that the proper velocity Lorentz group is equivalent to the 
standard, coordinate velocity Lorentz group. 

Let vl ,  v 2  E IW: be two relativistically admissible coordinate velocities, 
and let w1, w2dR3 be their corresponding proper velocities, 

(10.241) 

The standard Lorentz boost BL takes the form, (10.121), p. 404, 

t' 

BL : ( v 3  - ( (vle3Ev2)t') 

so that it is equivalent to the system of two basic transformations 

t - t' 
v2 - V l R V Z  

where 

(10.242) 

(10.243) 

t (10.244) t =- 
"YV, 

Parametrizing the Lorentz boost BL by v1, (10.242) and (10.244) give 

, h % V Z  

the standard Lorentz boost transformation, (10.96), p. 397, 

Hence, the Lorentz boost (10.245) is nothing else but an arrangement of 
the two basic transformations in (10.243). 

Let us now rearrange the basic transformations (10.243) in a different 
way, 
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Clearly, (10.245) and (10.246) are equivalent, being just different arrange- 
ments of the basic two transformations (10.243). 

Parametrizing Bp by yvlvl we have 

Let us now express the rearranged Lorentz 
proper times T and r’ and proper velocities w1 

By (10.223), 

t r = -  
TVZ 

and, accordingly, 

boost (10.247) in terms of 
and w2. 

t’ 
7‘ = - 

YV1a&VZ 

so that, by (10.244), the proper time remains invariant, 

(10.248) 

(10.249) 

7’ = 7 (10.250) 

as it should. Moreover, it follows from (10.241) and (10.233) that 

Tvl~vz(v1%v2)  = Wl%W2 (10.251) 

Substituting (10.241), (10.248) - (10.251) in (10.247) we have 

7 ( w27 ) = (( W1@” w2). ) (10.252) 

thus recovering the proper velocity Lorentz boost (10.238). 
The ad hoc approach to recover the proper velocity Lorentz boost clearly 

shows that both (i) the coordinate velocity Lorentz boost (that is, the 
standard Lorentz boost of special relativity), and (ii) the proper velocity 
Lorentz boost are just two different arrangements of the same two basic 
transformations (10.243). Hence, both the standard, coordinate velocity 
Lorentz group and the proper velocity Lorentz group are experimentally 
indistinguishable, as they should. 
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10.26 Exercises 

(1) Verify identities (10.9) - (10.14). 
Hint: The identities in (10.9)-(10.14) are verified by lengthy but 
straightforward algebra that one can readily calculate by using a 
computer software for symbolic manipulation like MATHEMAT- 
ICA or MAPLE, as demonstrated in [Ungar (2001), pp. 20-271. 
For readers who wish to verify (lO.ll), which is an identity between 
maps, we may note that the automorphism identity in (10.11) is 
equivalent to the vector identity 

in the ball R:, for all u, v, w E R:, which is an identity between 
vectors. 
A similar remark applies to the identities in (10.14) as well. For 
instance, to verify the first identity in (10.14), which is an identity 
between maps, one has to verify the equivalent identity 

gyr[u@v, v]w = gyr[u, v]w (10.254) 

in the ball R:, for all u, v, w E R:, which is an identity between 
vectors. Noting the definition of @ and gyr in (10.3) and (10.6), 
one can verify (10.253) and (10.254) by straightforward algebra 
with the help of a computer software for symbolic manipulation. 

(2) Verify the three equations in (10.47), and show algebraically that 
any two of the three equations in (10.47) imply the third. 

(3) Explain why (10.48)- (10.49) imply that the four gyrotriangle gy- 
rocentroids, mbdm, mdcm and mcam, in Fig. 10.7 form 
a gyroparallelogram that shares its gyrocenter with its generating 
gyroparallelogram abdc. 

(4) Verify the second identity in (10.60). 
( 5 )  Show that (10.68) and (10.69) follow from the condition imposed 

on (10.66) exemplified by (10.67). 
(6) Verify Identity (10.94) (computer algebra is needed). 
(7) Show that the second Identity in (6.102) of Theorem 6.36, in Ein- 

stein gyrovector spaces, is a special case of Identity (10.128). 
Hint: Consider (10.128) with tl = t 2  = 1 and use the identity in 
(10.27) - (10.28). 

(8) Show that (10.186) follows from (10.174). 
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Hint: Note that ~gYgyr[al,8azlv = yv 

from (10.175). 
(9) Verify the last identity in (10.175), and show that (10.187) follows 

(10) Show that (10.188) follows from (10.176). 
(11) The Einstein Three-Quarter. Prove the identity 

( 10.255) 3 X 
l V  -@v = 

4 
yv + 1 + d m  

Hint: Employ (6.325), using (10.190). 
(12) Verify the relation (10.224) between coordinate velocities v and 

proper velocities w. This relation is traced back to a 1915 work of 
G.A. Schott [Schott (1915)l. 

(13) Show that (10.230) follows from (10.229). 
(14) Show that (10.231) follows from (10.226) and (10.230). 
(15) (An open problem) The gyroparallelogram addition law (10.65), 

Fig. 10.10, is expressible in terms of Einstein addition @. Simi- 
larly, express the gyroparallelepiped addition law (10.66) in terms 
of Einstein addition. 

(16) James Bradley (1693- 1762) was an English astronomer most fa- 
mous for the discovery of the aberration of starlight, known as 
stellar aberration, around 1728. He interpreted the stellar aber- 
ration classically by classical velocity addition or, equivalently, by 
the parallelogram addition law of classical velocities. 
The effect of stellar aberration is a simple phenomenon in astro- 
nomical observations. Yet, attempts to understand it relativisti- 
cally are not clear. Replacing classical velocity addition by rela- 
tivistic velocity addition, W. Rindler studies the stellar aberration 
in his book ‘%ssential Relativity: Special, General, and Cosmolog- 
ical”. Specifically, he employs the Einstein velocity sum 

(-v, 0, O)t@&l, 212, U 3 l t  (10.256) 

(211, 212, us), ( -V,  0, O)ER~,  giving no explanation why the rela- 
tivistic velocity sum (10.256) that he selected is preferable over the 
similar, but different, relativistic velocity sum 

(u1, u2, u3)t%(--ZI, 0, O)t  (10.257) 

Calculate the relativistic velocity sums (10.256) and (10.257) and 
show that the one selected by Rindler, (10.256), is simpler than the 
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other one, (10.257). 
(17) Explain the stellar aberration relativistically by a new way that 

analytic hyperbolic geometry offers. Rather than relativizing the 
classical interpretation of stellar aberration by the traditional way 
of replacing classical velocity addition by relativistic velocity addi- 
tion, replace the parallelogram addition law of classical velocities 
by the gyroparallelogram addition law of relativistic velocities. 



Notation And Special Symbols 

CB Gyroaddition, Gyrogroup operation. 
0 Gyrosubtraction, Inverse gyrogroup operation. 
EE Cogyroaddition, Gyrogroup cooperation. 
E Cogyrosubtr action, Inverse gyrogroup cooper ation. 
& Einstein addition (of relativistically admissible coordinate ve- 

locities, and generalizations). 
Einstein subtraction. 

B, Einstein coaddition. 
El, Einstein cosubtraction. 
a Mobius addition. 

Mobius subtraction. 
HM Mobius coaddition. 
EM Mobius cosubtraction. 
@,, PV addition (of relativistically admissible proper velocities, 

6 PV subtraction. 
EEI, PV coaddition. 
8, PV cosubtraction. 

and generalizations). 

8 Scalar multiplication (scalar gyromultiplication) in a gyrovec- 
tor space. 

& Einstein scalar multiplication. 
gM Mobius scalar multiplication. 
@ PV scalar multiplication. 

ab A segment with distinct endpoints a and b of (i) a gyroline 
(gyrosegment), or (ii) a cogyroline (cogyrosegment). A gyro- 
line (cogyroline) containing the distinct points a and b. 

6 Gyropolygonal gyroaddition, Definition 2.13. 

443 
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lab1 Length of (i) a gyrosegment (gyrolength), or (ii) a cogyroseg- 

abc A gyrotriangle with vertices a, b and c.  
ment (cogyrolength). 

a a = ((a[( is the gyrolength of gyrovector a. 
a, a,  = a / s  in a gyrovector space (V,, @, @). 

Aut An automorphism group. 

CM Center of momentum. 

gyr Gyrator. gyr[a, b] the gyration (gyroautomorphism) gener- 

Auto A subgroup of an automorphism group. 

c The vacuum speed of light. 

ated by a and b. 
s Gyrovector space analogue of the vacuum speed of light c. 

u x v Vector product of u, v€W3 with components (u x v ) ~  etc. 
-yv The gamma factor, -yv = (1 - llv112/s2)1/2 in the ball V,. 
,& The beta factor, Pv = (1 + l(v112/s2)1/2 in the ball V,. 
B3 B3 = R:=, is the unit ball of the Euclidean 3-space. 

I Identity automorphism. 
i v-1 

R The real line. 

7 

RW>O The positive ray of the real line R. 
The nonnegative ray of the real line R. 

R" The Euclidean n-space. 
Ry The s-ball of the Euclidean n-space. 
S, The cone 9, = ((t,,)' : t E R'O, x E V, and v = x/t E V,} 

V A real inner product space V = (V, +, .) with a binary opera- 
( S ,  +) A groupoid, a set S with a binary operation +. 

tion + and an inner product +. 
V, The s-ball of the real inner product space V. 
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